
Weeks 11-12: Gravitational Lensing

April 17, 2017

1 The Basics

According to general relativity, the trajectories of light rays can be bent by gravitational fields.
Massive objects can therefore gravitationally “lens” the images of objects behind them. A cos-
mological examples of gravitational lensing is lensing of galaxies or quasars at redshifts z ∼ 1 by
elliptical galaxies or galaxy clusters along the line of sight. If the lensing is “strong,” then there will
be multiple images of the source. If the lensing is “weak, ” then there will be no extra images, but
the images we see will be distorted by lensing. Weak lensing is now a common and powerful tool to
measure the mass distribution in galaxy clusters. There is also “gravitational microlensing” of stars
in the Galactic bulge or LMC by other stars along the line of sight. In gravitational microlensing,
there are multiple images, but they are so close together that they cannot be resolved. Instead,
the combined light from the two unresolved images makes the source star appear brighter than it
would otherwise. There is also “cosmic shear,” weak gravitational lensing of galaxies at z ∼ 1 by
the large-scale distribution of mass in the Universe. Large-scale correlations in the mass induce
large-scale correlations to distant-galaxy images.

The description of gravitational lensing is relatively simple.

Let us choose the origin of our coordinates on the sky to be at the position of the lens. We will
call the true position of a source behind the lens ~θs. The lens is at a distance DL from us, and
the source is at a distance DS . The distance between the source and the lens is DLS . For now,
consider lensing only in Minkowski space (i.e., neglect cosmological effects); we will clarify the
meaning of these distances in the cosmological context below. Light rays from the source are bent
by a “deflection angle,”

~α =
2
c2

∫
~a⊥ dl, (1)

where the integral is along the line to a source, and a⊥ is the gravitational acceleration perpendicular
to the line of sight at distance l. As a result of this bending of light rays, the source appears at a
position ~θI (“I” for image). In the astrophysical context, the size of the lens R is R� D, so all the
light deflection takes place at the distance of the lens. We assume, throughout, that all deflection
angles are small: α� 1 and |~θI − ~θS | � 1.
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The relation between the deflection angle and the “displacement angle” ~θI − ~θS is the “lens equa-
tion,”

~α(DLθI) =
DS

DLS
(~θI − ~θS). (2)

If we are theorists, then we assume we know the positions ~θS of the sources, and we then solve
the lens equation to get the positions ~θI of the images. If we are observers, we have the image
positions, and (in principle) we solve the lens equation to tell us where the sources are. What
usually happens, even if we are observers, is that we assume source positions and then solve the
lens equation to obtain ~θI(~θS).

The solution of the lens equation provides a mapping from the “source plane,” parameterized by
~θS to the “image plane,” parameterized by ~θI . The mathematics that describes this process is
known as “catastrophe theory”, the theory of mapping of a two-dimensional surface into another
two-dimensional surface. If the mapping ~θS → ~θI is one-to-one (which usually happens if α is
sufficiently small), then we have weak gravitational lensing; i.e., no multiple images. If the function
θI(~θS) is multiple-valued, then there will be multiple images of the source. This is called “strong
lensing,” and it usually occurs if α is sufficiently large.

With either weak or strong lensing, gravitational lensing may distort the image shapes. However,
lensing always conserves surface brightness because the intensity Iν/ν

3 is conserved. What this
means is that if lensing distorts a galaxy image, then the brightness of the source will be amplified
in proportion to the increase in the size of the image. Remember that the function ~θI(~θS) maps
every point in the “source plane” into an “image plane.” The Jacobian of this transformation,

A =

∣∣∣∣∣ ∂(~θI)

∂(~θS)

∣∣∣∣∣ , (3)

is therefore the increase in the size of the image and therefore the amplification of the image.
According to catastrophe theory, an image may have A > 1 or A < 1, but you always have at least
one image with A > 1. In particular, for weak lensing, A > 1 always.

Note also that we are assuming the “geometrical optics” limit: i.e., we are assuming that the
wavelength λ of light is small compared with the Schwarzchild radius GM/c2.

Let’s now think more carefully about the distances DL, DLS , and DS . To derive the lens equation,
we simply assumed that physical sizes are an angle times a distance. It is therefore clear that in
the cosmological context, the distances we should use are angular-diameter distances. Care should
also be taken to note that DLS is the angular-diameter distance of the source as measured by an
observer at the lens.

We will now see that the quantity describing the source relevant for lensing is the surface mass
density, the mass density projected along the line of sight. The deflection angle is

~α =
2
c2

∫
~∇⊥Φ dl = ~∇⊥

2
c2

∫
Φ dl, (4)

where Φ is the gravitational potential. Therefore, the lens equation can be re-written,

~θI − ~θS =
DLS

DS
~α ≡ ~∇θψ(~θI), (5)
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where ψ(~θI) is the projected potential, a function of position in the image plane. Since the gravi-
tational potential is related to the mass density ρ through the Poisson equation, ∇2Φ = 4πGρ, it
follows that

∇2
θψ =

DLDLS

DS

8πG
c2

Σ ≡ 2
Σ
Σc
, (6)

where Σ =
∫
ρ dl is the projected mass density, or “surface mass density,” and Σc is the “critical

surface mass density,”

Σc ≡
c2

4πG
DS

DLDLS
. (7)

Finally, the two-dimensional Poisson-like equation, ∇2ψ = 2Σ/Σc can be written in integral form
as

ψ(~θ) =
1
πΣc

∫
Σ(~θ′) ln |~θ − ~θ′| d2θ. (8)

2 Simple lens model

Let’s now consider a simple lens model. We’ll take the simplest case, which is that for a circularly
symmetric lens mass distribution. In that case, the deflection angle α is a function of “impact
parameter” b = DLθI , the point of closest approach of the unperturbed light trajectory to the lens
center of mass. In particular, for a circular lens,

α =
4G
c2
M(< b)

b
, (9)

where M(< b) is the mass seen in projection within a distance b of the source. The simplest example
is, of course, a point mass, which has a deflection angle α = 4GM/c2b. Another example is the
singular isothermal sphere (SIS) which has a density profile ρ(r) = σ2/(2πGr2) as a function of
radius r, where σ2 is the velocity dispersion. Recall that the SIS has a flat rotation curve, making
it a workable lowest-order description of a galaxy. The surface mass density is Σ = σ2/(2Gr), and
the deflection angle is α = 4πσ2/c2; it is independent of impact parameter.

It is easy to see that with the generic circular lens, the lens equation predicts that there should be
three images. To do so, we look at the lens equation, which says that the displacement |~θI − ~θS | ∝
α(~θI), the deflection angle. For a circular lens, the symmetry dictates that the images will be
situated along the line on the sky connecting the source and with the lens center. Then, we can
neglect the vector character of the positions and consider θI and θS to be aligned distances from
the center of mass. We then plot the right and left-hand sides and see that the two curves will
intersect three times. In general, the source is displaced from the lens, so θS 6= 0. Then, θS − θI
is a positively-sloped line that has a zero at θI = θS . The function α(θI) will usually fall to zero
at the origin, as the enclosed mass M(< b) → 0 as b → 0 (unless the source has a density cusp
ρ ∝ 1/r2 which would yield Σ ∝ 1/b). Then, if the source has a finite extent, then α will then
recede to zero (as α ∝ M/θI) at large θI . There can then be three crossings of these two curves.
There is an image A on the same side of the lens as the source, but at larger radius, one (B) on
the other side, close to the lens center, and another (C) at larger distance on the other side. The
C image is parity-reversed.
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If we put the source right behind the lens—i.e., as θS → 0, the source B becomes an “Einstein
ring” at a radius θI that satisfies α(θI) = θI . For a point-mass lens, this “Einstein radius” is

θE =
(

4GM
c2

DLS

DLDS

)1/2

=
(

M

1011.09M�

)1/2(DLDS/DLS

Gpc

)−1/2

arcsec, (10)

and for the SIS, it is

θE =
(

4πσ2

c2

)
DLS

DS
=
(

σ

186 km/sec

)2 DLS

DS
arcsec. (11)

The Einstein radius plays a crucial role in gravitational lensing, as it demarcates strong from weak
lensing. If a source falls within the Einstein radius, then it is strongly lensed, and there will be
multiple images. If the source falls outside the Einstein radius, then it will be weakly lensed.
(Strictly speaking, there may be a second image right behind the lens, but it is extremely faint and
therefore just academic.)

For Galactic gravitational microlensing by point sources, the characteristic separations are (using
M ∼ M� and D ∼ 10 kpc) milli-arcseconds apart and therefore cannot be resolved with optical
telescopes. We can, however, see the amplification in the brightness of the source as the lens passes
in front of it. The total amplification (for both sources when the source is multiply lensed) due to
a point-mass lens is

A =
1 + x2/2

x
√

1 + x2/4
, where x ≡ θS

θE
. (12)

We can also define for the point-mass lens a lensing cross section,

σ(> A) =
(

4πσ2

c2

)2(
DLDLS

DS

)2
{

4π
A2 A > 2,
π

(A−1)2
, A < 2. (13)

Note that the lenses are most effective (i.e., the lensing cross section is maximized) when DL '
DS/2.

In the cosmological context, most lenses are extended sources (e.g., elliptical galaxies, galaxy clus-
ters, or even larger-scale inhomogeneities). And in most cases, they do not have circular symmetry.
It therefore behooves us to study the more general properties of lenses. Recalling that the displace-
ment angle is ~θI − ~θS = ~∇θψ, we can write

∂θI,,i
∂θS,j

= δij +
∂2ψ

∂θi∂θj
≡

(
∂(~θI)

∂(~θS)

)
ij

. (14)

Since this is a symmetric 2× 2 matrix, by rotating to align with the principal axes, the matrix can
be diagonalized and written in the form

∂θI,,i
∂θS,j

=
(

1 + γ − κ 0
0 1− γ − κ

)
, (15)

where κ, the trace, is the convergence,

κ =
4πG
c2

∫
DLDLS

DS
ρ dl =

Σ
Σc
. (16)
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and γ, the shear, is the trace-free part. The convergence measures how much brighter the source
becomes, and the shear measures the distortion to the shape (e.g., if the source is round, it can
become elliptical after lensing). The curves in the image plane where κ = 1 are known as caustics;
they separate regions of strong and weak lensing. They occur when the surface mass density exceeds
the critical density,

Σc =
c2DS

4πGDLDLS
' 0.35

(DS/Gpc)
(DL/Gpc)(DLS/Gpc)

g cm−2. (17)

This surface density is reached in galaxy clusters, and sometimes in the inner parts of galaxies.

Weak gravitational lensing. Away from the center of a galaxy cluster, the surface density will
be Σ < Σc, and we will be in the weak-lensing regime. Let us define the magnification tensor
ψij ≡ ∂2ψ/∂θi∂θj , so ∂θI,i/∂θS,j ≡ Jij = δij + ψij . As we said before, the change in the image
area, and therefore brightness, is the trace of Jij : A ' 1+ψ11 +ψ22 = 1+∇2ψ = 1+2Σ/Σc. Since
sources are being amplified, lensing will decrease the luminosity threshold, and the sky density of
sources at each point on the sky will depend on the value of A at that point, as you will explore in
a homework assignment.

Weak gravitational lensing will induce a “shear” distortion, described by the trace-free part of the
magnification tensor ψij ,

Sij ≡ Jij − δijTrJ

= δij

(
1− 1

2
∇2ψ

)
+ ψij

=
(

1 + γ cos 2θ γ sin 2θ
γ sin 2θ 1− γ cos 2θ

)
, (18)

where the entries in the matrix simply parameterize the most general symmetric 2 × 2 matrix.
More specifically, γ cos 2θ = (ψ11−ψ22)/2 and γ sin 2θ = ψ12. Here, γ is the elongation of a circular
source, and θ is the orientation angle (relative to the +x̂ axis) of that elongation: θ = 0 implies
stretching along the x axis; θ = π/2 implies elongation along the y axis; and θ = π/4 and θ = 3π/4
imply elongation along axes at 45◦ with respect to the x and y axes.

If we had a source that we knew to be perfectly round, we could measure the shear by measuring
the elongation of the image as determined, for example, by the quadrupole moments of the source:

Q′
ij =

∫
I(~θ)θiθjd2~θ. (19)

If we align this with the principle axes, then the quadrupole tensor will be

Q′
ij =

(
a2 0
0 b2

)
, (20)

where we choose a > b. We then scale this quadrupole moment by one half its trace (a rotational
invariant) so that its trace is unity (i.e., so that it represents only a shear distortion, not an
amplification). After doing so, we have

Qij =
(

1 + ε 0
0 1− ε

)
, (21)
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where ε = (a2 − b2)/(a2 + b2) is the “ellipticity”. Rotating back to the original axes, the ellipticity
tensor is

Qij =
(

1 + ε cos 2θ ε sin 2θ
ε sin θ 1− ε cos 2θ

)
, (22)

where θ is the position angle of the source. People sometimes work with the ellipticity pseudo-
vector, (

e1
e2

)
=

1
Q11 +Q22

(
Q11 −Q22

2Q12

)
. (23)

For a nearly circular image, a ∝ 1 + γ and b ∝ 1− γ, so

ε =
a2 − b2

a2 + b2
=

2γ
1 + γ2

' 2γ. (24)

Therefore, (
e1
e2

)
=
(
ψ11 − ψ22

2ψ12

)
. (25)

By measuring e1(~θ) and e2(~θ) as function of ~θ, we can therefore get the projected mass distribution
Σ(~θ) by inverting the Poisson equation.

The problem, however, is that in practice we have no sources that we know a priori to be perfectly
round. However, we know that according to statistical isotropy, there should on average be no
preferred orientation in a given region of the sky. Therefore, if we look at a large number of sources
in a given region of the sky, we can use the mean ellipticity—i.e., 〈e1〉 = (1/N)

∑N
i=1 e

i
1, where N

is the number of sources used in the determination of the shear in that region and ei1 the ellipticity
of source i, and similarly for 〈e2〉—in a given region of the sky as an estimator for the shear at that
point. If the sources have a characteristic or mean elongation e, then there will be a Poisson error
∼ e/

√
N in the determination of the shear in any given region.

3 Time delays

It is impossible to measure the travel time of photons from cosmological sources. However, some
of the cosmological sources that are observed (e.g., quasars) exhibit variability, and if these sources
are strongly lensed and multiply imaged, then there may be a difference in the time at which certain
variable events (e.g., flares or outbursts of the source) are observed. The time of arrival of the ith
image is

t(i) = (1 + zL)
[
DLDS

2DLS
|~θ(i)
I − ~θS |2 − ψ(~θ(i))

]
.

Here, the first term is due to the difference in the path length, and the second is the Shapiro
time delay, the general-relativistic “slowing” of light as it passes through a gravitational-potential
well. The factor 1 + zL takes into account the redshifting of the time delay at the lens when
observed at redshift z = 0. Let’s consider some characteristic values: If the characteristic distance
is a Gpc' 3 × 109 light-years and the typical separation is an arcsec' 5 × 10−6, then the typical
contribution of the first (the geometric) term in the time delay is roughly a month. Estimation
of the second term is a bit more difficult, but it is usually of the same order of magnitude. So,
for example, if the typical potential-well depth (for a cluster) is (σ/c)2 with σ ∼ 1000 km/sec, and
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the size of the potential well is ∼Mpc, then the Shapiro time delay will be ∼ 10−1 year. The time
delay is sought after in cosmology as it might, at least in principle, provide a way to determine the
Hubble constant. The idea is that if we see multiple images of the same source, then the surface-
mass distribution in the lens can be modeled. If so, then by measuring the time delay, we measure
the angular-diameter distance in the prefactor. In practice, modeling the mass distribution in the
lens to the requisite accuracy is difficult, but still worth a try. People generally try to find lens
systems in which there are four images of a given source, as the multiple images provide multiple
constraints and cross-checks to the mass model.

4 The magnification tensor

In cosmology, most lenses (e.g., galaxies or clusters) are extended, and so the point-mass approxi-
mation breaks down. In this cases, we can define a lensing potential,

ψ(~θ) = 2
dLS
dLdS

∫
φ(dL~θ, s) ds,

and then the reduced lensing angle is

~α = ~∇θψ = 2
dLS
dS

∫
~∇⊥φds.

The Laplacian of the lensing potential is the convergence,

κ(~θ) ≡ 1
2
∇2
θψ =

dLdLS
dS

∫
∇2φds,

which, via the Poisson equation (∇2φ = 4πGρ), is proportional to the surface mass density.

Now consider what lensing does to a source. It takes rays from positions ~β on the sky and maps
them to positions ~θ. We can therefore define a tensor,

Aij ≡
∂βi

∂θj
,

and since β = θ − α, we have

Aij = δij −
∂αi

∂θj
= δij − ψij ,

where

ψij ≡
∂2ψ

∂θi∂θj
.

The inverse of Aij ,

M =
∂~θ

∂~β
= A−1,

is known as the magnification tensor. Since the lens distorts ~β into ~θ, the Jacobian of the transfor-
mation, the determinant of M, tells us the magnification (the increase in area) of the source,

µ = |M | = 1
|A|

.
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Moreover, by conservation of phase-space density, the surface brightness (flux per unit solid angle)
remains constant under lensing. Therefore, if the source increases in size by a factor µ, it also
increases in brightness by the same factor.

The magnification tensor, which describes the effects of lensing on the source, can be decomposed
into the convergence κ = (1/2)(ψ11 + ψ22), and the shear, which distorts the shape of the shape of
the source. An initially round source will, under the effects of lensing, be distorted into an ellipse
of ellipticity γ and position angle ϕ, so γ1 = γ cos(2ϕ) and γ2 = γ sin(2ϕ), with γ = (γ2

1 + γ2
2).

These components are

γ1 =
1
2
(ψ11 − ψ22), and γ2 = ψ12 = ψ21.

The magnification tensor is thus,

A =
(

1− κ− γ1 −γ2

−γ2 1− κ+ γ1

)
,

and the magnification is µ = [(1− κ)2 − γ2]−1.

5 Cosmic shear

“Cosmic shear” refers to weak gravitational lensing by large-scale cosmic mass inhomogeneities.
Since the large-scale density field is described statistically in terms of correlation functions and
power spectra for a fractional density perturbation δ(~x, t), the predictions for the lensing by these
mass density fields will also be statistical and described, e.g., by correlation functions for shear
distortions to galaxies and/or characteristic higher-order correlations in the CMB temperature
and polarization. We will begin by considering the description of the lensing field and then the
observational consequences for galaxy shapes and then for CMB fluctuations.

To begin, we review what we’ve learned so far. Given a mass distribution ρ(~x, t), we construct a
fractional density perturbation δ(~x, t) = [ρ(~x, t)− ρ̄(t)] /ρ̄(t). The Newtonian potential Φ(~x, t) is
then obtained from the Poisson equation, ∇2Φ = 4πGa2ρ̄(t)δ(~x, t), where a(t) is the scale factor
and ∇ is a comoving gradient operator. The projected gravitational potential is then

ψ(~θ) = 2
dLS
dLdS

∫
φ(dL~θ, s) ds, (26)

where the distances here are angular-diameter distances, and the convergence is κ = (1/2)∇2
θψ.

The two components of the shear are γ1 = (ψ11−ψ22)/2 and γ2 = ψ12. In Fourier space, the shear
and projected potential are related by,

γ̃1(~̀) =
−`2x + `2y

2
ψ̃(~̀) γ̃2(~̀) = −`x`yψ̃(~̀), (27)

where ~̀ is the wavenumber on a surface of sky sufficiently small to be considered flat. Moreover,
κ̃(~̀) = −`2ψ̃(~̀)/2. In terms of the density field.
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If φ~̀ is the angle that ~̀makes with the θ̂x direction on the surface of the sky, then the Fourier-space
shears can be written,

γ̃1(~̀) = −`
2ψ̃(~̀)

2
[
cos2 φ~̀− sin2 φ~̀

]
= −`

2ψ̃(~̀)
2

cos
(
2φ~̀
)

(28)

γ̃2(~̀) = −`
2ψ̃(~̀)

2
[
2 cosφ~̀ sinφ~̀

]
= −`

2ψ̃(~̀)
2

sin
(
2φ~̀
)
. (29)

From these relations (and the discussion of the magnification tensor above, in which we saw that
γ1 and γ2 are components of a symmetric trace-free rank-2 tensor), we infer that γ1 and γ2 are
components of a spin-2 field, just like the CMB-polarization Stokes parameters Q and U . We can
thus define a cosmic-shear E mode,

Ẽ(~̀) = γ̃1(~̀) cos
(
2φ~̀
)
− γ̃2(~̀) sin

(
2φ~̀
)

= −`2ψ̃(~̀)/2 = κ̃(~̀), (30)

which, as the last equality indicates, is simply related to the projected potential and turns out to
be the convergence.

Combining earlier relations, we can write the convergence as an integral over the line of sight,

κ(~θ) =
1
Ds
∇2
θ

∫ ds

0
dDs

Dsl

DL
φ(Dl

~θ,Dl) (31)

=
∫ Ds

0
dDl

DslDl

Ds
∇2φ(~θDl, Dl), (32)

where we used∇θ = Dl∇ (and we replace distances d with D to avoid confusion with the differential
operator d. We then write, using Poisson’s equation,

κ(~θ) =
∫ Ds

0
dDlW (Dl, Ds)δ(Dl

~θ,Dl), (33)

in terms of a cosmic-shear window function,

W (Dl, Ds) ≡
DslDl

Ds
4πGρ̄(a) [a(Dl)]

2 . (34)

We thus see (again) that the convergence is a weighted surface mass-density along the line of sight.

The statistical properties of the convergence field are described in terms of a convergence power
spectrum Cκκ` defined by 〈

κ(~̀)κ∗(~̀′)
〉

= (2π)2Cκκ` . (35)

In Week 4, we derived a relation between the power spectrum P (k) for a three-dimensional field
and a two-dimensional projection of that 3d field. Plugging int that Limber approximation allows
us to derive a relation,

Cκκ` =
∫ Ds

0
dDl

W 2(Dl, Ds)
D2
L

P (`/Dl), (36)

between the convergence power spectrum and the density-perturbation power spectrum P (k).

So far, we have assumed in our definition of the window function that all of the galaxies being lensed
(the source galaxies) are at a single distance Ds. More realistically, though, they are going to be
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distributed over some range of distances, or redshifts, with a redshift distribution dn/dz (defined
so that (dn/dz)dz is the fraction of the galaxies observed in the redshift interval z → z+ dz). This
can be accommodated by replacing the window function by,

W (Dl) =
3ΩmH

2
0

2a(Dl)

∫ ∞

0
dz
dn

dz

Dsl(z)Dl

Ds(z)
Θ (Ds(z)−Dl) , (37)

where the Heaviside step function Θ is included since only sources at distances Ds > Dl are lensed.

Let’s now think a bit about measurements and the measurement errors with which the observables
can be obtained. Our structure-formation theory makes a prediction for P (k) from which follows a
prediction for Cκκ` . Let’s think a bit about how well this quantity can be measured. There will be
two sources of noise: the first is the statistical noise that arises from the randomly oriented intrinsic
ellipticities, as discussed above. The second is cosmic variance, which arises from the finite number
of Fourier modes we have to measure. Although we did not discuss this aspect in our discussion of
the CMB, what we learn here about cosmic variance applies also to measurement of CMB power
spectra (and, with suitable modification, to measurements of the matter power spectrum).

As discussed above in connection with weak lensing, we construct estimators γ̂α,i for the shear
components (α = 1, 2) in some pixel i that contains N galaxies. The error with which we measure
each shear in this pixel is then e/

√
N , where e is the mean intrinsic ellipticity. Since the Poisson

fluctuations in each pixel are expected to be statistically independent, we have,

〈γ̂α,iγ̂β,j〉 = δαβδij
e2

N
. (38)

The relation between the convergence and the shear is,

κ̃(~̀) =
∫

d2θ e−i
~̀·~θ
[
γ1(~θ) cos

(
2φ~̀
)

+ γ2(~θ) sin
(
2φ~̀
)]
. (39)

In an actual measurement, this integral over the area on the sky is replaced by a sum over the
pixels in the sky,

κ̃(~̀) = (∆θ)2
∑
i

e−i
~̀·~θi

[
γ1,i(~θ) cos

(
2φ~̀
)

+ γ2,i(~θ) sin
(
2φ~̀
)]
, (40)

where (∆θ)2 is the area of each pixel, and the sum is over all pixels.

Suppose now that there was no cosmological signal. We would still most generally infer some
nonzero value κ̃(~̀) due to random fluctuations in the intrinsic galaxy shapes. We can evaluate this
to be 〈

κ̃(~̀)κ̃∗(~̀′)
〉

= (∆θ)4
e2

N

∑
i

e−i
~θi·(~̀+~̀′)

[
cos
(
2φ~̀
)
cos
(
2φ~̀′

)
+ sin

(
2φ~̀
)
sin
(
2φ~̀′

)]
. (41)

The sum is evaluated by transforming back to an integral, using (∆θ)2
∑

i →
∫
d2θ, and then the

integral over d2θ becomes (2π)2δ(2)(~̀− ~̀′). We then find that even in the absence of a cosmological
signal, random shape fluctuations give rise to a noise contribution,

Cκκ,n` =
(∆θ)2e2

N
=
e2

n
, (42)
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where n = N/(∆θ)2 is the density of sources on the sky. When we do a measurement of the
convergence power spectrum, we will find an observed (o) value,

Cκκ,o` = Cκκ` + Cκκ,n` , (43)

that is the sum of the cosmological signal Cκκ` and the noise Cκκ,n` . The cosmic signal can then be
inferred by subtracting the expected noise.

There is then an additional noise that arises from cosmic variance, the sample variance that arises
from the finite number of ` modes. Suppose we want to estimate Cκκ` from a given survey. To do
this we will do is take all the Fourier mode ~̀′ in the survey with wavevector magnitudes `′ that fall
within a window `+ δ`/2 < `′ < `+ δ`/2 of some small width δ`′ � ` around `. There will be some
number N` of such modes. The amplitude κ̃(~̀′), of each such mode is selected from a Gaussian
distribution of variance Cκ` . If we then infer the variance from N` such measurements, the variance
with which we can measure this variance is then

∆Cκκ` =
(

2
N`

)1/2

Cκ,κ,o` =
(

2
N`

)1/2 [
Cκκ` + Cκκ,n`

]
. (44)

Let’s now go a little further. Suppose we try to estimate each C` individually; i.e., so that we take
δ` = 1. Then the number of Fourier modes is the density of states times the density of states. This
density of states is the area of an annulus of radius ` and width δ` = 1 is N` = 2π`δ` = 2πδ`.
Now consider the density of states. First consider a one-dimensional “volume” (a length interval)
of distance d. There Fourier modes are quantized with wavenumbers that are integer multiples of
2π/d yielding a 1D density of states (2π/d)−1. The density of states in two dimensions is then
the square of this, or 4π2/A, where A is the area of the survey. Putting it together, we have
N` = A`/(2π), where A is the area (in radian2) of the survey. The error with which Cκκ` can be
measured is thus,

∆Cκκ` =
(

1
fsky`

)1/2 [
Cκκ` +

e2

n

]
, (45)

where we used the area, 4π steradians, of the full sky and fsky is the fraction of the full sky surveyed.
Given that Cκκ` generally decreases with ` (we did not show that, but you can verify), the noise
generally becomes more important at smaller scale (higher `). There is thus usually a critical
multipole moment,

`m ≡
[
`2Cκκ`

2π
2πn
e2

]1/2

' 1400
( n

10 arcmin−2

)1/2
(
`2Cκκ` /(2π)

10−4

)1/2 ( e

0.2

)−1
, (46)

above which noise dominates the signal.

(In CMB measurements there is noise in each individual pixel that comes from instrument noise
(the finite precision with which you can measure a temperature). The analogous expression for the
error with which CTT

` can be measured (on the full sky) is

∆CTT
` =

(
2

2`+ 1

)1/2 [
CTT
` +

4πσ2
T

Npix

]
, (47)

where σT is the instrumental noise in the measurement of the temperature in each pixel, and Npix

the number of pixels.)
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6 Weak lensing (or cosmic shear) of the CMB

Lensing by mass inhomogeneities along the line of sight to the surface of last scatter also distort
the CMB temperature and polarization pattern that we see.

Let’s begin with some estimates. From the discussion in the last Section, which relates the deflection
angle α to the convergence and potential, we can infer that the rms deflection angle due to lensing
by large-scale structure is

α2
rms

∫
d2`

(2π)2
Cαα` = 4

∫ ∞

0

d`

`

Cκκ`
2π

, (48)

or equivalently, the deflection-angle power spectrum is Cαα` = (4/`2)Cκκ` . If we use the ΛCDM
power spectrum in the Limber-approximation expression for the convergence power spectrum, we
find that `2Cαα` ∝ ` for ` � 50, and `2Cαα` ∝ `−3 for ` � 50. The power spectrum `2Cαα` peaks
at ` ' 50 at a value `2Cαα` /(2π) ' 10−7. From this, we infer that the typical deflection angle
for a CMB photon is 10−7/2 ' 1 arcmin, and this deflection is coherent on distance scales that
correspond to ` ∼ 100, or ∼ hundred Mpc.

The effects of lensing of the CMB are observable. As we have seen above, the CMB is seen to be
very closely Gaussian, in agreement with the expectations with slow-roll inflation. This implies
that there are no nontrivial correlation functions beyond the two-point correlation function, or
equivalently, that the statistical properties of the temperature map are determined entirely in
terms of the power spectrum. The distortion induced by lensing, though, changes that and gives
rise to a characteristic departure from Gaussianity in the observed map. Here’s how it works.

Since trajectory of a CMB photon in a direction ~θ is deflected by an angle ~α(~θ), the temperature
T (~θ) observed in a given direction ~θ is related to the primordial temperature T p(~θ) in that direction
by

T (~θ) = T p
(
~θ − α(~θ)

)
' T p(~θ)− α(~θ)∇θT

p(~θ) ' T p(~θ)−∇θψ(~θ)∇θT
p(~θ). (49)

In Fourier space, the lensed and unlensed maps are related, in the presence of a deflection potential
ψ(~θ), by

T̃ (~̀) ' T̃ p(~̀) +
∫

d2`1
(2π)2

[
~̀
1 · (~̀− ~̀1)

]
T̃ p(~̀1)ψ(~̀− ~̀1), (50)

where we have used the fact that multiplication in configuration space becomes convolution in
Fourier space.

Now consider the correlation between two different Fourier modes of wavevectors ~̀ and ~̀′. It is〈
T̃ (~̀)T̃ ∗(~̀′)

〉
~̀6=~̀′

'
∫

d2`

(2π)2
[
~̀
1 · (~̀− ~̀1)

]
ψ̃(~̀− ~̀1)

〈[
T̃ p(~̀′)

]∗
T̃ p(~̀1)

〉
+ c.c., (51)

where c.c. is the complex conjugate. The expectation value in the integrand sets `′ = `1, resulting
in, 〈

T̃ (~̀)T̃ ∗(~̀′)
〉
~̀6=~̀′

' f(~̀, ~̀′)ψ̃(~̀), (52)

with
f(~̀, ~̀′) = CTT,p

`′ (~̀′ · ~L) + CTT,p
` (~̀ · ~L). (53)
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Now consider a single Fourier mode ψ̃(~L) of the deflection field of wavevector ~L. This equation
then tells us that any pair of observed temperature modes T̃ (~̀) and T̃ (~̀′) with ~L = ~̀− ~̀′, can be
combined to provide an estimator,

̂̃
ψ(~L)

vec`,~̀′ =
T̃ (~̀)T̃ ∗(~̀′)

f(~̀, ~̀′)
(54)

for ψ̃(~L). This estimator is not perfect—it has a variance,〈(
̂̃
ψ(~L)

vec`,~̀′

)2
〉

=
CTT,tot
` CTT,tot

`′[
f(~̀, ~̀′)

]2 . (55)

We can then consider all pairs of ~̀-~̀′ modes with ~̀+ ~̀′ = ~L. Each of these provides an independent
estimator of ψ̃(~L) with some variance. We can then sum all of these to obtain the optimal (or
minimum-variance) estimator for ψ̃(~L):

̂̃
ψ(~L) = AL

∑
~̀

T̃ (~̀)T̃ (~L− ~̀)F (~ell, ~L− ~̀), (56)

with

F (~̀, ~̀′) ≡ f(~̀, ~̀′)

2CTT,tot
` CTT,tot

~̀′

, AL = L2

[∑
`

f(~̀, ~L− ~̀)F (~̀, ~L− ~̀)

]−1

, (57)

where CTT,tot
` is the total observed power spectrum (signal plus noise). This then provides a

straighforward recipe to take a temperature map T (~θ) and from it reconstruct the (Fourier-space)
projected potential ψ̃(~L), and from it, the real-space projected potential, and thus the projected
surface-mass density. The effects of lensing of the CMB were first detected almost a decade ago,
and one of the really nice results from Planck was the first all-sky projected mass map obtained
from lensing.

6.1 Lensing-induced B modes

One of the most important consequences of lensing of the CMB is the B modes they induce.
Generalizing the analysis of the temperature above gives us T

Q
U


obs.

(θ) =

 T
Q
U


ls

(θ + δθ) '

 T
Q
U


ls

(θ) + δθ · ∇

 T
Q
U


ls

(θ), (58)

where δθ = ∇Φ is the lensing deflection, and Φ is a projection of the three-dimensional gravitational
potential Φ(x) along the line of sight n̂.

The generation of B modes by lensing is most easily seen in the flat-sky limit. If there is no B mode
at the surface of last scatter, then Q̃(`) = 2Ẽ(`) cos 2ϕ` and U(`) = −2E(`) sin 2ϕ`. Thus,

∇Q(θ) = −2i
∫

d2`

(2π)2
Ẽ(`) cos 2ϕ` ` e−i`·θ, (59)

13



and similarly for ∇U(θ) with cos → − sin. The deflection angle is likewise

Φ̃(θ) = −i
∫

d2`

(2π)2
Φ(`) e−i`·θ `. (60)

Thus, the perturbation to Q and U induced by gravitational lensing is

δQ(θ) = (∇Q) · (∇Φ) =
∫

d2`

(2π)2
ei`·θ(∇Q · ∇Φ)`, (61)

where

δQ(`) ≡ [(∇Q) · (∇Φ)]` = 2
∫

d2`1

(2π)2
[`1 · (`− `1)]Ẽ(`1)Φ̃(`− `1) cos 2ϕ`1 , (62)

δU(`) ≡ [(∇U) · (∇Φ)]` = −2
∫

d2`1

(2π)2
[`1 · (`− `1)]Ẽ(`1)Φ̃(`− `1) sin 2ϕ`1 . (63)

Although the original map had (by assumption) no curl, the lensed map does:

B(`) =
1
2
[sin 2ϕ` δQ(`)− cos 2ϕ` δU(`)] =

∫
d2l1
(2π)2

[`1 · (`− `1)]E(`1)Φ(`− `1) sin 2ϕ`1 . (64)

If the power spectrum for the projected potential is CΦΦ
` , then the B-mode power spectrum from

lensing is,

CBB
` =

∫
d2l1
(2π)2

[`1 · (`− `1)]2 sin2 2ϕ`1C
ΦΦ
|`−`1|C

EE
`1 . (65)

6.2 Smoothing of peaks

A similar analysis for the temperature power spectrum gives rise to a change,

∆CTT
` =

∑
~̀
1

Cψψ~̀′

{
CTT

|~̀−~̀1|
[
~̀
1 · (~̀− `1)

]2
− CTT

` (~̀ · ~̀1)2
}
, (66)

in the temperature power spectrum. To derive this result (which is second order in ψ), one needs
to expand the observed temperature to second order in ψ; i.e.,

T (~θ) = T p
(
~θ − α(~θ)

)
' T p(~θ)− α(~θ)∇θT

p(~θ) +
1
2
αiαj

∂2T p

∂θi∂θj
+ · · · . (67)

There is then a contribution that comes from the cross term between the second-order and zero-th
terms, in addition to the contribution (as we saw for B modes) from the square of the first-order
term.

There are two terms in the integrand of Eq. (68. The first involves a convolution of the temperature
and projected-potential power spectra. The acoustic peaks in the CMB power spectrum arise at
` >∼ 200, while the lensing power spectrum peaks at ` ∼ 50. We can thus take `′ � ` in the
integrand in the first term, and replace CTT

|~̀−~̀1|
therein by a smoothed power spectrum C̄TT

` which
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is the temperature power spectrum smoothed over a region of with roughly ∆` ' 50 about `. The
change can then be approximated,

∆CTT
` =

(
C̄TT
` − CTT

`

)∑
~̀
1

Cψψ~̀′ (~̀ · ~̀1)2. (68)

From this expression, we see that near peaks (where C` is higher than its smoothed value), the
power spectrum is reduced by lensing, while near troughs (where the smoothed power spectrum is
higher), it is increased. The observed power spectrum is thus smoothed be lensing.

There is a simple heuristic explanation for this smoothing. When we look at different ∼ 2◦ ∼ 2◦

regions of the sky, we are seeing a patch of the CMB that has been lensed by over- or under-
densities in such a way that the observed angular scale is either amplified or de-amplified. In each
such patch, the peaks in the angular power spectrum are thus shifted to either slightly smaller or
slightly larger values of `. When we average over the entire sky, the peaks are then smoothed.
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