Particle Astrophysics (171.697), Spring 2017

Problem Set 10

Due: In class, first class of week 11

1. Show that the polarization of radiation scattered from an electron cloud of optical depth $\tau \ll 1$ into the direction \hat{z} is

$$
\begin{equation*}
Q-i U=\sqrt{\frac{3}{40 \pi}} \tau a_{22} \tag{1}
\end{equation*}
$$

where a_{22} is the radiation quadrupole moment incident on the electron cloud.
2. Consider a single Fourier mode of of (comoving) wavevector $\vec{k}=k \hat{z}$ in the \hat{z} direction and of (comoving) wavenumber k. It appears in the metric as

$$
\begin{equation*}
d s^{2}=a^{2}(\tau)\left[d \tau^{2}-d x^{2}\left(1+h_{+}\right)+d y^{2}\left(1-h_{+}\right)+d z^{2}\right] . \tag{2}
\end{equation*}
$$

Show that this equation satisfies (in the absence of anisotropic stress),

$$
\begin{equation*}
\ddot{h}_{+}+2 a H \dot{h}_{+}+k^{2} h_{+}=0 . \tag{3}
\end{equation*}
$$

Write the solutions during matter domination and during radiation domination. Match the solutions and their first derivatives at matter-radiation equality to write the late-time (well into matter domination) solution for small-wavelength (i.e., those that enter during radiation-domination) modes as

$$
\begin{equation*}
h_{+}(\tau)=h_{k}(\tau) \sin [k \tau+\delta(k)], \tag{4}
\end{equation*}
$$

where $h(\tau)$ is slowly varying with τ, and $\delta(k)$ is a phase. Find $h(\tau)$ and $\delta(k)$.
3. Write the tensor amplitude in the previous problem as $h_{+}(\vec{x}, \tau)=h(\tau) e^{i k \tau} e^{-i k z}$. Show from the geodesic equation that the frequency ν of a photon that propagates through this spacetime is

$$
\begin{equation*}
\frac{1}{\nu} \frac{d \nu}{d \tau}=-\frac{1}{2}\left(1-\mu^{2}\right) \cos 2 \phi e^{-i k z} \frac{d}{d \tau}\left(h e^{i k \tau}\right), \tag{5}
\end{equation*}
$$

where μ is the cosine of the angle between \hat{z} and the photon's direction of motion, and ϕ the azimuthal angle of the photon's direction of motion.
4. Run CLASS or CAMB for a scale-invariant spectrum of primordial gravitational waves (tensor perturbations) and then plot the BB polarization power spectrum. Take a reionization optical depth $\tau \simeq 0.1$. You should see a reionization bump at low ℓ; try to understand the value of ℓ at which this peaks. Try also to understand the value of ℓ at which the recombination peak occurs. You should then see the power spectrum drop with ℓ at high ℓ. Try to derive the power law with which C_{ℓ}^{BB} falls in this regime. You should also see small oscillations in the high- ℓ power spectrum. Try to understand how those arise (qualitatively, at least, if not quantitatively).

