Quantum Mechanics (171.605), Fall 2016

Problem Set 9

Due: 13 December 2016

1. Problem 4.11 in Sakurai-Napolitano.
2. Problem 4.12 in Sakurai-Napolitano.
3. Determine the energy levels for a particle of mass m moving in onedimensional lattice of Dirac delta functions; i.e.,

$$
\begin{equation*}
V(x)=\sum_{n=-\infty}^{\infty} V_{0} \delta(x-n a) \tag{1}
\end{equation*}
$$

4. The Hamiltonian of a positronium atom in the $1 S$ state in a magnetic field B along the \hat{z} axis is to good approximation,

$$
\begin{equation*}
H=A \vec{S}_{1} \cdot \vec{S}_{2}+\frac{e B}{m c}\left(S_{1_{z}}-S_{2_{z}}\right) \tag{2}
\end{equation*}
$$

if all higher energy states are neglected. The electron is labeled as particle 1 and the positron as particle 2 . Using the coupled representation in which $\vec{S}^{2}=\left(\vec{S}_{1}+\vec{S}_{2}\right)^{2}$ and $S_{z}=S_{1_{z}}+S_{2_{z}}$ are diagonal, obtain the energy eigenvalues and eigenvectors and classify them according to the quantum numbers associated with the constants of the motion. Empirically it is known that for $B=0$ the frequency of the $1^{3} S \rightarrow 1^{1} S$ transition is $2.0338 \times$ $10^{5} \mathrm{MHz}$ and that the mean lifetimes for annihilation are $10^{-10} \mathrm{sec}$ for the singlet state (two-photon decay) and 10^{-7} for the triplet state (threephoton decay). Estimate the magnetic-field strength B which will cause the lifetime of the longer lived $m=0$ state to be reduced (or "quenched") to $10^{-8} \mathrm{sec}$.
5. The spin-angular function for a spin- $1 / 2$ particle in a state of total angular momentum $j=l \pm(1 / 2)$ and azimuthal quantum number m is

$$
\begin{equation*}
\mathcal{Y}_{l}^{l \pm(1 / 2), m}=\frac{1}{\sqrt{2 l+1}}\binom{ \pm \sqrt{l \pm m+\frac{1}{2}} Y_{l, m-(1 / 2)}}{\sqrt{l \mp m+\frac{1}{2}} Y_{l, m+(1 / 2)}} \tag{3}
\end{equation*}
$$

Now suppose that this spin- $1 / 2$ particle is in a state,

$$
\begin{equation*}
\mathcal{Y}_{j-(1 / 2)}^{j m}+b \mathcal{Y}_{j+(1 / 2)}^{j m} \tag{4}
\end{equation*}
$$

with total angular momentum $j m$. Assume this state to be an eigenstate of the Hamiltonian H with no degeneracy other than that demanded by
rotational invariance. If H conserves parity, how are the coefficients a and b restricted? If H is invariant under time reversal, show that a / b must be imaginary. Verify explicitly that the expectation value of the dipole operator $-e \mathbf{r}$ vanishes if either parity is conserved or if time-reversal invariance holds (or both).

