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1 Thermodynamics in the Expanding Universe

As discovered by Penzias and Wilson in 1965, and determined much more precisely in the early
1990s by the Far Infrared Absolute Spectrometer (FIRAS) on NASA’s Cosmic Background Ex-
plorer (COBE) satellite, the Universe is filled with a gas of microwave photons with a blackbody
spectrum and a temperature T0 = 2.7 K, or T = 2.4 × 10−13 GeV in units in which the Boltz-
mann constant kB = 1. In other words, in every direction we look, we see a specific intensity
(ergs/cm2/sec/steradian/Hz),

Iν =
2hν3/c2

ehν/kT0 − 1
, (1)

as a function of frequency ν. It is important to keep in mind that although this is the energy
distribution that a gas of massless particles has in thermal equilibrium, the photons in this gas are
most certainly not in thermal equilibrium. Thermal equilibrium implies that the energy-momentum
distribution of the particles in the thermal bath is maintained by frequent collisions. These photons
have extremely long mean-free paths through the Universe, comparable to the size of the observable
Universe, and thus are not in thermal equilibrium, even though they have the energy distribution
characteristic of thermal equilibrium. We refer to this gas of photons as the cosmic microwave
background (CMB).

Interestingly enough, since the frequency of each photon scales as 1 + z with redshift z—ν(z) =
(1 + z)ν0—the frequency spectrum of the CMB always maintains a blackbody distribution, albeit
one with a temperature T (z) = T0(1+z)—i.e., the earlier Universe was hotter. Although they have
not yet been observed, we will also see that the Universe also constains a gas of neutrinos (all three
mass eigenstates) at a temperature Tν = 1.96 K. We also measure, through a variety of techniques
that we will discuss in a bit, a baryon (i.e., neutrons and protons) density (in units of critial),
Ωb = ρb/ρc ' 0.019 h−2. (And keep in mind that ρc = 10−5 h2 GeV cm−3 = 1.9 h2× 10−29 g cm−3.)

Needless to say, although the Universe is quite cool and diffuse today, it must have been hotter and
denser at earlier times. For example, at a redshift z = 109, the density of the Universe approached
that of water, and the temperature somewhere around an MeV. It is thus reasonable to surmise
that at some sufficiently early time, the contents of the Universe must have been described by a
gas of elementary particles in thermal equilibrium, rather than a distribution of far-flung galaxies
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that interact only gravitationally. We therefore must recall some thermodynamics to describe the
early Universe.

2 Review of relevant statistical mechanics and thermodynamics

In the following, we will use particle-physics units (~ = c = 1 = kB = 1). Then a dilute gas of
weakly interacting particles has a number density,

n =
g

(2π)3

∫
f(~p) d3p, (2)

an energy density,

ρ =
g

(2π)3

∫
f(~p) E(~p) d3p, (3)

and pressure,

P =
g

(2π)3

∫
f(~p)

|~p|2

3E
d3p, (4)

where

f(~p) =
[
exp

(
E − µ

T

)
± 1

]−1

, (5)

is the distribution function for a gas of particles in thermal equilibrium, and the plus (minus) is
for Fermi-Dirac (Bose-Einstein) statistics, and g is the degeneracy factor. The chemical potentials
µi for particle species i that undergo the reactions i + j ↔ k + l is µi + µj = µk + µl in chemical
equilibrium. The energy E of a particle of mass m and momentum p is E(p) = (p2 + m2)1/2. At
very high temperatures (T � m and T � µ),

ρ =
{

(π2/30)gT 4 bosons
(7/8)(π2/30)gT 4 fermions

, (6)

n =
{

[ζ(3)/π2]gT 3 bosons
(3/4)[ζ(3)/π2]gT 3 fermions

, (7)

where ζ(3) ' 1.2 is the Riemann zeta function, and

P =
1
3
ρ. (8)

For degenerate fermions (µ � T ) in the relativistic limit (this limit is important for white dwarfs
(near the high-mass end) and neutrons stars, but not so much for cosmology),

ρ =
gµ4

8π2
, n =

gµ3

6π2
, P =

gµ4

24π2
, (9)

and in the nonrelativistic limit (m � T ),

n = g

(
mT

2π

)2/3

e−(m−µ)/T , ρ = mn, P = nT � ρ. (10)

2



For T � m and T � µ, the mean particle energy is

〈E〉 ≡ ρ

n
=

{
[π4/30ζ(3)]T ' 2.701 T bosons

7π4

180ζ(3)T ' 3.151 T fermions (11)

Degenerate relativistic fermions have mean particle energy 〈E〉 ≡ ρ/n = (3/4)µ. For a nonrela-
tivistic gas, 〈E〉 = m + (3/2)T ' m.

3 Particle-antiparticle balance

The possibilty for, e.g., brehmsstrahlung reactions (e− + p ↔ e− + p + γ), implies that the photon
has zero chemical potential, µγ = 0 in chemical equilibrium. If so, then since a charged particle
X+ and its antiparticle X− can annihilate to photons, X+X− ↔ γγ, we must have µ+ = −µ−. If
so, then the formula for n above yields for fermions a particle-antiparticle asymmetry (in terms of
the chemical potential µ+,

n+ − n− =
{

(gT 3/6π2)
[
π2(µ/T ) + (µ/T )3

]
T � m,

2g(mT/2π)3/2 sinh(µ+/T )e−m/T T � m,
(12)

The total energy density and pressure are the sum of the contributions from each particle species
in the thermal bath. If there is no particle-antiparticle asymmetry (or no significant particle-
antiparticle asymmetry), then the density and pressure contributed by nonrelativistic particles is
exponentially suppressed. In this case, the pressure and energy density are dominated by the
relativistic particles, and we arrive at a radiation energy density,

ρR = (π2/30)g∗T 4, PR = ρR/3, (13)

where
g∗ ≡

∑
i=bosons

gi(Ti/T )4 +
7
8

∑
i=fermions

gi(Ti/T )4, (14)

is the effective number of relativistic degrees of freedom (and the sum is taken only over relativistic
species, mi � T ). For example, today, g∗ receives contributions from the two degrees of freedom
of the photon plus 3 × 2 neutrino degrees of freedom with Tν = (4/11)1/3Tγ , so g∗(T � MeV) =
2 + (7/8)6(4/11)4/3 ' 3.36. For temperatures MeV� T � 100 MeV, Tν = Tγ (as we will see), and
the electron is relativistic (me � T ), so g∗ = 2 + 6(7/8) + 4(7/8) = 10.75. At higher temperatures,
quarks contribute, as do muons, τ leptons, and at even higher temperatures, the electroweak gauge
bosons W± and Z0 and Higgs boson(s). For the standard electroweak model (with one Higgs
doublet), g∗ = 106.75 at T � 100 GeV.

During radiation domination (z >∼ 22, 000 Ωmh2 (t <∼ 105 yr), ρ ' ρR, p ' ρ/3, and the scale factor
a(t) ∝ t1/2. At these times, H = (8πGρR/3)1/2 = 1.66 g

1/2
∗ T 2/mPl, where mPl = G−1/2 = 1.2×1019

GeV is the Planck mass. Under the approximation that g∗ 'constant, the age of the Universe
during radiation domination is t ' (2H)−1 ' 0.301 g

−1/2
∗ mPl/T 2 ' (T/MeV)−2 sec. Therefore, the

Universe was roughly one second old when the temperature was an MeV, and it scales roughly as
T−2.
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4 Entropy

When the expansion timescale of the Universe is long compared with the timescales for reactions
that maintain thermal equilibrium, then the cosmological gas can be considered to be in thermal
equilibrium, but undergoing adiabatic changes with the slow expansion. Under these conditions,
the entropy per comoving volume will be constant. Returning to the second law of thermodynamics,
we have

TdS = d(ρV ) + PdV = d[(ρ + P )V ]− V dP. (15)

We then note that if µ = 0 [so that the T dependence of f appears only in the combination E/T ,
then it can be shown (from the expression for P in terms of f(E)) that dP = (ρ + P )(dT/T ), so

dS =
1
T

d[(ρ + P )V ]− (ρ + P )V
dT

T 2
= d

[
(ρ + P )V

T
+ constant

]
. (16)

Therefore, the entropy per comoving volume is S = a3(ρ+P )/T . But if the expansion is adiabatic,
then dS = 0, and so the entropy density s ≡ S/V = (ρ+p)/T ∝ a−3 as long as local thermodynamic
equilibrium is maintained. What this means is that if the energy density is dominated by radiation,
then s ∝ a−3, where s = (2π2/45)g∗sT 3, and

g∗s ≡
∑

i=bosons

gi(Ti/T )3 + (7/8)
∑

i=fermions

gi(Ti/T )3, (17)

and as before, the sum is taken only over relativistic species, mi � T . Note that g∗s is almost
always equal to g∗, and differs only if some species becomes thermally decoupled from the rest of
the plasma. It is important to note that since s ∝ a−3, the temperature T is T ∝ a−1 only as long
as g∗s remains constant. When the temperature T drops below the mass mi of some particle in the
thermal bath, then the temperature T drops a little more slowly with the expansion than 1/a as
g∗s decreases. Thus, for example, when the temperature drops below me, electrons and positrons
annihilate to produce additional photons. It is often misstated that electron-positron “heats”
the photons. This is not true. What happens is that when electrons and positrons annihilate,
they transfer their entropy to the photons, and this simply slows the temperature drop relative
to 1/a. Note that s = 1.80 g∗snγ , and today, the photon number density is nγ0 ' 411 cm−3, and
s0 = 7.04 nγ ' 3000 cm−3.

Since sa3 is constant, we can use s to mark comoving volumes, and also the relation between
scale factor a and temperature T : i.e., g∗sT

3a3 =constant. Thus, for example, if baryon number
is conserved, then nB/s ≡ (nb − nb̄)/s is the same at all times. It is common to hear people
speak of the baryon-to-photon ratio η ≡ (nB/nγ0)0 = 1.8 g∗s(nB/s), but this is not constant (if g∗s
changes). In particular, the photon number, Nγ = a3nγ increases by 11/4 at e+e− annihilation near
T ∼ 0.5 MeV, since g∗s = 2 + 4(7/8) before and g∗s = 2 afterwards. This is also why the neutrino
temperature is (4/11)1/3 relative to that of the photons. Neutrinos decouple at a temperature
T ∼ MeV , before e+e− recombination. Thus, while the (decoupled) neutrino temperature is falling
as Tν ∝ a−1, the photon temperature is dropping as Tγ ∝ g

−1/3
∗s a−1.

Note finally that since the momentum p of a massive particle decreases as p ∝ a−1, while its kinetic
energy is E = p2/2m a massive decoupled species maintains a thermal energy distribution, but
with a temperature T ∝ a−2. And, of course, its density decreases as a−3. If a massive species
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decouples when it is relativistic (mD � T ), it does not maintain a thermal energy distribution when
the temperature drops to T <∼ m. Thus, for example, neutrinos decouple when their temperature
is T ∼ MeV, and their temperature today is Tν0 ∼ 2 × 10−4 eV. If they have a mass mν >∼ Tν0,
then they are moving nonrelativistically today, and their energy distribution is not a Fermi-Dirac
distribution.

5 Brief Overview

Before moving on, let’s review some of the high points in the history of the Universe:

• T ∼ 10−4 eV, t ∼ 1010 yr: today; baryons and the CMB are entirely decoupled, stars and
galaxies have been around a long time, and clusters of galaxies (gravitationally bound systems
of ∼ 1000s of galaxies) are becoming common.

• T ∼ 10−3 eV, t ∼ 109 yr; the first stars and (small) galaxies begin to form.

• T ∼ 10−1−2 eV, t ∼ millions of years: baryon drag ends; at earlier times, the baryons are still
coupled to the CMB photons, and so perturbations in the baryon cannot grow; before this
time, the gas distribution in the Universe remains smooth.

• T ∼eV, t ∼ 400, 000 yr: electrons and protons combine to form hydrogen atoms, and CMB
photons decouple; at earlier times, photons are tightly coupled to the baryon fluid through
rapid Thomson scattering from free electrons.

• T ∼ 3 eV, t ∼ 10−(4−5) yrs: matter-radiation equality; at earlier times, the energy den-
sity of the Universe is dominated by radiation. Nothing really spectacular happens at this
time, although perturbations in the dark-matter density can begin to grow, providing seed
gravitational-potential wells for what will later become the dark-matter halos that house
galaxies and clusters of galaxies.

• T ∼keV, t ∼ 105 sec; photons fall out of chemical equilibrium. At earlier times, interac-
tions that can change the photon number occur rapidly compared with the expansion rate;
afterwards, these reactions freeze out and CMB photons are neither created nor destroyed.

• T ∼ 10 − 0.1 MeV, t ∼seconds-minutes. Big-bang nucleosynthesis (BBN). Neutrons and
protons first combine to form D, 4He, 3He, and 7Li nuclei. Quite remarkably, the theory for
this is very well developed and agrees very impressively with a variety of observations.

• T ∼ 100− 300 MeV, t ∼ 10−5 sec. The quark-hadron phase transition. This is when quarks
and gluons first become bound into neutrons and protons. We are pretty sure that this must
have happened, but the details are not well understood, and there are still no signatures of
this phase transition that have been observed. This is also when axions are produced, if they
exist and are the dark matter.

• T ∼ 10s−100s GeV, t ∼ 10−8 sec. If dark matter is composed of supersymmetric particles, or
some other weakly interacting massive particle (WIMP), then this is when their interactions
freeze out and their cosmological abundance fixed. This is speculative.
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• T ∼ 1012 GeV, t ∼ 10−30 sec. The Peccei-Quinn phase transition, if the Peccei-Quinn
mechanism is the correct explanation for the strong-CP problem. This is highly speculative.

• T ∼ 1016 GeV, t ∼ 10−38 sec. This is when the GUT (grand-unified theory) phase transition
occurs. At earlier times, the strong and electroweak interactions are indistinguishable. This
is highly speculative.

• T ∼ 1019 GeV, t ∼ 10−43 sec. Strings? quantum gravity? quantum birth of the Universe?
This is all highly speculative. Basically, at these temperatures, the energy densities are so
high that the classical treatment of general relativity is no longer reliable. Such early times
can only be understood with a quantum theory of gravity, which we don’t have.

6 Thermal History of the Universe

Thermal equilibrium of particle species in the early Universe is maintained by scattering of parti-
cles. Thus, equilibrium is maintained (and the expansion of the Universe can be considered to be
adiabatic) as long as the interaction rate Γ = nσv is greater than the expansion rate, H ∼ T 2/mPl.
Here, n is the number density of (other) particles that the particle in question can scatter from, and
σ is the cross section for the scattering process in question, and v the relative velocity between the
reacting particles. At this point, it is important to distinguish between statistical equilibrium and
chemical equilibrium. In chemical equilibrium, the reactions that create and destroy the particles in
question occur faster than the expansion, and so the chemical potential retains its equilibrium value
(as determined by, e.g., µi +µj = µk +µl for reactions i+ j ↔ k + l). In statistical equilibrium, the
elastic scattering reactions that maintain the thermal energy distribution of particles occur faster
than the expansion. It is possible for a particular particle species to be in statistical equilibrium,
but not in chemical equilibrium. I think you may be able to prove that if chemical equilibrium is
maintained, then so is statistical equilibrium, but I’m not entirely sure. True thermal equilibrium
occurs when the particle species in question is in statistical and chemical equilibrium.

Suppose now that the interaction rate Γ scales with temperature as Γ ∝ Tn. Then, the number of
interactions the particle will undergo after some time t is

Nint =
∫ ∞

t
Γ(t′) dt′ =

Γ(T )
2H(T )

∫ T

0

(
T ′

T

)n dT ′

T ′3
T 2 =

(
Γ
H

)
t

1
n− 2

. (18)

Therefore, for n > 2 particles interact <∼ 1 time after the time when Γ ' H. This is simply because
during radiation domination, H ∝ T 2, so if n > 2, the scattering rate Γ falls below H after Γ = H,
and the interactions of the particles are said to freeze out.

Let’s start with neutrino decoupling. At temperatures T >∼ me ' 0.5 MeV, electrons and positrons
are abundant in the Universe, and chemical equilibrium of neutrinos is maintained by νν̄ ↔ e+e−

reactions through a virtual Z0 boson and additionally (for the electron neutrino) through W±

exchange,
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and statistical equilibrium is additionally maintained by neutrino-electron elastic scattering, which
occurs through W± exchange (for electron neutrinos) and Z0 exchange (for all three neutrinos).

The cross section for these processes can be calculated using standard weak-interaction theory,
which is beyond the scope of this course. The result for the cross sections turns out to be σ ∼
(α2/m4

W )E2
ν , where α ∼ 10−2 is the fine-structure constant, mW,Z ∼ 100 GeV is the gauge-boson

mass, and Eν the neutrino energy. The α2 factor arises because there are two vertices in the
matrix element (the Feynman diagram), and the cross section is proportional to the matrix element
squared. The m−4

W,Z arises because of a factor m2
W,Z appears in the propagator for the virtual gauge

boson that is exchanged. We then add the factor E2
ν to get the right dimensions [(energy)−2] for

the cross section. Noting that the abundance of electrons (when they are still relativistic is n ∼ T 3,
that neutrinos travel at velocities v ' c, and that the typical neutrino energy is Eν ∼ T , the
interaction rate for neutrino conversion to electrons and for neutrino-electron elastic scattering is
Γint ∼ α2T 5/m4

W,Z , and the ratio to the expansion rate is (Γint/H) ∼ α2T 3mPl/m4
W,Z ∼ (T/MeV)3.

Therefore, for temperatures T >∼MeV, neutrinos are in thermal equilibrium, and they decouple at
temperatures T ∼MeV. Of course, all this has been pretty fast and loose, but it turns out that
when you put all the factors of π, 2, etc. in the right place, you get this result. We then note
that these neutrinos then free stream throughout the remaining history of the Universe, and their
temperature today is (4/11)1/3 the photon temperature because, as discussed last week, the photon
number increases by (11/4) during electron-positron annihilation.

7 Recombination

In the early Universe, at temperatures T �eV, the atoms in the Universe are ionized, and photons
are tightly coupled to the baryons through Thomson scattering from the electrons. At a temperature
T ∼eV, electrons and protons combine to form hydrogen atoms, free electrons disappear, and
without any electrons to scatter from, photons decouple and free stream through the Universe.
These are the CMB photons we see today.

The temperature at which recombination occurs can be determined roughly from the Saha equation.
Let’s ignore the helium in the Universe. Then, there can be electrons, protons, and bound hydrogen
atoms, with abundances ne, np, and nH , and the baryon density is nB = np + nH . In terms of the
temperature and chemical potentials, the abundances are

ni = gi

(
miT

2π

)3/2

exp
(

µi −mi

T

)
. (19)

From the reaction e− + p ↔ H, we have µp + µe = µH , which allows us to write,

nH = gh

(
mHT

2π

)3/2

exp
(

µp + µe −mH

T

)
=

gH

gpge
npne

(
meT

2π

)−3/2

eB/T , ] (20)
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where the binding energy B ≡ mp + me − mH = 13.6 eV, and we have used mp ' mH in the
prefactor. Defining an ionization fraction Xe ≡ np/nH , and gp = ge = 2 and gH = 4, and
nB = ηnγ , where η = 5.1 × 10−10(Ωbh

2/0.019) is the baryon-to-photon ratio, and np = ne and
nH = (1−Xe)np, we find (this equation needs to be checked!)

(1−Xeq
e )

(Xeq
e )2

=
4
√

2ζ(3)√
π

η

(
T

me

)−3/2

eB/T . (21)

This is known as the Saha equation. Keep in mind that here that T (z) = T0(1 + z). At high
temperatures, one gets an ionization fraction Xe → 1, and Xe → 0 at low temperatures. Evaluating
the Saha equation numerically, one finds that at a redshift zrec ' 1260, at a temperature T ' 0.3
eV, about 90% of the electrons have become bound into hydrogen atoms. Of course, the Saha
equation describes the ionization balance in equilibrium, and this will only be valid as long as the
reactions e− + p ↔ H that maintain equilibrium occur rapidly compared with the expansion rate
H. Toward the end of recombination, when ne = np drop exponentially, the reaction rate also
drops exponentially until at some point this drops below the expansion rate. With the correct cross
section for recombination, one finds that this happens at a redshift z ' 1100, resulting in a residual
free-electron density ne ' 3× 10−4.

Photons decouple very shortly after recombination, as the free electrons disappear. The mean-
free path for a photon is λ = (neσT )−1, where σT = 6.625 × 10−25 cm2 is the Thomson cross
section. Photons decouple roughly when this exceeds the age of the Universe, which at these
times, is t = (2/3)(1 + z)−3/2(ΩmH2

0 )−1/2. Plugging in numbers and evaluating the Saha equation
numerically, one finds that CMB photons last scatter at 1+zls ' 1100 when the age of the Universe
is t ' 380, 000 years (note that to get the correct age, you must take into account the fact that
although the Universe is matter dominated at these redshifts, the radiation is not yet negligible).
This is therefore where the CMB photons that we see were last scattered. Since the baryon-to-
photon ratio is 5× 10−10, it means that only one photon per billion in the CMB is produced by an
electron-proton recombination; the rest are just those in the thermal bath, and we therefore expect
them to have a very precisely blackbody spectrum....as is observed.

8 Big-bang nucleosynthesis

The theory of big-bang nucleosynthesis is one of the major triumphs of cosmology in the 20th
century. By simply applying the rates for nuclear reactions that are measured in the laboratory to
a plasma of the correct baryon density in an expanding Universe roughly a few seconds to minutes
after the big bang (at temperatures T ∼ 0.1 − 10 MeV), we find that the neutrons and protons
in the Universe organize themselves into roughly 75% hydrogen and 25% helium (by mass), with
calculable trace abundances of deuterium and 7Li. The predictions are in excellent agreement
with the observations, and the success of the theory allows us to place important constraints to
the content and evolution of the Universe just seconds after the big bang. The full theory is
straightforward and quite involved, and we will not go into it in detail. Instead, we will try to
understand in a simple way why the helium mass fraction is ∼ 25%.

Helium is the most tightly bound light (A <∼ 8) nucleus; by “tightly bound”, I mean largest binding
energy per nucleon. More massive nuclei are more tightly bound. However, the nuclear reactions
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that might build heavier nuclei from helium nuclei, neutrons, and protons, freeze out (i.e., are
outpaced by the expansion) shortly after helium nuclei are created, so these reactions never occur.
Therefore, essentially all the neutrons around at the time of BBN wind up in helium nuclei, and
this fact can be used to estimate the helium abundance. Initially, at temperatures T �MeV and
t �sec, neutrons and protons are rapidly interconverting through reactions like νe+n ↔ p+e− and
e++n ↔ p+ ν̄e. Strictly speaking, the reaction n ↔ p+e−+ ν̄e can also occur, but the timescale for
this reaction is ∼ 10 min, too long to take place at these early times. If proton-neutron conversion
takes place faster than the expansion rate, then chemical equilibrium, µn +µν = µp +µe, will hold.
If so, then the neutron-proton ratio will be

n

p
≡ nn

np
= exp [−Q/T + (µe − µν)/T ] , (22)

where Q ≡ mn −mp = 1.293 MeV is the neutron-proton mass difference. With the expressions for
equilibrium abundances, one can show that at T � me, µe/T ∼ (ne− − ne+)/nγ = np/nγ ∼ η � 1,
and similarly µν/T � 1, if there is no large neutrino asymmetry. Therefore, if neutron-proton
conversion occurs in equilibrium, then (n/p)eq = e−Q/T .

The neutron decay rate can be calculated in weak-interaction theory, and it is

Γn→peν = τ−1
n =

G2
F

2π3
(1 + 3g2

A)m5
eλ0, (23)

where GF is Fermi’s constant, gA and axial-vector coupling, and λ0 = 1.6363 is a phase-space
factor that can be calculated from the theory. The constants GF and gA are determined from
measurement of the neutron lifetime, the neutron decay spectrum, and can also be determined
(and checked for self-consistency) from other weak-decay processes. The matrix elements for the
other neutron-proton conversion processes are related to the neutron lifetime, and so the rate for
proton-neutron interconversion in the thermal bath at temperature T can be shown to be

Γpe↔νn =

{
τ−1
n (T/me)3e−Q/T T � Q,me

7π4τ−1
n

30λ0

(
T

me

)5
' G2

F T 5 T � Q,me
(24)

Numerically, we find that at T >∼ me, (Γ/H) ' (T/0.8 MeV)3. Thus, at T >∼ 0.8 MeV, we expect
the equilibrium neutron-proton ratio to hold: n/p = (n/p)eq. However, the neutron-proton mass
ratio will then freeze out at T ' 0.8 MeV, and it will do so at a ratio,(

n

p

)
freezeout

= e−Q/Tf ' 1
6
. (25)

Over the next 1−3 minutes, the temperature drops to T = 0.3−0.1 MeV. Neutrons and protons will
begin to combine, through a chain of nuclear reactions that proceeds through deuterium, to helium.
The precise calculation is somewhat involved, and the ”correct” answer cannot be obtained through
any simple argument. Still, what happens, roughly speaking, is that neutrons and protons begin to
collect into 4He nuclei, and the helium abundance is roughly that determined by nuclear statistical
equilibrium. The balance between free neutrons and neutrons in helium nuclei is determined by
something like the Saha equation that we saw above that determines the balanced between free
electrons and those bound in hydrogen atoms. As in that case, “recombination” takes place when
the temperature is roughly 1/10 the ionization energy (in that case, 13.6 eV). In this case, the
“ionization” energy is the binding energy per nucleon in a helium atom, roughly a few MeV per
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nucleon. It is thus reasonable to expect (and straightforward and detailed calculations bear out)
that at a temperature T ∼ 0.1 MeV, at a time t ∼ 3 min, every neutron (to a first approximation) in
the Universe finds itself in a helium nucleus. Although we calculated above that ep ↔ νn freezeout
results in n/p ' 1/6, over the three minutes since freezeout, roughly one in five of the remaining
neutrons decayed (recalling that τn ' 15 min). Thus, at T ∼ 0.1 MeV, when neutrons fall into
helium nuclei, the neutron-proton ratio has decreased to roughly n/p ' 1/7. Therefore, big-bang
nucleosynthesis results in a helium mass fraction,

X4 =
4nH

nN
=

4(nn/2)
nn + np

=
2(n/p)

1 + (n/p)
' 0.25, (26)

using n/p ' 1/7.

Detailed calculations evolve the entire network of nuclear reactions forward in time numerically
with a series of rate equations (“Boltzmann equations”) for all of the nuclear reactions. Detailed
predictions are made for the abundances of 7Li, 4He, and deuterium as a function of the baryon-
to-photon ratio η ∝ Ωbh

2. The most interesting BBN prediction in recent years has been that
for the D abundance, which has been measured in z ∼ 3 Lyman-alpha absorption systems to be
D/H ' 2× 10−5 which suggests a baryon density Ωbh

2 = 0.020± 0.002 (95% CL).

The agreement between the predicted and observed light-element abundances allows us to place
some confidence in BBN, and therefore to use it to constrain alternatives to the standard cosmolog-
ical model. In particular, the agreement suggests that the expansion rate at BBN is what we think
it is. Suppose, for example, that there were several additional light-neutrino degrees of freedom, in
addition to the three (e, µ, and τ) we know, in equilibrium at the time of BBN. Then, g∗ would
be bigger, and therefore the expansion rate H2 ∝ g

1/2
∗ T 2 larger at the same temperature. If the

expansion rate were larger, then the neutron-proton conversion would freeze out at an earlier time
and higher temperature, and thus at a higher neutron-to-proton mass ratio. This would then lead,
according to the equation above, to a larger 4He abundance. When people carry through this ar-
gument carefully, the conclusion is that (conservatively), there can be no more than the equivalent
of one light additional neutrino at the time of BBN.

9 Thermal relics and dark matter

Many theories for new physics beyond the standard model, and particularly those that introduce
supersymmetry (a symmetry between bosons and fermions), predict the existence of a new neutral
and stable weakly-interacting massive particle (WIMP) χ that has a mass in the range 10s to
1000s of GeV and interactions with ordinary matter with strengths characteristic of electroweak
interactions (e.g., like neutrinos). For example, in the minimal supersymmetric extension of the
standard model (MSSM), the neutralino, a linear combination of the supersymmetric partners
of the photon, Z0 boson, and Higgs bosons (i.e., a linear combination of the photino, zino, and
higgsino) is the lightest supersymmetric partner, it is neutral and stable, and can thus serve as a
WIMP. Depending on the details of the supersymmetric model, these particles can have a mass mχ

in the 10s to 1000s of GeV range, and they have electroweak-strength interactions with quarks and
leptons. The neutralino is a spin-1/2 particle, and it is a Majorana particle, meaning that it is its
own antiparticle.
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Recall that the baryon density is Ωb ' 0.05, while the nonrelativistic-matter density is Ωm ' 0.3.
That means that ∼ 25% of the critical density must be in the form of nonrelativistic nonbaryonic
matter. This dark matter has been required by galactic dynamics for years. In our own Milky
Way, the mismatch between the velocities that stars are observed to rotate around the center of the
galaxy, and the velocities they should have if the stellar mass was all there were, has long suggested
that dark matter outweighs the luminous matter in the Milky Way, and just about every other
galaxy, by at least a factor of 10. We will now see that WIMPs may well be the dark matter, if
they exist.

In the early Universe when the temperature T � mχ, these particles should be effectively massless
and they should exist in thermal equilibrium with the standard-model particles (quarks, leptons,
photons, gluons, gauge bosons) if, of course, the strength of their interactions with standard-model
particles is large enough. We will consider the case of a neutralino, a Majorana spin-1/2 particle.
The equilibrium abundance of χ particles is maintained by conversion of neutralinos to standard-
model particles through reactions like χχ ↔ ll̄, where l = (e±, µ±, τ±, u, d, s, c, b, t, W±, Z0). The
rate for annihilation of a pair of WIMPs to lighter particles is Γχχ→ll̄ =

〈
σχχ→ll̄|v|

〉
nχ, where

σann ≡ σχχ→ll̄ is the cross section for annihilation of WIMPs to lighter particles, |v| is the relative
velocity between the annihilating particles, the angle brackets denote an average over the thermal
energy distribution, and nχ is the WIMP number density.

The time evolution of the number density of WIMPs is given by the following Boltzmann equation,

dnχ

dt
+ 3Hnχ = −〈σann|v|〉

[
n2

χ − (neq
χ )2

]
, (27)

where H = 1.66 g
1/2
∗ T 2/mPl is the expansion rate, nχ the actual number density, and neq

χ the
number density the particles have in thermal equilibrium at a temperature T . This equation is
derived from kinetic theory, but it can be understood heuristically in a simple way. The right-
hand side of the equation describes the effect of annihilation and creation processes on the number
density, while the left-hand side describes the effect of the expansion. Suppose, first, that the left-
hand side were zero—i.e., particles were neither created nor destroyed. Then the equation would
be (dnχ/dt) + 3(ȧ/a)nχ = 0, which has a solution nχ ∝ a−3, which is exactly what we expect if
particle number is conserved. Now consider the right-hand side. The first term simply describes
the rate per unit volume at which particles are removed by annihilation. (Note that there is a
subtlety for Majorana particles here. This term should be multiplied by a factor of two, since
two particles are removed in each annihilation process. However, the number of way of pairing N
identical particles is N(N − 1)/2, which implies that the rate per unit volume at which particles
annihilate is 〈σann|v|〉n2

χ/2.) Now consider the second term, which describes creation of χχ pairs by
the inverse process ll̄ → χχ. The principle of detailed balance tells us that in thermal equilibrium,
the forward and reverse reactions occur at the same rate. Therefore, if the light particles ll̄ have
thermal distributions, the rate per unit volume for creation of χ particles is then 〈σann|v|〉 (neq

χ )2.

In practice, the Boltzmann equation can be evolved numerically, and it is also fairly simple to come
up with a reliable analytic approximation. Here, we work throug a very simple solution that is a
bit less accurate than a more sophisticated solution, but describes the essential physics. We will
see that at early times, when the annihilation rate exceeds the expansion rate, the relic density
of particles tracks the equilibrium number density. Then, at some time, the annihilation rate
gets outpaced by the expansion and at the comoving number density of particles remains constant
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thereafter.

The solution depends on whether we are dealing with a “hot relic,” one that freezes out when it is
relativistic (T >∼ mχ) like the example of neutrinos that we worked out before), or a “cold relic,”
one that freezes out when it is nonrelativistic (T <∼ mχ). Let’s first consider hot relics. Since the
equilibrium number density nχ ∝ T−3, while the expansion rate H ∝ T 2, the annihilation rate
Γ ∝ nχσv will exceed the expansion rate at some sufficiently early time as long as σv ∝ Tn with
n > −1. This is certainly true for neutrinos (n = 5) as we saw before, and it is true for any particle
candidate I’ve ever heard of. I’m not sure, but I think that it can be proved for pointlike particles
that n > −1 always. So let us suppose that n > −1. Then, at early times, Γ > H, but then at some
temperature Tf , defined by Γ(Tf ) = H(Tf ), the annihilation rate drops below the expansion rate,
and annihilations freeze out. The comoving number density of particles then scales like nχ ∝ a−3

thereafter. This means that the particle-to-entropy ratio, Y ≡ nχ/s is therefore constant with time.
From our expressions for nχ (in the relativistic regime) and s, we can calculate that

Y =
25ζ(3)
2π4

geff

g∗s
= 0.278

geff

g∗s
, (28)

for a particle that freezes out when it is relativistic, and where geff = g for bosons, and geff = (3/4)g
for fermions. Since this remains constant with time, and since s = 2970 cm−3 today, nχ0 =
825 [geff/g∗s(Tf )] cm−3 today. Now suppose that although the relic freezes out when T >∼ mχ, but
that mχ <∼ TCMB today. Then, the relic will be nonrelatistic today and contribute a nonrelativistic-
matter density (in units of critical) of Ωχ = mχnχ0/ρc = 7.83× 10−2 h−2[geff/g∗s(Tf )](mχ/eV). So
let us now return to neutrinos, which decouple at a temperature T 'MeV when gs = 10.75. For
Majorana (2-component) neutrinos, geff = 2(3/4), and so Ωνh

2 = (mν/91.5 eV). Since Ωχh2 <
0.122 (from recent data from the CMB and other measurements) it implies that mν < 11 eV.
Considering that there are three neutrino species, what this really means is that if they are 2-
component neutrinos, then there masses must sum to

∑
i mνi < 11 eV. This is know as the Cowsik-

McLelland bound, although it was in fact derived by Russian theorists (whose name I cannot
remember now) a decade before, in the early 1960s.

As another application, suppose one postulated a left-right symmetric model with right-handed
neutrinos that interact via exchange of some hypothetical and much more massive right-handed
gauge bosons W±

R and Z0
R such that these right-handed neutrinos decoupled at a temperature

T >∼ 100 GeV. Then g∗s would be about 10× larger at decoupling and so the limit to the sums of
these right-handed neutrino masses would be ' 100 eV.

Now let’s move on to cold relics, which freeze out when T <∼ mχ. Initially, at temperatures
T � mχ, nχ ∝ T 3, so under the same conditions for σannv as we considered for hot relics above,
the annihilation rate Γ will at some sufficiently early time be Γ >∼ H. By assumption (or definition of
cold relic), the annihilation rate Γ >∼ H until T drops below mχ. Subsequently, the number density
nχ ∝ exp(−mχ/T ) drops exponentially with the temperature, and at some point, the equilibrium
annihilation rate falls below the expansion rate. At this time, annihilations freeze out, and the
comoving number density of WIMPs subsequently remains constant.

This behavior can be seen from the Boltzmann equation. If Γ = nχ 〈σann|v|〉 � H, then the
right-hand side of the Boltzmann equation is larger than the 3Hnχ term, and the right-hand side
drives nχ → neq

χ . If, however, H � Γ, then the right-hand side, which restores the density to the
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equilibrium density, becomes unable to keep pace with the dilution of the number density due to
the expansion.

Freezeout is determined by H(Tf ) = Γ(Tf ), or

1.66 g
1/2
∗

T 2
f

mPl
= g

(
mχTf

2π

)3/2

e−mχ/Tf 〈σann|v|〉 , (29)

and 〈σann|v|〉 and g∗ are both evaluated at a temperature Tf . This is rearranged algebraically to
give

Tf

mχ
=

{
ln

[
g

g∗

m2
χmPl 〈σann|v|〉 (Tf/mχ)1/2

1.66 (2π)3/2

]}−1

. (30)

This can be solved numerically for Tf , or evaluated recursively; defining y = 0.038(g/g
1/2
∗ )mχmPl 〈σann|v|〉,

we have
mχ

Tf
= ln y − 1

2
ln ln y − 1

2
ln ln ln y − · · · . (31)

For example, if mχ = 100 GeV, and the annihilation cross section is σv ' α2/m2
χ ' 10−8 GeV−2,

then mχ/Tf ' ln[0.038(2/10)(100)(1019)(10−8)] ' 25, and this depends only logarithmically on mχ

and 〈σann|v|〉. We thus learn that freezeout occurs when the temperature drops not to T ' mχ,
but all the way down to T ' mχ/20, well into the nonrelativistic regime.

At this time, the WIMP abundance is

nfreezeout
χ =

Γfreezeout

〈σann|v|〉
=

Hfreezeout

〈σann|v|〉
=

1.66 g
1/2
∗ T 2

f /mPl

〈σann|v|〉
=

1.66 g
1/2
∗ m2

χ

〈σann|v|〉 (mχ/Tf )2mPl
, (32)

and the entropy density is

sfreezeout =
2π2

45
g∗s

m3
χ

(mχ/Tf )3
. (33)

We then use the fact that nχ/s remains constant after freezeout, the value s0 = 2970 cm−3, and
then find that the WIMP mass density (in units of critical) is today

Ωχh2 =
mχnχ

(ρc/h2)
'

(
〈σann|v|〉

3× 10−27 cm3/sec

)−1

. (34)

Thus, to a first approximation, the relic density is simply inversely proportional to the annihilation
cross section. If the cross section is larger, then WIMPs stay in equilibrium longer leading to a
greater degree of exponential suppression, and thus have a lower relic density. Whereas if they have
weaker interactions, they freeze out earlier, with a larger relic density. Note that if the annihilation
cross section is 〈σann|v|〉 ∼ 3 × 10−26 cm3/sec, then Ωχh2 ' 0.1, the value required to explain the
nonbaryonic dark matter. Such a cross section is, in particle-physics units, 〈σann|v|〉 ∼ 2.5 × 10−9

GeV−2, remarkably close to our simple weak-scale estimate α2/(100 GeV)2 = 10−8 GeV−2. What
this implies is that if there is new physics at the electroweak scale that involves the introduction
of a new stable neutral particle, then that particle must have a relic density in the ballpark of
that required to explain the nonbaryonic dark matter. This is truly a coincidence, as there is no a
priori reason to expect the electroweak scale of elementary-particle interactions to have anything
to do with the critical density, which is fixed by the expansion rate, something having to do with
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the largest-scale structure of the Universe. This coincidence has led a number of theorists and
experimentalists to take the idea of WIMP dark matter very seriously.

Let’s consider another application of this calculation. Consider a Universe that begins initially
with no baryon-antibaryon asymmetry. In that case, baryons and antibaryons could annihilate to
photons with a cross section 〈σann|v|〉 ' fm2. With a baryon mass, one finds Tf ' mp/40 ' 22
MeV and (nb/s) = (nb̄/s) ' 7×10−20 (i.e., strongly-interacting particles annihilate very efficiently).
Today, however, nb/s ' η/7 ∼ 10−11 � 10−20. In other words, a baryon-symmetric Universe gets
the baryon density wrong by 9 orders of magnitude. From this, we conclude that there must
have been an initial baryon asymmetry, and that the abundance of antibaryons should be entirely
negligible today.

As another example, suppose that there were a heavy (and stable!) fourth-generation (Dirac or Ma-
jorana) neutrino. Such a neutrino could annihilate through a Z0 boson to the three light neutrinos,
electrons, muons, tauons, and whatever quarks were lighter than this new neutrino. For Dirac par-
ticles, the cross section for annihilation of neutrino-antineutrino pairs to these lighter particles turns
out to be 〈σann|v|〉 ' α2m2

ν/m4
Z . If g = 2 and g∗ = 60 (appropriate for particles in the mν ∼GeV

range), then (mχ/Tf ) ' 15+3 ln(mν/GeV) and (nχ/s) ' 6×10−9 (mν/GeV)−3 [1 + (1/5) ln(mν/GeV)],
and

Ωνn̄uh2 = 3
( mν

GeV

)−2
[
1 +

1
5

ln
( mν

GeV

)]
. (35)

Therefore, we require mν >∼ 6 GeV, or else the limit Ωνn̄uh2] <∼ 0.1 is violated. This is known as
the Lee-Weinberg bound (after particle theorists Steve Weinberg and Benjamin Lee), although it
was derived by a number of other people beforehand, and probably first by Zeldovich in 1965.
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