
Week 1: Classical Cosmology

January 17, 2017

1 The expansion and Friedmann-Robertson-Walker metric

Hubble discovered in the late 1920s that every galaxy moves away from us at a recessional velocity
v ≡ cz (where c is the speed of light and z is the “redshift”) proportional to its distance dL: i.e.,
v = H0dL, where H0 = 100 h km/sec/Mpc is the Hubble parameter, and current measurements
give us h ' 0.7 to a few percent. It is also observed that on the largest observable scales (100s to
1000s of Mpc) the galaxy distribution is roughly isotropic; we see roughly the same distribution
of galaxies in every direction we look—later this quarter we will quantify this more precisely. If
we then apply the Copernican principle, which states that we do not occupy a preferred position
in the Universe, then it follows that any observer in any other galaxy should also see an isotropic
distribution of galaxies. This can only be accommodated if the Universe is, in addition to being
isotropic, homogeneous.

The Hubble law v = H0d and the assumption of homogeneity can only be reconciled if the relative
velocity between any two galaxies in the Universe is proportional to the distance between them.
This situation can be realized mathematically in a spacetime with the Friedmann-Robertson-Walker
metric,

ds2 = dt2 − [a(t)]2(dx2 + dy2 + dz2), (1)

where a(t) is the scale factor, a function of time t. This metric describes a Universe with a three-
dimensional Euclidean subspace, with coordinates x, y, and z, that expands (or contracts) in a
manner described by the scale factor. It yields the Hubble law v = Hr for the relation between
the relative velocity v and distance r between any two objects as long as the Hubble parameter is
H(t) = ȧ/a, where the dot denotes a derivative with respect to time t.

In the limit that |v| � c, the redshift z describes the Doppler shift between the wavelength λe of
light emitted by galaxy “e” and the wavelength λo observed by galaxy “o”: z ≡ v/c = H0~r/c =
(λo/λe)− 1.

Eq. (1 describes a “flat” FRW Universe, just one of three possible spacetimes that satisfy the
requirements of homogeneity and isotropy. The other two are obtained by generalizing to

ds2 = dt2 − [a(t)]2
(

dr2

1− kr2
+ r2 dθ2 + r2 sin2 dφ2

)
, (2)
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in (r, θ, φ) spatial coordinates, or

ds2 = dt2 − [a(t)]2

dχ2 +

 sinh2 χ
χ2

sin2 χ

(dθ2 + sin2 θ dφ2
) , (3)

in (χ, θ, φ) coordinates for (from top to bottom) k = −1, k = 0, and k = 1. The flat Universe
is recovered with k = 0. The cases k = 1 and k = −1 describe, respectively, a closed and open
Universe in which the three-dimensional subspaces are surfaces of constant positive and negative
curvature, respectively. The spatial slices of a closed Universe, in particular, are three-spheres,
S3, and thus have finite volume. Measurements now indicate that our Universe is spatially flat,
or extremely close, and so we will assume most of the time that k = 0. Still, it is important to
consider the open and closed Universes as well to understand why it is that measurements indicate
k = 0.

It is also often useful to define a new time coordinate, the conformal time η by dη = dt/a(t). Then,

ds2 = a2(η)

[
dη2 − dr2

1− kr2
− r2 dθ2 − r2 sin2 θ dφ2

]
. (4)

This is kind of nifty, as with this time coordinate, the metric (for the flat Universe) is said to be
conformal to the Minkowski metric; i.e., it is the same thing times some scale factor. With this
metric, photons travel along the same coordinate trajectories as they would in Minkowski space.
Keep in mind, though, that the conformal time is not the proper time—it is not the time measured
by a comoving observer. That is still the original time coordinate t.

A note on normalizations: Textbooks are often careless about units and normalization in the FRW
metric. My preference is to define r and χ to be dimensionless, in which case a(t) has units of
length (or time if you choose to leave out the c from the dt2 term). Then, we can set the present
day value of a(t) to obtain the correct radius of curvature, which means we need

a(t0) = cH−1
0


√
−1/Ωk if k = +1

1 if k = 0√
1/Ωk if k = −1,

(5)

and Ωk = 1− Ωm − ΩΛ is the energy density in curvature (as we’ll see later).

2 Equation of motion for the scale factor

In general relativity, the matter content determines the spacetime. In a homogeneous and isotropic
universe, the matter content is described by a matter density ρ(t) and pressure p(t), and Einstein’s
equations, Gµν = 8πGTµν , evaluated for the FRW metric yield the first form of the Friedmann
equation,

H2 ≡
(

ȧ

a

)2

=
8πGρ

3
− k

a2
. (6)

and its second form,
ä

a
= −4πG

3
(ρ + 3p). (7)
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The second form of the Friedmann equation can also be derived from the first form differentiating
ȧ with respect to time, and by observing that the change d(ρa3) in the total energy per comoving
volume is equal to the work −pd(a3) done by the fluid. Both forms of the Friedmann equation
can also be derived using Newtonian arguments and replacing the source ρ in the Poisson equation
∇2φ = 4πGρ for the Newtonian gravitational potential φ by a relativistic gravitating source density
ρ + 3p.

We now evaluate the Friedmann equation today—i.e., evaluating the Hubble parameter at its
current value H0 and the matter density at its current value ρ0—and divide both sides of the
Friedmann equation by H2

0 . Then, define the density parameter Ω ≡ ρ0/ρc, where ρc ≡ 3H2
0/8πG.

Then, we have

Ωm = 1 +
k

a2
0H

2
0

. (8)

We therefore see that the ratio of the matter density to the expansion rate (which can in principle
be measured) is related to the geometry of the Universe. For Ω > 1, Ω = 1, Ω < 1, the Universe is
closed, open, or flat, respectively.

Our Universe consists of several types of matter, and so we write the matter density as ρ =
∑

i ρi,
over several different components labeled by i, each of which as a pressure assumed to be pi = wiρi,
where wi are equation-of-state parameters.

Nonrelativistic matter (or “dust” in older books)—things like “baryons” (cosmologists’ term for
stars and gas) or cold dark matter—is effectively pressureless, and so has w = 0. Relativistic matter,
like the cosmic microwave background, (effectively) massless neutrinos, or ultra-relativistic partiles
in the early Universe, has w = 1/3. A cosmological constant behaves as matter with w = −1. The
first law of thermodynamics, dE = p dV applied to each component becomes, d(ρia

3) = −pid(a3)
from which it follows that ρi ∝ a−3(1+wi). E.g., the energy density of nonrelativistic matter matter
scales as ρm ∝ a−3, relativistic matter as ρr ∝ a−4, and cosmological constant as ρΛ ∝ constant.

Throughout much of the history of the Universe, the energy density is dominated largely by one
component, and so we refer, e.g., to a matter-dominated (MD), radiation-dominated (RD), or
cosmological-constant–dominated phase.

The second form of the Friedmann equation gives us also the deceleration parameter, q ≡ −aä/ȧ2.
For a Universe with nonrelativistic matter and a cosmological constant, q0 = Ωm/2 − ΩΛ, where
the subscript 0 denotes the value today, and Ωm and ΩΛ are here their values today. Current
measurements suggest q0 ' −0.55.

We now quickly review some simple solutions for the Friedmann equation. For a MD Universe,
a ∝ t2/3; for RD, a ∝ t1/2; and for vacuum-dominated, a ∝ eHt. The vacuum-dominated solution is
known as a de Sitter spacetime. Such a spacetime has a higher degree of symmetry, there being no
preferred time direction as in the other (e.g., MD or RD) FRW Universes. For an empty Universe
with no cosmological constant but negative curvature, the Friedmann equation becomes H2 = 1

a2 ,
which has solution a ∝ t. Such a spacetime, the Milne spacetime, has no matter and must therefore
be equivalent to a Minkowski. This can be shown with an appropriate change of coordinates.

We define density parameters Ωi = ρi/ρc in terms of a “critical density” ρc ≡ 3H2/(8πG). These
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most often refer to their values today but in fact are functions of time. The total density Ω ≡
∑

i Ωi

is related to the geometry of the Universe with Ω > 1, Ω = 1, and Ω < 1 corresponding, respectively,
to closed, flat, and open Universes.

3 Expansion History and Ωm − ΩΛ plots.

Expansion times and distance scales. If we divide the galaxy separation by the relative velocity,
we obtain a characteristic expansion time t ∼ r/v = H−1

0 ' 1.5 × 1010 yr which, we will see, is
quite close to the age of the Universe. Quite remarkably, this is quite close to the ages of the
oldest stars, even though the timescale for stellar evolution is determined by an amalgamation
of gravity and nuclear and atomic physics, and should thus should a priori have nothing to do
with the expansion rate H0 of the Universe. The distance that light can travel in this time is
l ∼ cH−1

0 ' 5000 Mpc ' 1.5 × 1028 cm, which we will later see is numerically quite close to the
size of the observable Universe. Also, in order of magnitude, the volume of the Universe should be
roughly V = (4/3)πl3 ∼ 3 × 1011 Mpc3, and should thus contain roughly several hundred billion
galaxies.

More Precise Age of the Universe. To determine the age of the Universe, we simply integrate the
time since t = 0 (when a → 0; the big bang) until today:

t0 =
∫ t0

0
dt =

∫ a0

0

da

ȧ
. (9)

We then recast the Friedmann equation (assuming nonrelativistic matter and a cosmological con-
stant) as an equation for the expansion rate as a function of redshift,

H(z) =
ȧ

a
= H0E(z), (10)

where
E(z) =

[
Ωm(1 + z)3 + ΩΛ + (1− Ωm − ΩΛ)(1 + z)2

]1/2
. (11)

Then,

t0 = H−1
0

∫ ∞
0

dz

(1 + z)E(z)
. (12)

Thus, for example, if we lived in an Einstein-de Sitter universe (i.e., Ωm = 1 and ΩΛ = 0), then
E(z) = (1 + z)3/2 and t0 = (2/3)H−1

0 ' 6.7 h−1 Gyr. The integrals for Ωm 6= 1 and ΩΛ 6= 0 are
more complicated but are given for some cases in the usual textbooks. Here, we simply note that
the ages are shorter for Ωm > 1 and ΩΛ = 0 and they are larger if ΩΛ = 0 and Ωm < 1, or if
Ωm = 0 and Ωm + ΩΛ = 1 but ΩΛ > 0. Just as a historical aside, a few years ago, it was believed
that globular-cluster ages were as high as 15–20 Gyr, older than the age of the Universe for the
then-central values of h, Ωm, and ΩΛ. Now, however, the current cosmological parameters indicate
an age t0 ' 13.8 Gyr, consistent more or less with current globular-cluster ages.
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4 Redshift of photons

If a light signal is emitted with wavelength λe by a comoving object at some time te, then when it
is observed by a comoving observer at some later time to, it will have a wavelength

λo = λe
a(to)
a(te)

≡ 1 + z.

This also defines the redshift z. This result follows heuristically by noting that the wavelength of
the photon increases with the scale factor of the Universe, but it can be derived formally (as you
will do in a homework problem) from the geodesic equation or by identifying conserved quantities
associated with Killing vectors of the FRW spacetime. This formula agrees for z � 1 with our
earlier result, where we associated the redshift with the Doppler shift from a recessional velocity,
but it also applies to the case where z >∼ 1. In cosmology, when we talk about a galaxy “at a
redshift z”, we are referring to a galaxy that we see now when the size of the Universe was a factor
(1 + z)−1 smaller than it is now. The most distant galaxies observed so far have z ∼ 7. As we will
see later, the cosmic microwave background was emitted from z ' 1100.

With the geodesic equation, it can also be shown that a massive particle emitted by a comoving
observer at time te with momentum pe will be seen to have a momentum

po = pe
a(te)
a(to)

=
1

1 + z
,

when it passes a comoving observer at time to. This follows heuristically by noting that the de
Broglie wavelength λ ∝ p−1 increases with a(t).

5 Horizons

Recall the FRW metric in the form,

ds2 = dt2 − a2(t)

dχ2 +

 sin2 χ
χ2

sinh2 χ

 (dθ2 + sin2 θ dφ2)

 , (13)

and also recall that photons move along geodesics, ds = 0. Consider a photon emitted at time te
from the origin (χ = 0) that moves in the direction θ = φ = 0. Then, from ds = 0, it follows that
the photon moves along a trajectory with dt = adχ, and therefore

χ =
∫ t0

te

dt

a(t)
, (14)

is the coordinate distance traveled by the photon between times te and to. For example, in a flat
MD Universe, a ∝ t2/3 and so the physical distance traveled by the photon is

a0χ = 3t0[1− (te/t0)1/3] = 3t0[1− (1 + ze)−1/2]. (15)
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In such a model, the maximum distance traveled by a photon between time t = 0 and today
is a0r = 3t0 = 2/H0 = 6000h−1 Mpc, where we have written the Hubble constant as H0 =
100 h km/sec/Mpc, and, as mentioned above, the numerical value is h ∼ 0.7.

For our Universe, which has Ωm ' 0.3 and ΩΛ ' 0.7, the numerical value for the horizon distance
is slightly different. This means that there is a finite observable volume for the Universe.

6 Classical cosmological tests

In the following, we will assume that the Universe consists of nonrelativistic matter and possibly
a cosmological constant. Before proceeding, let us justify our neglect of radiation. A variety of
measurements (including, for example, simply weighing galaxies and then measuring their space
density) indicate a nonrelativistic-matter density ρm ' 0.3ρc ' 1.5× 10−6 GeV/cm3 (for h ' 0.7).
We observe a cosmic microwave background, a blackbody spectrum of photons, with a temperature
of T0 ' 2.7 K. From the Stefan-Boltzmann equation, this corresponds to an energy density ργ '
3×10−10 GeV/cm3. We also have good reason to believe that there is a cosmic neutrino background
with an energy density roughly 2/3 that of the photon density. Thus, radiation (neutrinos plus
photons) has an energy density only ∼ 3× 10−4 of the matter density today. Since ρrad ∝ (1 + z)4

while ρm ∝ (1+z)3, radiation will be negligible compared with matter as long as we are at redshifts
less than zeq = (ρm/ρrad)0 ' 3000. At earlier times, the Universe was radiation dominated.

6.1 Angular-diameter distance

Heuristically, if the size of an object is known, its distance can be inferred by determining how big it
appears to be—i.e., the angle it subtends when we view it. In cosmology, the angular-size distance
takes into account the effects of expansion and geometry to relate the observed angular size of an
object of known proper size to its distance. This is done as follows: The coordinate distance from
light emitted at time te to t0 is

χ =
∫ t0

te

dt

a
=
∫ a0

ae

da

aȧ
=

1
H0

∫ a0

ae

da

a2E(z)
=

1
a0H0

∫ ze

0

dz

E(z)
, (16)

where the function E(z) describes the time evolution of the expansion rate, H(z) = H0E(z). From
the form of the metric, we know that at time te, the circumference of a great circle of coordinate
radius χ is 2πa(te)Sχ, where Sχ = (sinhχ, χ, sinχ) for open, flat, and closed universes, respectively.
Therefore, if we see today an object of proper size D, then the angle it subtends on the sky is
θ = D/[a(te)Sχ] ≡ D/dA, where dA(ze) = a(te)Sχ. Thus,

dA(z) =
a0

1 + z


sinh

[
1

a0H0

∫ z
0

dz
E(z)

]
1

a0H0

∫ z
0

dz
E(z)

sin
[

1
a0H0

∫ z
0

dz
E(z)

]
 , (17)
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for (from top to bottom) open, flat, and closed universes. For example, in an Einstein-de Sitter
universe,

dA(z) =
2H−1

0

1 + z

[
1− 1√

1 + z

]
, (18)

which, for z � 1 becomes dA ' H−1
0 z, indicating that we recover the expected behavior at small

distances. You can also show that this linear relation is recovered for any Ωm or ΩΛ. It can also be
shown that to quadratic order in z, H0da(z) ' z− (1/2)(3+q0)z2 + · · ·, where q0 is the deceleration
parameter. For future use, it will be convenient to define a scaled distance, y(z) ≡ H0(1 + z)dA(z).
Expressions for y(z) involve more complicated integrals for Ωm 6= 1 and for ΩΛ 6= 0. For ΩΛ = 0
and z � Ω−1

m , y(z) ' 2/Ωm. In practice, it is difficult to find objects (like galaxies) of fixed known
size D, making the determination of the angular-diameter distance difficult.

6.2 Luminosity distance

If we know the intrinsic luminosity L of a source, then we can determine its distance by measuring
the energy flux F we observe from this source. The luminosity distance of a cosmological source is
defined by d2

L ≡ L/(4πF ). The flux F we observe at time t0 from a source at a distance χ is

F =
L

4πa2(t0)S2
χ(1 + z)2

. (19)

This result is arrived at in the following way: If the detector area is dA, the fraction of the 2-
sphere, centered on the source, that is covered by the detector is dA/[4πa2(t0)S2

χ]. Then there is
an additional factor of 1+z that is due to the redshift of photon energy, and there is another factor
1 + z due to the redshift of the emission rate (if the source emits in its rest frame a signal with
a period P , it is observed with period (a0/ae)P . Therefore, dL = dA(1 + z)2. Note again that to
quadratic order, H0dL(z) = z + (1/2)(1 − q0)z2 + · · ·. If there is a “standard candle”, a class of
objects of fixed known luminosity, then the parameters H0 and q0 can be determined by measuring
the observed flux as a function of redshift. Thus, q0 = Ωm/2−ΩΛ has been obtained by measuring
the quadratic correction to the Hubble law with distant (Type Ia) supernovae leading to the value
q0 ' −0.55 mentioned before.

6.3 Proper displacement

For a number of applications, it is important to know the proper-distance interval dl covered in a
redshift interval dz. This is obtained by noting that a light ray covers a distance

dl = dt =
da

ȧ
=

dz

1 + z

a

ȧ
, (20)

from which it follows that
dl

dz
=

H−1
0

(1 + z)E(z)
. (21)
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6.4 The resolution of Olber’s paradox

In a homogeneous, static, and infinite Universe, every line of sight eventually ends up on a galaxy,
and if so, then the night sky should be bright. We can now understand why in an expanding Universe
the night sky is dark. Consider a population of objects of cross section σ (e.g., ∼ π(10 kpc)2 for
spiral galaxies) with a constant number per comoving volume and current number density n0. That
means that the proper number density as a function of redshift is n(z) = n0(1+z)3. The probability
that a given line of sight intersects such an object between z and z + dz is

dP

dz
= σn(z)

dl

dz
= σn0H

−1
0

(1 + z)2

E(z)
. (22)

At z � Ω−1
m , E(z) → Ω1/2

m (1+z)3/2, and the optical depth for intersecting a galaxy out to a redshift
z is

τ(z) =
∫ z

dP =
2
3

σn0cH
−1
0

Ω1/2
m

(1 + z)3/2. (23)

Ordinary galaxies have a local number density ng ∼ 0.02 h3 Mpc−3, and radii rg ∼ 10 h−1 kpc,
from which we obtain τ ∼ 0.01 (1 + z)3/2Ω−1/2

m . Therefore, out to z = 1, about 0.04 Ω−1/2
m of the

sky is covered by galaxies, and full coverage (τ = 1) is reached only at z ∼ 20 Ω1/3
m . Thus, Olber’s

paradox is explained if galaxies don’t form or light up fully until z ∼few.

6.5 Number counts

We can also calculate the number of objects seen in a given redshift interval dz in a solid angle
δΩ on the sky, under the assumption that the comoving number density of such objects remains
constant. The area subtended by an angle δΩ at a redshift z is δA = a2S2

χδΩ. Then, (dl/dz)dz is
the proper linear depth from z to z + dz, so the differential volume in the redshift interval dz and
solid angle δΩ is

δV =
H−1

0 δz

(1 + z)E(z)
(a0Sχ)2δΩ
(1 + z)2

. (24)

Using n(z) = n0(1 + z)3, we find that the number of galaxies in dz per steradian on the sky is

dN
dz

= n0H
−3
0 Fn(z), (25)

where

Fn(z) =
[H0a0Sχ(z)]2

E(z)
. (26)

Since Sχ and E(z) depend on the matter content and the geometry, measuring the number counts
as a function of redshift can in principle be used to determine cosmological parameters. In practice,
though, the abundances of the target populations (e.g., galaxies or clusters of galaxies) undergo
evolution in complicated ways, and this evolution is difficult to disentangle from the cosmological
effects.

8



6.6 “Superluminal” proper motions

The black holes that power active galactic nuclei can often emit jets with relativistic velocities.
Suppose that such a source emits a jet with velocity v at an angle θ from the line of sight. Then,
after a time δt, the jet will have propagated a distance vδt cos θ toward us and a transverse distance
vδt sin θ. Suppose now that the observer-source distance is Dos. The observer will see the signal at
a transverse distance δl⊥ = vδt sin θ after a time

∆tobs(δt) = δt +
[
(Dos − vδt cos θ)2 + (vδt sin θ)2

]1/2

= δt +
[
D2

os + (vδt)2 − 2Dosvδt cos θ
]1/2

(27)

' Dos + δt(1− v cos θ), (28)

Therefore, the apparent transverse velocity is

δl⊥
δt

=
v sin θ

1− v cos θ
, (29)

which is maximized, for a given v, at cos θ = v. So, (δl⊥/δt)max = γv, which is faster than the speed
of light for v > c/

√
2. If the source is at redshift z, then the observed time interval is δto = (1+z)δt,

and
δθ =

δl⊥
a(z)Sχ(z)

=
δl⊥(1 + z)
a0Sχ(z)

. (30)

Therefore, the observed angular proper motion is

µ =
dθ

dt
=

1
a0Sχ(z)

v sin θ

1− v cos θ
, (31)

and
µmax(z) =

γv

a0Sχ(z)
. (32)

Since Ωm and ΩΛ fix H0a0Sχ(z), the maximum proper motion is determined by H0γv. Just for
reference, observations indicate hγ ' 10. The idea is then to measure v, θ, and µ (assumed to be
less than µmax) to constrain Ωm and ΩΛ.
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