
Astrophysics of Compact Objects
(171.156), Fall 2011

Problem Set 1

Due: In class, 6 September 2011

1. White-dwarf mass-radius relation. In this problem you will numeri-
cally integrate the equation of hydrostatic equilibrium to obtain the mass-
radius relation for white dwarfs.

(a) Begin by showing that if the pressure in the white dwarf is provided
entirely by electron degeneracy pressure, then the pressure is
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Here, xF is the dimensionless Fermi momentum,
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where ρ is the mass density and Ye the number of electrons per nu-
cleon.
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(c) Now devise a numerical scheme to integrate the two coupled differ-
ential equations,
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, and
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using the equation of hydrostatic equilibrium for dP/dr. You can use
Mathematica, write a C or Fortran program, or any other numerical
procedure you find handy.

(d) As you change the central density, you should get a one-parameter
family of stars with a sequence of masses M and radii R. You should
be able to understand the qualitative behavior of your results for
R → 0 and R → ∞.

(e) Plot this mass-radius relation for µe = 56/26 for an iron white
dwarf and µe = 2 for a carbon white dwarf. Plot the following
three white dwarfs on your graph: (1) Sirius B, M = 1.053 M⊙,
R = 0.0074 R⊙; (2) 40 Eri B, M = 0.48 M⊙, R = 0.0124 R⊙; (3)
Stein 2051, M = 0.50 M⊙ or 0.72 M⊙, R = 0.0115 R⊙, and try to
infer their compositions.
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(f) The results you have derived above should show that as M → 0,
R → ∞. Clearly, at some point this result must break down (think
about where Jupiter would fall on this plot!). This is because when
the density becomes sufficiently low, Coulomb interactions between
the electrons and ions (neglected above) become important in de-
termining the equation of state. Estimate the Coulomb energy per
electron. Use this result to estimate the density at which Coulomb
effects become important. You can then estimate (very roughly) the
maximum radius for a white dwarf and the mass at which it occurs.

2. Diffusion of Elements. A few white dwarfs have been found to have
metals in their atmospheres. In this problem you will understand why this
is strange.

(a) What is the macroscopic force on an ion with charge Ze and mass
Amu in a star otherwise composed of pure hydrogen? (Don’t forget
the electric field eE = mpg/2 that has to be present to keep the
protons from sinking and the electrons from flying out of the star.)

(b) Roughly how often does an ion collide with the electrons and protons
in the gas? Which collisions determine the rate of downward settling?
Estimate numerical values for ions in the atmosphere of an 0.6 M⊙

white dwarf.

(c) Combining (a) and (b), calculate the rate of downward drift of an ion
through the white-dwarf atmosphere as a function of the density, tem-
perature, and gravity in the gas. How does the time to drift through
the atmosphere scale with the temperature of the atmosphere (scale
to a fiducial value of 104 K)? Should we see heavy elements in the
white-dwarf atmosphere? or just pure hydrogen?

3. White-dwarf oscillations. White dwarfs are observed to undergo os-
cillations with periods (very roughly) of ∼ 500 sec. Using typical white-
dwarf numbers (e.g., carbon interior, mass M = 0.6 M⊙ and radius R =
0.01 R⊙), to show that the the Brunt-Vaisala frequency in the outer en-
velope of the white dwarf is roughly consistent with the observed g-mode
frequency. How does this result depend on the internal temperature?
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