
Chapter 7

CMB polarization

7.1 The polarization tensor

The intensity of the radiation is proportional to the electric field squared, I / hE2i. We can generalize this
scalar quantity to a symmetric tensor, Iab / hEaEbi. Because the electromagnetic fields are orthogonal to the
direction of propagation of a a wave, I(n̂) · n̂ = 0. The scalar intensity is just the trace of this tensor: I ⌘ Iaa.
The remainder is the polarization tensor :

Iab =
I

2
(�ab � nanb) + Pab. (7.1)

Pab(n̂) a 3 by 3 symmetric and trace-free tensor orthogonal to the direction of propagation, Pabn
b = 0. This

means that Pab has only two independent components. Since it is symmetric, we can diagonalize it. We
already know that n̂ is one of the eigenvectors (with eigenvalue 0). Let us denote by û and v̂ the remaining 2
eigenvectors, orthogonal to n̂. Given that Pab is traceless, it must take the following form in the basis (û, v̂, n̂):

Pab(n̂) = �(uaua � vava) = �

0

@

1 0 0
0 �1 0
0 0 0

1

A , (7.2)

This represents a radiation field polarized along ±û, with total polarization �. If we denote by x̂ and ŷ a fixed
basis orthogonal to n̂, and û = cos' x̂ + sin' ŷ and v̂ = � sin' x̂ + cos' ŷ, then we have, in the basis (x̂, ŷ, n̂),

Pab(n̂) = � [cos(2')(x̂ax̂b � ŷaŷb) + sin(2')(x̂aŷb + ŷax̂b)] = �

0

@
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0 0 0

1

A =
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Q U 0
U �Q 0
0 0 0

1

A ,

(7.3)
where we used the Stokes parameters Q ⌘ � cos(2') and U ⌘ � sin(2'). Thus we see that the two independent
numbers describing Pab are the angle ' and the magnitude of polarization �, or equivalently Q and U . We note
that these parameters only describe linear polarization, which is the only relevant kind of polarization here. In
terms of the electric field, we have

I / hE2
xi + hE2

yi, (7.4)

Q / hE2
xi � hE2

yi, (7.5)

U / 2hExEyi. (7.6)

7.2 Thomson scattering

7.2.1 General expression

Given an incoming intensity tensor I(n0), the simplest guess for the intensity tensor after scattering in the
direction n is the projection of I(n0) perpendicular to n:

Iab(n) / (I0?n)ab ⌘ I 0ab � I 0acncnb � I 0bcncna + I 0cdncncnanb (7.7)
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You can check for yourself that this tensor is orthogonal to n; it is also obviously symmetric. It also implies
that, for an incoming radiation polarized along ±✏0, the scattered intensity along ±✏ is proportional to (✏ · ✏0)2.

The rate of change of the photon intensity due to Thomson scattering therefore takes the form

dI

dt

�

�

�

Th
= ne�T



C

Z

dn0I0?n � I(n)

�

, (7.8)

where we now determine the constant C. Taking the trace, we have

Tr(I0?n) = I 0 � I 0abnanb, (7.9)

therefore
dI

dt

�

�

�

Th
= ne�T



C

Z

dn0(I 0 � I 0abnanb) � I(n)

�

, (7.10)

Thomson scattering does not change the photon energy (in the limit we are considering), neither the total
number of photons, and as a consequence the angle-integrated I must be conserved. You can check that this
implies C = 3

8⇡ .

7.2.2 Total intensity

Using Eq. (7.1) we obtain, defining d⌧ ⌘ ne�Tdt,

dI

d⌧

�

�

�

Th
=

3

16⇡

Z

dn0 ⇥1 + (n · n0)2
⇤

I 0 � I(n) � 3

2
nanb

Z

dn0

4⇡
P 0

ab. (7.11)

We have already encountered the first two terms when studying temperature-only perturbation; we can see that
in addition, the angle-averaged polarization tensor also sources total intensity.

In practice we work with the temperature perturbation ⇥ such that I / T
3
(1+⇥), and with the polarization

in units of T
3

(we keep the same notation for that quantity, Pab):

d⇥

d⌧

�

�

�

Th
=

3

16⇡

Z

dn0 ⇥1 + (n · n0)2
⇤

⇥0 � ⇥(n) � 3

2
nanb

Z

dn0

4⇡
P 0

ab. (7.12)

7.2.3 Polarization

The rate of change of the polarization tensor is the transverse trace-free part of the rate of change of the
intensity tensor:

dP

dt
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✓

dI
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Th

◆

tt

, (7.13)

where

(Xtt)ab ⌘ Xab � Xcc

2
(�ab � nanb) . (7.14)

We need to compute the transverse trace-free part of I0?n. You can easily check that the part proportional to
the identity matrix 1 (with components �ab) does not contribute, so we have

I0?n,tt = �I 0

2
(n0 ⌦ n0)?n,tt + P0

?n,tt = �I 0

2

✓

n0 ⌦ n0 � 1

3
1

◆

?n,tt

+ P0
?n,tt, (7.15)

where (n ⌦ n)ab ⌘ nana and we have added a (for now seemingly arbitrary) part times the identity matrix,
whose (?n, tt) part vanishes. So we get

dP

d⌧

�

�

�
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= � 3
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dn0 I
0

2
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3
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◆
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+
3

8⇡

Z

dn0P0
?n,tt �P. (7.16)

We can intervert the order of integrating and projecting and rewrite this as

dP

d⌧

�
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�
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�P. (7.17)
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The intensity I(n0) can be decomposed in its multipole moments. This is usually done using a spherical harmonic
decomposition in a specific basis, but we can also do it in a coordinate-independent fashion:

I(n0) = I(0) + I(1)
a n0

a + I
(2)
ab

✓

n0
an0

b �
1

3
�ab

◆

+ ..., (7.18)

where I(0), I
(1)
a , I

(2)
ab are the monopole, dipole, and quadrupole moment, respectively, and given by [check

normalization]

I(0) ⌘
Z

dn0

4⇡
I(n0), (7.19)

I(1)
a ⌘ 3

Z

dn0

4⇡
n0

aI(n0), (7.20)

I
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◆
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◆
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. (7.21)

The piece 1
3�ab in the quadrupole moment is there so that the quadrupole piece averages to zero (it is orthogonal

to the constant monopole). Rewriting things in terms of the temperature perturbation ⇥ (and now rescaling
Pab), we therefore arrive at

dP

d⌧

�

�

�

Th
= � 1

20
⇥(2)

?n,tt +
3

2



Z
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4⇡
P0

�

?n,tt

�P, (7.22)

⇥(n0) = ⇥(0) + ⇥(1)
a n0

a + ⇥(2)
ab

✓

n0
an0

b �
1

3
�ab

◆

+ ..., (7.23)

We therefore see that the quadrupole of the intensity sources the polarization tensor (note that our definition
of the quadrupole may not be the standard one, but the combination of the two equations is all that matters).
This can be understood intuitively graphically, including the minus sign.

Just like for the temperature perturbation, we can write a line-of-sight solution for the polarization tensor.
In both cases, the visibility function (which gives the probability of last scattering) has two bumps: a large one
at recombination and a smaller one at reionization. The total probability of last scattering at reionization is
1 � e�⌧reion ⇡ ⌧reion ⇡ 0.06 (according to the latest Planck analysis). The source function for the polarization
contains the local intensity quadrupole.

7.3 E and B modes

A vector field ~V (~x) can be decomposed into a gradient mode G and a curl mode ~C:

~V = ~rG � ~r⇥ ~C, ~r · ~C = 0 (7.24)

The components G and ~C are uniquely defined by

r2G ⌘ ~r · ~V , r2 ~C ⌘ ~r⇥ ~V . (7.25)

The same can be done for a polarization map Pab(n̂) on the sky. We first define the vector Va ⌘ rb
?Pab, where

~r? is the gradient perpendicular to the line of sight (to formalize this better, one could introduce an arbitrary
angular diameter distance that cancels out in the definition of E and B):

ra
? = (�ab � nanb)rb. (7.26)

The vector ~V is itself perpendicular to the line of sight:

na(rb
?Pab) = rb

?(naPab) � Pabrb
?na = rb

?( 0 ) � Pab(�
ab � nanb) = 0. (7.27)

We then define the gradient (E) and curl (B) modes as follows:

r2
?E ⌘ r? · ~V , r2

?B ⌘ n̂ · (~r? ⇥ ~V ). (7.28)
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No B-modes for scalar initial conditions

For scalar initial conditions, with initial perturbations ⇣(k), any perturbation is proportional to ⇣(k). Since
the coe�cients of the Boltzmann equation only depends on k and µ ⌘ k̂ · n̂, for a given k, the only geometric
form the polarization tensor may take is

P(k, n) / (k̂ ⌦ k̂)?n,tt ⇣(k), (7.29)

where the coe�cient only depends on k and µ. We note that

h

(k̂ ⌦ k̂)?n,tt

i

ab
= (k̂a � µna)(k̂b � µnb) � 1

2
(1 � µ2)(�ab � nanb) =

1

2
(1 � µ2)

0

@

1 0 0
0 �1 0
0 0 0

1

A ,(7.30)

in the basis where the first vector is along the component of k̂ perpendicular to n, the second vector is orthogonal
to k̂ and n, and the third vector is n. So we may write

P(k, n) =
2�P (k, µ)

1 � µ2
(k̂ ⌦ k̂)?n,tt ⇣(k). (7.31)

With this convention, the polarization amplitude is �P (k, µ)⇣(k). In words, with scalar initial conditions, the
polarization must be along the the component of k orthogonal to n̂, and its amplitude only depends on the
angle between k̂ and n̂.

Similarly, the vector Va is linearly related to ⇣(k) and is orthogonal to n̂. It therefore takes the form

Va = V (k, µ)(k̂a � µna)⇣(k). (7.32)

Therefore
rb

?Va =
h

@µV (k̂a � µna) � V na

i

(k̂b � µnb)⇣(k) � V µ(�ab � nanb)⇣(k). (7.33)

This implies
r2

?B = nc✏cbarb
?Va = �V nc✏cbanak̂b⇣(k) = 0. (7.34)

In words, the vector ~V is everywhere parallel to the component of ~k perpendicular to the line of sight, and as
a consequence, its curl vanishes. This holds for a single k mode, and by linearity, for arbitrary scalar initial
conditions. A B-mode contribution to the polarization pattern is therefore a tell-tale of primordial tensor (or
vector) modes.

7.4 Scalar perturbations

7.4.1 Polarization Boltzmann equation

Let us consider scalar initial conditions, and suppose they are entirely determined by a single scalar field ⇣(k)
– this is the case for adiabatic initial conditions. We define P (k, µ) as in Eq. (7.31). We then have

k̂ak̂bPab(k, n) = (1 � µ2)�P (k, µ)⇣(k). (7.35)

We also have
Z

dn0

4⇡
Pab(k, n0) =

1

2

Z 1

�1

dµ0(1 � µ02)�P (k, µ0)k̂ak̂b⇣(k). (7.36)

A similar geometric argument implies that ⇥(2)
ab = ⇥2 k̂ak̂b⇣(k). Therefore,

⇣

⇥(2)
?n,tt

⌘

ab
k̂ak̂b =

1

2
(1 � µ2)2⇥2⇣(k). (7.37)

The Boltzmann equation for �P is then obtained by dotting that of P with k̂ak̂b:

�̇P + i(k · n̂)�P = ⌧̇



� 1

40
(1 � µ2)⇥2 +

3

4
(1 � µ2)

1

2

Z 1

�1

dµ0(1 � µ02)�P (k, µ0) � �P (k, µ)

�

, (7.38)

where we have included the transport terms in the left-hand side. The way to solve this equation numerically
is to decompose �P (k, µ) in the basis of Legendre polynomials.
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7.4.2 Temperature quadrupole in the tight-coupling limit

We recall that the Boltzmann equation for the temperature perturbation ⇥, in the Newtonian gauge:

⇥̇(n̂) + i(k · n̂)(⇥(n̂) +  ) � �̇ = ⌧̇



⇥̃(n̂) + vb · n̂ � ⇥(n̂) � 3

2
nanb

Z

dn0

4⇡
P 0

ab

�

, (7.39)

⇥̃(n̂) ⌘
Z

dn0 3

16⇡
[1 + (n̂ · n̂0)2]⇥(n̂0), ⌧̇ ⌘ ane�T. (7.40)

The term proportional to the baryon velocity accounts for the anisotropic radiation field seen by moving baryons,
even if the CMB is initially isotropic.

In the tight coupling limit ⌧̇ � k, the term in brackets in the right-hand side must almost vanish:

⇥(n̂) ⇡ ⇥̃(n̂) + ~vb · n̂, (7.41)

where we neglected the polarization piece, which, as we shall see, is small. In particular, taking the quadrupole
component of this equation implies that the quadrupole of ⇥ must nearly vanish. We therefore write

⇥(n̂) = ⇥0 + ~vb · n̂ + ✏(n̂), (7.42)

where ✏ is a small correction. Substituting into the Boltzmann equation we get

✏ ⇡ �1

⌧̇

h

⇥̇0 + ~̇vb · n̂ � �̇
i

� i
k · n̂
⌧̇

[⇥0 + ~vb · n̂] . (7.43)

In the tight-coupling regime, ~vb ⇡ ~v� . For scalar initial conditions,

~v� =
k̂

k
~k · ~v� = 3

k̂

k
i⇥̇0, (7.44)

where we have used the continuity equation. Therefore,

i(k · n̂)~vb · n̂ ⇡ �3(k̂ · n̂)2⇥̇0. (7.45)

So we find that the quadrupolar piece of ⇥ is

⇥quad ⇡ 1

⌧̇

h

1 � 3(k̂ · n̂)2
i

⇥̇0 = �3

⌧̇
k̂ak̂b

✓

n̂an̂b � 1

3
�ab

◆

⇥̇0. (7.46)

From this we read o↵ what we defined as the quadrupole:

⇥(2)
ab = �3

⌧̇
k̂ak̂b⇥̇0, (7.47)

and as a consequence the source term in the polariation equation is proportional to ⇥̇0/⌧̇ .
Now, in the tight-coupling limit, photons undergo acoustic oscillations, so ⇥0 / cos(kcs⌘). Hence, the

quadrupole is proportional to

⇥2 / k

⌧̇
sin(kcs⌘). (7.48)

This implies the following qualitative features for the polarization power spectrum from last-scattering
around recombination:
(i) the acoustic peaks are out-of-phase with those of the temperature power spectrum: peaks in the temperature
correspond to troughs in the polarization.
(ii) the polarization power spectrum (from recombination) is suppressed by ⇠ (k/⌧̇)2 relative to the tempera-
ture. This implies a rapid drop at large scales.
(iii) as a consequence, the contribution of re-scattering at reionization has a larger relative amplitude, and
shows as a ”bump” at `  10. The large-scale polarization power spectrum is what most strongly constrains
the optical depth to reionization.

Note that there is also a TE cross correlation.

47



7.5 Tensor perturbations

Let us now consider tensor metric perturbations. Consider the metric

ds2 = a2
⇥�d⌘2 + (�ij + hijdxidxj)

⇤

, (7.49)

where hij is a symmetric, traceless, and transverse tensor ,i.e. for each Fourier mode, kihij(k) = 0.

7.5.1 Einstein’s equation

Einstein’s equations take the form

ḧij + 2aHḣij + k2hij = 8⇡Ga2⌃ij , (7.50)

where ⌃ij is the anisotropic stress, proportional to the photon (and neutrino) intensity quadrupole.
In the tight-coupling regime (and in the absence of neutrinos), the anisotropic stress is small, and the tensor

satisfies a (damped) wave equation
ḧij + 2aHḣij + k2hij ⇡ 0. (7.51)

During radiation domination, a / ⌘, so aH = 1/⌘ and this equation becomes

ḧij +
2

⌘
ḣij + k2hij ⇡ 0. (7.52)

The solution that is well-behaved at ⌘ ! 0 is

hij = ⇣ij
sin(k⌘)

k⌘
. (7.53)

During matter domination, a / ⌘2, so aH = 2/⌘ and we have

ḧij +
4

⌘
ḣij + k2hij ⇡ 0. (7.54)

This has the solution

hij =
C1

(k⌘)2



cos(k⌘) � sin(k⌘)

k⌘

�

+
C2

(k⌘)2



sin(k⌘) +
cos(k⌘)

k⌘

�

. (7.55)

For modes that enter the horizon deep inside the radiation era k � keq, hij is initially constant then decays
as sin(k⌘)/(k⌘), and then, after matter-radiation equality, decays as e±ik⌘/(k⌘)2. For modes that enter the
horizon deep inside the matter-dominated era (k ⌧ keq), we must set C2 = 0.

In either case, tensor modes are initially constant, and decay as 1/a after horizon entry, while oscillating.

7.5.2 Boltzmann equation

The change of photon momentum due to gravitational waves is

q̇ =
1

2
qninj ḣij , (7.56)

where ni is the direction of propagation. The Boltzmann equation for photon temperature perturbations
therefore becomes (if there are only tensor modes, implying in particular that vb = 0)

⇥̇(n̂) + i(k · n̂)⇥(n̂) � 1

2
ninj ḣij = ⌧̇



⇥̃(n̂) � ⇥(n̂) � 3

2
nanb

Z

dn0

4⇡
P 0

ab

�

. (7.57)

In the tight-coupling limit, we can extract the temperature quadrupole just like we did in the case of the scalars,
and find

⇥(2)
ij ⇡ 1

2⌧̇
ḣij . (7.58)

For modes which are still super-horizon at recombination, ḣij / k⇣ij , so power is suppressed on super-horizon
scales at recombination (but here also, there is a reionization bump). For modes that are sub-horizon at
recombination, ḣij / 1/k, so here also there is a suppression of power. To conclude, the polarization power
spectrum induced by gravitational waves peakes around the horizon scale at recombination, and decays on
either side, with oscillations on small scales.
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