
Particle Astrophysics (171.697),
Spring 2017

Problem Set 1

Due: In class, first class of week 2

1. Find a coordinate transformation that shows that the Milne spacetime
(i.e., the FRW spacetime with Friedmann equation H2 ∝ a−2) is equiva-
lent to a Minkowski spacetime. Explain what is going on.

2. The age t0 of the Universe in the standard cosmological model depends
on the current value of the Hubble parameter, H0 = 100h km/sec/Mpc,
as well as on Ω0, the current density in units of the critical density. In
class, we showed that if Ωm = 1 and ΩΛ = 0, then t0(h) = 6.7 h−1 Gyr.
(a) Your assignment is to generalize this result and derive an expression
for the age of the Universe for Ωm > 1 and for Ωm < 1, both for ΩΛ = 0.
(This shouldn’t be too tricky—the answers are in the books. But still, you
should derive the equations yourself.) Then, plot contours for t0 =10 Gyr,
13 Gyr, and 17 Gyr on the Ωm − h. You may do this either by sketching
the contours by hand, or you may generate such a plot with Mathematica,
C, Fortran, or anything else, if you’re so inclined. (b) Then, make the
analogous plots, but for Ωm + ΩΛ = 1 (and restricting to Ωm < 1). (c)
Stellar astrophysicists believe that the oldest stars are around 10–20 Gyr.
If the correct value is somewhere around 14 Gyr, your plots should show
you for which values of Ωm and h there might be consistency. (d) At
some point, astronomers found a galaxy at a redshift z = 1.5 with a
spectrum well fit by stellar-population model with an age 3.5 Gyr. Draw
on your plots the regions of the Ωm-h parameter space ruled out by this
measurement.

3. The brightness of sources are measured on a logarithmic apparent magni-
tude scale, where the apparent magnitude is defined to be m = −2.5 log f+
constant, and f is the flux, and the logarithm is base 10. The luminosity of
the source is similarly measured on a logarithmic absolute luminosity scale,
where the absolute luminosity is M = −2.5 log L+constant. The constants
are chosen so that the distance modulus is m−M = 5 log(r/10 pc). If there
is a standard candle, an object of known luminosity L (and thus known M ,
then measurement of its apparent magnitude m determines the luminos-
ity distance. Suppose now that observers measure the distance modulus
of supernovae (assumed to be standard candles) at redshifts z = 0.5 and
z = 1. Calculate the luminosity distances at these two redshifts for (i)
an (ii) a flat Universe with nonrelativistic matter and a cosmological con-
stant with Ωm = 0.3 and ΩΛ = 0.7; and (ii) the same Universe with the
cosmological constant replaced by some exotic dark energy with equation-
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of-state parameter wDE = −0.9 and with Ωm = 0.3 and ΩDE = −0.9.
Determine the differences in the distance moduli between these two cos-
mologies, both at redshifts z = 0.5 and z = 1. Do some reading or talk
with some of the local advanced grad students, professors, or postdocs to
figure out how well (roughly) the magnitude scale is calibrated and also
to figure out what a typical extinction is and how accurately it can be
subtracted from reddening measures.

4. In the standard cosmological scenario, all the electrons and protons in the
Universe combine to form hydrogen at a redshift z ' 1000 in a process we
call “recombination”. However, at some redshift zreion, stars begin to form
and emit radiation that ionizes all the hydrogen in the Universe. If so,
then cosmic microwave background (CMB) photons may Thomson scatter
from the free electrons en route from the surface of last scatter. Calculate
the optical depth τ(zreion) for Thomson scattering of CMB photons as a
function of the reionization redshift zreion for Ωm = 0.3 and ΩΛ = 0.7.
Derive an analytic approximation for zreion � Ω−1

m and make sure your
exact expression agrees with this answer in the appropriate limit. Write
your answer in terms of the baryon density Ωbh

2 ' 0.022 (where h is the
Hubble parameter in units of 100 km/sec/Mpc) and in terms of the helium
mass fraction Y ' 0.24. At what zreion does τ = 1?

5. When a supernova goes off, it injects roughly 1051 ergs of kinetic energy
into the surrounding interstellar medium (ISM), thus driving a shock wave
into the ISM that then heats the ISM. The heated gas then cools primar-
ily by Brehmsstrahlung emission. This is a complicated process and can
differ significantly from one supernova to another. Still, for the purposes
of this exercise, let’s suppose that the cooling time for a typical supernova
remnant is 10,000 years. To a much lesser degree, the electrons in the gas
can also cool by inverse-Compton scattering cosmic microwave background
(CMB) radiation. Today, (at redshift z = 0) the CMB has a temperature
T = 2.7 K. However, at earlier times, at redshift z, the energy density
of the CMB will be much higher and the efficiency of inverse-Compton
cooling of the supernova remnant will be much higher. Estimate the red-
shift at which inverse-Compton cooling becomes the primary avenue for
the supernova remnant to cool. (To do so, you may need to look up the
formula for the Compton cooling rate—no need to derive it yourself.) If
you do this sufficiently carefully, you could write an ApJ article about it;
if so, you are spending too much time on this problem. We’re just looking
here for a back-of-the-envelope estimate, which should not be too difficult.
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