Astrophysics of Compact Objects (171.156), Fall 2011

Problem Set 5

Due: In class, 13 October 2011

- 1. Problem 2.1 in Frank, King, and Raine.
- 2. The Trapping Radius in Spherical Accretion (from Phinney via Bildsten). Consider a purely spherical flow onto a black hole with mass M that dissipates (and radiates) an energy per gram of $\approx GM/r$ as it falls from r to r/2. Even though clearly some of the energy must be escaping as radiation, presume that the matter still is roughly falling at the free-fall speed all the way, as we outlined in the opening paragraph at top.
 - (a) Calculate the optical depth to Thomson scattering from an inner radius r to infinity $\int \sigma_{Th} n_e dr$ as a function of the accretion rate.
 - (b) At what accretion rate (call this \dot{M}_c) does the optical depth become unity at $r_q = 2GM/c^2$? How does \dot{M}_c relate to \dot{M}_{Edd} ?
 - (c) For $\dot{M} > \dot{M}_c$, the innermost parts of the flow becomes optically thick and the flow just takes in all the internal energy. The black holes goes gulp! Calculate the "trapping radius", r_t , as a function of \dot{M}/\dot{M}_c .
 - (d) What is the luminosity, L, that escapes to infinity in the regime $\dot{M} > \dot{M}_c$? How does the efficiency, η , depend on the ratio \dot{M}/\dot{M}_c ?
 - (e) Find L and \dot{M}_c for a $10^8 M_{\odot}$ black hole.
- 3. Stellar spindown due to Keplerian disk (from Bildsten adapted from FKR 4.1). Imagine a Keplerian disk where matter is neither expelled nor accreted, but simply extracts angular momentum from the central star at a constant rate $N_o = I\dot{\omega}$, where ω is the central star's spin frequency and I is the stellar moment of inertia.
 - (a) Show that at a distance far from the stellar surface, the flux from a surface of the disk is

$$F(r) = \frac{3N_o(GM)^{1/2}}{8\pi r^{7/2}},\tag{1}$$

where M is the stellar mass.

(b) Integrate this flux up to the stellar surface so as to get the total luminosity. How does it compare to the rotational energy loss of the

- central star, $L_{rot} = I\omega\dot{\omega}$? Is it more or less? Does the ratio of the luminosities depend in some simple way on the rotation rate of the central object, ω . Discuss the energy balance and what assumptions might go bad as one gets close to the star.
- (c) Again, focus on the region at large radii where the simple equation 1 should be adequate. Start by replacing N_o with L_{rot} and then fully work out an α disk model presuming that Kramer's opacity predominates and that the pressure is that of a completely ionized ideal gas. Do this for a neutron star with $M=1.4M_{\odot}$ and scale your solution with a fiducial $L_{rot}=10^{36}$ erg s⁻¹ and a spin period of one second. Find h, T in the mid-plane, and Σ as a function of radius (for r > 100 km).
- (d) Given the density and temperature in the mid-plane, estimate the radius at which the hydrogen becomes neutral. How does this position depend on L_{rot} ?
- 4. Irradiated thin disk. Here's a simplified version of FKR 5.3. Consider a spherical star of radius R_* and uniform temperature T_* radiating like a blackbody. Assume the star is surrounded by an infinitesimally thin disk of optically thick material. Show that the temperature T(r) of this "passive" disk scales as $r^{-3/4}$ at large distances r. Compare this temperature distribution with that from a standard thin accretion disk and explain how you would distinguish the two with observations of a young star.
- 5. Do FKR problem 5.5.