
Astrophysics of Compact Objects
(171.156), Fall 2011

Problem Set 3

Due: In class, 22 September 2011

1. Neutron-star order-of-magnitude estimates.

(a) Rotation period. Imagine our Sun collapses to a radius of 10 km.
What would the final spin period be, assuming conservation of an-
gular momentum and assuming the initial and final states are both
homogeneous spheres.

(b) Kick velocity. Assume that a newborn neutron star radiates 1053

erg in neutrinos. Show that an asymmetry in emission as small as
1% (for example, if the star radiates slightly more neutrinos in the
positive-z direction than in the negative-z direction) is enough to im-
part a kick of several 100 km s−1 to the neutron star (assume a mass
of 1.4 M⊙). Make use of the fact that neutrinos are ultrarelativistic
particles.

(c) Magnetic field. Assume a star of the size and magnetic field of the
Sun collapses to a radius of 10 km. Estimate the magnetic field of
the resulting object, assuming that magnetic flux is conserved.

(d) Temperatures and accretion rates. Consider a binary system in
which matter accreting onto a compact object leads to a luminosity
close to 1038 erg/sec, close to the Eddington luminosity for a M⊙ star.
Show that if the compact object is a white dwarf then it radiates in
the ultraviolet, but if it is a neutron star, it radiates primarily in
x-rays. Find the mass accretion rate onto a neutron star consistent
with this luminosity.

(e) Maximum magnetic fields. As the magnetic field in a neutron star
is increased, the energy density in the magnetic field also increases.
Estimate the magnetic-field strength above which the magnetic-field
energy density becomes larger than the (rest-mass) energy density
in the outer crust of the neutron star. Estimate the magnetic-field
strength above which the magnetic-field energy density becomes larger
than the (rest-mass) energy density in the core of the neutron star.
Deduce from these estimates a rough upper limit to the allowed value
of the magnetic field in a magnetar.

2. Pulsar-glitch timescales. The spinup of the crust in a pulsar glitch is
communicated to the charged particles in the interior of the neutron star
by the magnetic fields that thread them. Any distortion in the magnetic
field due, for example, to differential rotation, generates magnetic “sound
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waves,” or Alfvén waves, which travel with a speed vA ∼ (PB/ρ)1/2, where
PB ∼ B2/8π and ρ is the mass density. Estimate the time τA for the crust
spinup to be communicated to the interior of the star. Find and use the
magnetic-field strength typical for the Vela pulsar and compare (roughly)
with the post-glitch healing time for the Vela pulsar.

3. Pulsar glitches from magnetospheric instabilities. Argue, using
energetic considerations, that the magnetic field in the closed field-line
region about a pulsar can trap charged particles up to a maximum plasma
moment of inertia,

Ip ∼
B2

pR3

6Ω2
. (1)

Calculate the fractional angular-frequency change ∆ΩΩ if all of the plasma
were released suddenly without generating a torque on the star. Evaluate
your answer for the Crab and Vela pulsars, assuming reasonable values for
Bp, M , and R.

4. Hawking’s area theorem. Hawking proved that in any interaction be-
tween several black holes, the sum of the surface areas can never decrease.
For a Kerr black hole of mass M and spin parameter a, the area of the
horizon is

A = 8πM
[

M + (M2 − a2)1/2

]

. (2)

Use Hawking’s area theorem to find the minimum mass M2 of a Schwarzchild
black hole that results from the collision of two Kerr black holes of equal
mass M and opposite spin parameter a. Show that if |a| → M , then half
of the rest mass is radiated away as gravitational waves. Show that no
other combinations of masses and angular momenta lead to higher possible
efficiencies. Show that if a = 0, the maximum efficiency is 29%.

5. Gravitomagnetism. The frame-dragging effects of a Kerr spacetime,
around a spinning black hole, can be thought in terms of gravitomag-
netism, a gravitational analog magnetism. Moving masses generate in
general relativity a gravitomagnetic field ~Bg analogously to electromag-

netism. Thus, ~∇ × ~Bg = −4πG~J/c, where ~J is the mass current. First,
estimate the gravitomagnetic field in the Solar System 1 AU from the Sun.
There is then a gravito-Lorentz force ~Fm = 2m~v× ~Bg/c that acts on masses
moving with velocity ~v. This force acts in the Solar System on the Earth
in such a way that it affects the Earth’s orbital period (e.g., the period
would depend on whether the Earth was co-rotating or counter-rotating
with the Sun.) Estimate the magnitude of this effect.
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