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1 Mass function (Press-Schechter theory)

In CDM models, the power spectrum determines everything about structure in the Universe. In
particular, it leads to what people refer to as “bottom-up” and/or “hierarchical clustering.” To
begin, note that the power spectrum P (k), which decreases at large k (small wavelength) is psy-
chologically inferior to the scaled power spectrum ∆2(k) = (1/2π2)k3P (k). This latter quantity
is monotonically increasing with k, or with smaller wavelength, and thus represents what is going
on physically a bit more intuitively. Equivalently, the variance σ2(M) of the mass distribution
on scales of mean mass M is a monotonically decreasing function of M ; the variance in the mass
distribution is largest at the smallest scales and smallest at the largest scales. Either way, the
density-perturbation amplitude is larger at smaller scales. It is therefore smaller structures that
go nonlinear and undergo gravitational collapse earliest in the Universe. With time, larger and
larger structures undergo gravitational collapse. Thus, the first objects to undergo gravitational
collapse after recombination are probably globular-cluster–sized halos (although the halos won’t
produce stars. As we will see later, the first dark-matter halos to undergo gravitational collapse
and produce stars are probably ∼ 106M� halos at redshifts z ∼ 20. A typical L∗ galaxy probably
forms at redshifts z ∼ 1, and at the current epoch, it is galaxy groups or poor clusters that are the
largest mass scales currently undergoing gravitational collapse.

One of the things we can do with a power spectrum is calculate the dark-matter–halo mass function
n(M), the abundance of dark-matter halos as a function of their mass M . This calculation is
due to Press and Schechter (PS) when they were Caltech graduate students in the early 1970s,
although there is a similar calculation in the then-Soviet literature by Doroshkevich a few years
earlier. The basic idea of the PS theory is to identify the high-density peaks in the primordial
density distribution that will then rise to gravitationally bound objects, and then count them. The
argument is as follows.

We begin by noting that inflation predicts that the distribution of primordial perturbations is
gaussian. One of the consequences of this prediction is that if we measure the density δR of the
primordial Universe, smoothed over a radiusR, in a large number of different regions of the Universe,
the distribution of densities will be a Gaussian with a variance σ2(M) that can be obtained from
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the power spectrum as we calculated last week (and where M is the mass enclosed on average by
spheres of radius R). I.e., the distribution we will obtain for δR is

P (δR) =
1√

2πσ(M)
exp

[
−1

2
δ2R

σ2(M)

]
. (1)

Note also that in the early Universe, before the density-perturbation amplitude has had a chance
to grow, σ(M) � 1.

With time, the density-perturbation amplitude will grow, so the mass variance is in fact a function
σ(M, t) of time t as well as mass, and in linear theory, σ(M, t) will evolve with time as calculated
last week. From spherical-top-hat collapse, we have a linear-theory critical overdensity (δc = 1.69
in EdS universe) at which point a spherical overdensity undergoes gravitational collapse. If we then
go to some random position in the Universe, the probability that the smoothed density δR at that
point is greater than the critical overdensity for collapse is

p(δR > δc) =
1
2

[
1− erf

(
δc√

2σ(M)

)]
, (2)

where erf(x) is the error function. The fraction of the total mass in the Universe condensed into
objects of mass > M is therefore,

F (> M) = 1− erf
(
ν/
√

2
)
, (3)

where ν = δc/σ(M, t). Note here that σ(M, t) is the variance as calculated in linear theory, since it
is being compared with δc, the linear-theory overdensity. Note also that to arrive at this equation,
we have followed PS and multiplied, somewhat arbitrarily by a factor of 2. The reason is that in
this formulation, it is only the overdense regions that undergo gravitational collapse. But if so,
does that mean that the matter in the underdense half of the Universe never becomes bound into
some object? Clearly not, according to PS—everything must wind up somewhere (in the words of
Myron Cohen, “Everybody gotta be someplace”)—and so they introduced a factor of two that has
become perhaps the most famous and successful fudge factor in astrophysics.

The rest is easy. The comoving number density n(M) dM of collapsed objects with mass in the
range M →M + dM is determined from

M
n(M)
ρ̄(M)

=
∣∣∣∣ dFdM

∣∣∣∣ , (4)

where ρ̄ is the mean density, or

n(M) =
ρ̄

M2

∣∣∣∣ d lnσ
d lnM

∣∣∣∣
√

2
π
ν exp

(
−ν2/2

)
. (5)

This is the mass function for collapsed objects, according to PS. Note that the mass function is
normalized so that

∫∞
0 M n(M) dM = ρ̄. What this implies is that every element of mass in the

Universe is in a halo of some given mass. Also note that in an Einstein-de Sitter Universe, δc = 1.69,
but it differs if Ωm 6= 1. Note also that if Ωm 6= 1 today, then Ωm varies with time, and so δc is, for
a non-EdS universe, a function of time, although a fairly weakly varying function of time.
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The PS mass function defines a characteristic mass M∗(t) through σ(M∗, t) = δc. Today, this
mass is presumably close to the dark-matter–halo mass for an L∗ galaxy (under the simplifying
assumption that the galaxy luminosity is proportional to the dark-matter–halo mass, or perhaps a
bit larger. For smaller masses, n(M) varies roughly as a power law with M . The mass function
decreases exponentially with masses M > M∗. The PS formalism also allows us to see that how
hierarchical clustering occurs. The dependence of σ(M, t) on mass M remains constant at all times;
the linear-theory amplification of σ(M, t) with time t is equal for all masses. Therefore, M∗(t) is a
monotonically increasing function of mass, and the characteristic mass of collapsed objects increases
with time.

With the PS mass function, we can appreciate one of the current problems facing galaxy-formation
theory: For a power spectrum P (k) ∝ kn, σ(M) ∝ M−(n+3)/6, implying that n(M) ∝ M (n−9)/6.
At galaxy scales ('Mpc), the CDM power spectrum has a spectral index n ' −2 implying n(M) ∝
M−2. However, the observed galaxy luminosity function is roughly φ(L) ∝ L−1. Therefore, CDM
models for galaxy formation predicts too many low-mass galactic halos. The most likely resolution
is that some of the gas-dynamical or star-formation processes required to create a luminous galaxy
in a dark-matter halo become inefficient in low-mass halos. This is a very active area of research.

Another important application of the PS halo abundance is the cluster-abundance normalization
of the power spectrum, which is still very much in vogue. Although the relation between a galaxy
luminosity (which we measure) and the mass of its host halo (the abundance of which PS theory
predicts) is extremely uncertain, the relation between the observed properties of galaxy clusters
and their host halos is not quite so bad. In particular, the hot gas in a relaxed cluster can exist in
hydrostatic equilibrium in the cluster’s gravitational potential well, and the temperature of this gas
can be measured quite well through the x-ray radiation it emits (and which we see), and the cluster
mass thus determined. Such mass determinations agree fairly well with those based on dynamics
of the resident galaxies, and also with the increasingly precise mass determinations from strong
and weak gravitational lensing. Therefore, measurements of cluster abundance can be compared
with the predictions of PS theory. The typical rich cluster with which such an analysis is carried
out is M ∼ 1014.5 h−1M�, and such clusters come from a comoving radius R ∼ 6.5 Ω−1/3

m h−1

Mpc. By comparing the PS prediction for the cluster abundance with the observed abundance,
one finds that the power-spectrum normalization (given here by σ8 for the mass distribution) is
σ8Ω0.56

m ' 0.5− 0.6. Note that the Ωm dependence here is due to the shape of P (k) at k−1 ∼ 8h−1

Mpc; it has nothing to do with the linear-theory growth factor. The result is consistent with σ8 ' 1
for the mass distribution and Ωm ' 0.3.

The PS formalism was developed in the early 1970s. Throughout the 1990s, N -body simulations
of structure formation became increasingly precise, and were therefore able to provide increasingly
precise tests of the very simple and naive PS theory. The basic conclusion is that the PS theory
does remarkably well at predicting the mass function over a very wide variety of distance scales and
for a wide variety of power spectra. As expected, however, the theory does become inaccurate at
some point, and that point seems to have been reached now by numerical simulations. There has
been a more complicated successor to PS developed by Sheth and Tormen that considers things like
collapse of nonspherical overdensities, but ultimately calibrates several undetermined parameters
to the simulations. Since the theory is calibrated to simulations, it provides better agreement with
the simulations. Thus, for more precise numerical work, many authors now use the Sheth-Tormen
mass function over the PS mass function.
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Finally, keep in mind that the PS mass function is derived assuming that the distribution of
primordial perturbations is Gaussian. If the primordial distribution is non-Gaussian, then the
mass function will be different. It is straightforward to work this out.

2 Biasing

It has been observed empirically that the correlation functions for different types of galaxies are
different, with more massive galaxies generally being more strongly clustered. The autocorrelation
function for clusters is even stronger, and so is the autocorrelation function for radio sources and
AGN. What this implies is that different tracers of the mass distribution are distributed differently
with respect to each other, and therefore, that at most one type of galaxy can be distributed in the
same way as the mass. In other words, the fractional density distribution of galaxies δg(~x) 6= δ(~x).
This is the idea of biasing.

The differences in the clustering strengths of different types of galaxies can be understood theoretically—
qualitatively, at least, if not quantitatively. To do so, we make a peak-background split as follows.
Recall that δ(~x) can be written as a sum over Fourier modes. We can therefore write δ = δ+ + δs,
where δ+ is the sum over the long-wavelength Fourier modes for δ and δs is the sum over the
short-wavelength modes. We assume that δ+ � 1; i.e., the large-scale density contrast is small. We
then remember that all peaks in the density field with δ > δc ≡ νσ(M) will form bound objects.
In an overdense region of the Universe, δ+ > 0. The requirement for δ > δc therefore translates to
the requirement δs > νσ− δ+, where σ is here the variance of the mass distribution on scale of the
mass of the tracer population (e.g., a galaxy scale). The probability for a given peak to be higher
than νσ (for ν � 1), is P (> ν) ∝ ν2e−ν2/2, which is controlled by the exponential. Therefore, the
probability to have a high-density peak in this overdense region is greater by a fractional amount,

δP

P
=

P (> ν, δ+)− P (> ν, δ+ = 0)
P

'
exp

[
−(νσ − δ+)2/2σ2

]
− exp

[
−(νσ)2/2σ2

]
exp(−ν2/2)

' ν
δ+
σ
. (6)

Therefore, the density perturbation for high-density peaks in the overdense region is δpeak '
(ν/σ)δ+ from which it follows that the autocorrelation function for high-density peaks is ξpeak(r) '
(ν/σ)2ξmass(r) or ξpeak(r) ' ν2ξ(r)/ξ(0), where ξ(0) is the zero-lag autocorrelation function evalu-
ated on the scale of the tracer population. One must take care to not overinterpret this result. In
particular, the approximations that are made are for realistic situations near the border of applica-
bility, and the mapping between realistic tracers (e.g., galaxies or clusters) and high-density peaks
is not precise. The moral of the story—that rarer objects should be more highly clustered—still
holds. The other conclusion is that in the limit of weak clustering, ξ � 1, we expect the bias to be
linear; i.e., for δtracer ∝ δ, independent of r.

It is instructive to get some rough numbers for galaxy clusters, which are very highly clustered. If
we look at Abell richness class R ≥ 1 clusters, their number density is n ' 6×10−6 h3 Mpc−3. This
corresponds for typical CDM models to ν ' 3. The cluster autocorrelation function is observed
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to be ξcc(r) ' (r/r0)−1.8 with r0 = 15 − 20h−1 Mpc, or ξcc ' 10 ξgg(r), roughly ten times the
galaxy-galaxy autocorrelation function, which is consistent with ν ' 3. Likewise, Lyman-break
galaxies, are thought to be formed at high-density peaks at the redshifts z ∼ 3 at which they
are observed, and so their clustering is expected to also be very highly biased. Observations are
consistent with this, although it is difficult to make precise statements given the unclear mapping
between luminous objects and the dark-matter halos they occupy.

3 Limber approximation

In principle, the power spectrum P (k) can be measured by constructing a three-dimensional distri-
bution of the mass in the Universe by assuming that galaxies trace the mass (or are linearly biased
with respect to it) and then doing a redshift survey to find the three-dimensional distribution of
galaxies over a large volume of the Universe. One then either measures the correlation function, or
one carries out the appropriate Fourier transforms to find the power spectrum.

If, however, one has a galaxy survey without redshifts, then one has only a distribution of galaxies
on the two-dimensional surface of the sky, rather than the distribution in three dimensions. The
Limber approximation (which might also be attributed to Vera Rubin) relates the two-dimensional
angular correlation function to the three-dimensional correlation function, or equivalently, the two-
dimensional angular power spectrum to P (k). Suppose there is a three-dimensional density field
δ(~x) with power spectrum P (k) and an observer at the origin sees a projection,

p(θ) =
∫ ∞

0
dr q(r)δ(rθ1, rθ2, r), (7)

where r is a distance along a line of sight near the ẑ direction, θ = (θ1, θ2) is a position on the sky
(near the north pole), and q(r) is a weight function.

We want to calculate the two-dimensional power spectrum Pp(`) for the projection p(θ). To do so,
we note that the contribution to a shell of width ∆r about r0 is

∆p(θ) ' q(r0)
∫ r0+∆r/2

r0−∆r/2
dr δ(r0θ1, r0θ2, r). (8)

The Fourier transform of ∆p(θ) is the plane of the sky is then

∆̃p(l) ≡
∫
d2θ∆p(θ)e−il·θ = q(r0)

∫
d3k

(2π)3
δ̃(~k)

∫
d2θ ei(r0k−l)·θ

∫ r0+∆r/2

r0−∆r/2
dr eik3r, (9)

where k are the components of ~k in the plane of the sky. The d2θ integral is (2π)2δD(r0k− l), so

∆̃p(l) =
∆rq(r0)
r20

∫
dk3

2π
δ̃

(
l1
r0
,
l2
r0
, k3

)
j0

(
k3∆r

2

)
. (10)

Multiplying two Fourier modes and taking the expectation value, we find

〈
∆̃p(l)∆̃p(l′)

〉
= (2π)2δD(l− l′)

(∆r)2q2(r0)
r20

∫
dk3 P

(√
`2

r20
+ k2

3

)
j20

(
k3∆r

2

)
. (11)
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The Dirac delta function states that ∆p(θ) is statistically isotropic in the plane of the sky, a
consequence of the statistical homogeneity of δ(~x) in space, and the thing multiplying (2π)2δD(l−l′)
is the contribution to the angular power spectrum C` from this ∆r interval.

The next step is to carry out the dk3 integral. To do so, we note that the spherical Bessel function
here has width δk3 ∼ 1/∆r. We are also dealing with a small region of the sky near the north pole,
so we are considering only planar Fourier modes with ` � 1, and in particular, we take ∆r to be
large enough so that `� r0/∆r. Therefore, k3 � `/r0 wherever j20 is non-negligible. Physically, in
the small-angle (large-`) approximation in which we are working, only Fourier modes very nearly
perpendicular to the line of sight contribute to the projected power (which makes sense), and so
we can replace P (

√
`2/r20 + k2

3) by P (`/r0). We then have〈
∆̃p(l)∆̃p(l′)

〉
= (2π)2δD(l− l′)∆r

q2(r0)
r20

P

(
`

r0

)
. (12)

The final step is to simply sum the contributions from each ∆r over the line of sight:

C` =
∫ ∞

0
dr
q2(r)
r2

P

(
`

w

)
. (13)

This is the desired result, the Limber approximation (in Fourier space) relating the two-dimensional
angular power spectrum C` for a two-dimensional projection of δ(~x) with weight function q(r) to
the three-dimensional power spectrum P (k) for δ(~x).

The two-dimensional angular correlation function w(θ) is then obtained from

w(θ) =
∫

d2`C`e
il·θ. (14)

In most of the books, the derivation of the Limber equation is done in configuration space, and you
are encouraged to check that out.

4 Redshift-space distortions

Galaxy surveys determine the distance to a galaxy by the redshift and then applying the Hubble
law. However, density perturbations induce peculiar velocities, so the distance inference can get
screwed up. The redshift 1 + z will then have to be replaced by (1 + z)(1 + δv/c), where δv is
the component of the peculiar velocity along the line of sight. Remember, before moving on, that
~x(t) = a(t)~r(t) and the peculiar velocity δ~v = a(t)~u(t). We assume here that we are observing
galaxies at small redshift, so a ' 1.

The apparent distance to a galaxy is sz = cz/H = vH/H + r̂ · ~δv/H = r + r̂ · δ~v/H), where vH is
the Hubble-flow velocity, and r is the true distance. The apparent position is thus

~s = ~r

[
1 +

r̂ · δ~v(~r)
rH

]
, (15)
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from which it follows that the apparent and real differential volume elements are

d3s = d3r

[
1 +

r̂ · δ~v(~r)
rH

] [
1 +

d

dr

r̂ · δ~v(~r)
H

]
. (16)

The density field an always be decomposed into Fourier modes, so let’s consider a single Fourier
mode δ(~r) = δ0 cos(~k · ~r+ α), where α is a phase, and let us suppose that the angle between ~k and
~r is θ and let µ = cos θ. We know that

δ~v~k = − iHf(Ωm)a
k

δ~kk̂, (17)

so
r̂ · δv(~r)
H

= −µΩ0.6
m δ0
k

sin(~k · ~r + α). (18)

The apparent density ρs(~r) will be related to the true density ρr(~r) by ρsd
3s = ρrd

3r, so for
small-amplitude perturbations,

δs(~r) = δr(~r)− 2
(
r̂ · δ~v(~r)
rH

)
− d

dr

r̂ · δ~c(~r)
H

. (19)

To go further, we note that (r̂ · δ~c/H) ∼ δ0/k while (d/dr)(r̂ · δ~c/H) ∼ δ0. Moreover, the survey
probes wavenumbers k � r−1

max, where rmax is the depth of the survey, and so the second term is
negligible compared with the third term in the equation above. We then use (d/dr)(r̂ · δ~c/H) =
−µ2Ω0.6

m δ(~r) to conclude that in redshift space, the density contrast is

δs(~r) = δr(~r)(1 + µ2Ω0.6
m ). (20)

However, it is the matter that gives rise to the peculiar velocity, so this δs(~r) is the mass perturbation
in redshift space, while what is seen is the distribution of luminous matter, or galaxies. We can
thus write δg = bδ = δ + (b − 1)δ, where the first term gives rise to peculiar velocities, while the
second does not. Then, in redshift space, the density perturbation for galaxies will be

δs,g = δr(1 + µ2Ω0.6
m ) + (b− 1)δr = δr,g

(
1 +

µ2Ω0.6
m

b

)
. (21)

Therefore, the anisotropy in the clustering as a function of r‖ inferred from the clustering in redshift
space and clustering as a function of r⊥ inferred from angular clustering can determine β = Ω0.6

m /b.
From the data, a value of β ' 0.5 is obtained.

All of the analysis until now has been linear; i.e., applicable to large-scale density perturbations
and large-scale peculiar-velocity fields. In linear theory, redshift-space distortions tend to compress
structures along the line of sight. Consider a spherical overdensity in the linear regime. The side
closest to us will be moving away from us at a slightly larger velocity than the Hubble flow, while
the more distance edge moves away from us with a velocity slightly smaller than the Hubble flow.
However, if we are looking at a gravitationally collapsed virialized object (e.g., a cluster), structure
is spread out in redshift space (these are called “fingers of God”) because of the virial velocity
spread. The line-of-sight velocity distribution can be modeled as a one-dimensional Gaussian
distribution of velocity dispersion σ, and this essentially smooths structure on scales k >∼ σ: i.e.,
δk → δke

−k2µ2σ2/2. If we alternatively model the distribution as an exponential (rather than
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Gaussian), then δk → δk(1 + k2µ2σ2/2)−1. If we average over the entire Universe (rather than
consider just a cluster), then σ = σp/

√
2, where σ0 ' 300 − 400 km/sec is the pairwise velocity

dispersion at 1h−1 Mpc. This is the rms line-of-sight velocity difference between pairs of galaxies
separated by 1h−1 Mpc. We thus expect the power on measured in redshift space on scales

k >∼
√

2
3× 105 km/sec

300 km/sec
h

6000 Mpc
' 0.3hMpc−1, (22)

to be suppressed by redshift-space smearing.

5 Zeldovich approximation

Earlier we considered the collapse of a spherical overdensity. Needless to say, overdensities will
never be precisely spherical, and so they will not necessarily collapse to a point. The Zeldovich
approximation allows us to see what happens with a non-spherical perturbation. In this approach,
we define the proper (or Eulerian) coordinate ~x(t) = a(t)~q + b(t)~f(~q), where ~q is the comoving
coordinate (or Lagrangian coordinate) at time t = 0, well before the perturbation-amplitude has
grown, and ~f(~q) is the “displacement field,” which tells us where the matter originally at ~q has
moved. The Lagrangian coordinate ~q for each particle remains constant. Therefore, the mass
density ρ0 in ~q space is constant. The density in ~x space is then given by the Jacobian of the
transformation between ~q and ~x space. Thus, the physical density (i.e., in ~x space) is

ρ = ρ0

[(
1− b

a
α

)(
1− b

a
β

)(
1− b

a
γ

)]−1

, (23)

where (−α,−β,−γ) are the eigenvalues of ∂fi/∂qj , the “strain” or “deformation” tensor. If ~f(~q)
originates from a growing mode, then it is irrotational, meaning that ~f(~q) = ~∇ψ(~q), and (∂fi/∂qj) =
(∂2ψ/∂qi∂qj).

Linearizing equation (23), δ = −(b/a)(α+β+ γ) = −(b/a)~∇· ~f . Since the eigenvalues are equal to
∂fi/∂qj in a coordinate frame aligned with the principal axes of ∂fi/∂qj , we find that the scaled
peculiar velocity is

~u ≡ 1
a

(
~̇x− ȧ

a
~x

)
=

(
ḃ

a
− ȧb

a2

)
~f, (24)

which, incidentally, satisfies δ̇ = −~∇ · ~u. Note that the time dependence δ(t) ∝ b/a. Thus, for
example, in an EdS universe, δ ∝ t2/3 implies b(t) ∝ t2/3. More generally, b(t)/a(t) ∝ D(t), where
D(t) is the linear-theory growth factor: D(t) ≡ δ(t)/δ(ttoday), so the Zeldovich approximation is

~x(t) = a(t)
[
~q +D(t)~f(~q)

]
. (25)

This is first-order Lagrangian perturbation theory, as opposed to first-order Eulerian perturbation
theory, which we did earlier. Lagrangian perturbation theory is found to be more accurate than
Eulerian perturbation theory essentially because it works until turnaround.

From the expression for ρ/ρ0, it can be seen that collapse occurs first along the shortest axis. If
we consider some peak in the initial three-dimensional density distribution, then ~f(~q) = 0 at that
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point, while ∂ ~f/∂~q describes isodensity ellipsoids around the peak. The density ρ→∞ at the time
when b(t)/a(t) = [max(α, β, γ)]−1. The axis corresponding to the largest eigenvalue of ∂ ~f/∂~q is
the shortest axis. We thus see that since primordial overdensities will generically be nonspherical,
gravitational collapse results in a Zeldovich pancake. For a realistic overdensity, with baryons and
dark matter, the baryons will shock when the overdensity collapses to a sheet, and the dark matter
will presumably somehow virialize.

6 The three-point correlation function, bispectrum, and non-Gaussianity

Inflation predicts that primordial perturbations are extremely close to Gaussian. What this means
is that the odd-point correlation functions (3-pt, 5-pt,....) all vanish: 〈δ1δ2δ3〉 = 〈δ1δ2δ3δ4δ5〉 =
· · · = 0, where δi = δ(~xi). It also means that the even-point correlation functions can all be written
in terms of the two-point correlation function. For example, the four-point correlation function
is 〈δ1δ2δ3δ4〉 = 〈δ1δ2〉 〈δ3δ4〉 + 〈δ1δ3〉 〈δ2δ4〉 + 〈δ1δ4〉 〈delta2δ3〉. The zero-lag n-point correlation
functions are all determined by the probability distribution, P (δ) ∝ e−δ2/2σ2

. Thus,
〈
δ2
〉

= σ2,〈
δ4
〉

= 3σ4,
〈
δ6
〉

= 15σ6, etc. And, of course, 〈δn〉 = 0 for n odd.

Now it is important to realize that it is only the primordial perturbations that are Gaussian. In
linear perturbation theory, the perturbations also remain Gaussian. This can be seen by noting that
δ(~x, t) ∝ D(t) in linear theory, so the spatial distribution is unchanged. However, if we go beyond
linear theory, then it must be true that gravitational amplification of perturbations will induce
non-Gaussianity. The simplest way to see this is to note that the one-point probability distribution
P (δ) (which is initially Gaussian) at late times will become non-Gaussian. A Gaussian distribution
is symmetric about δ = 0. However, when structures go nonlinear, there will be regions of the
Universe that have very large density contrasts; for example, at virialization, a virialized object
will have a density contrast δ ' 200. However, δ = δρ/ρ̄ is bounded from below by −1 (since δρ
can never be larger in magnitude than ρ̄). Thus, nonlinear evolution of the mass distribution must
result in a non Gaussian density distribution.

If we go to second order in perturbation theory (i.e., solve the Euler, continuity, and Poisson
equation to second order in small perturbations), then a non-zero three-point correlation function
(〈δ1δ2δ3〉 6= 0) arises. Just as the power spectrum is the two-point correlation function in Fourier
space, one can define a bispectrum, which is the Fourier-space three-point correlation function, as
follows:

B(~k1,~k2,~k3) =
〈
δ̃(~k1)δ̃(~k2)δ̃(~k3)

〉
. (26)

A nightmarishly tedious calculation shows that in second order in perturbation theory,

B(~k1,~k2,~k3) = 2δD(~k1 + ~k2 + ~k3)
[
P (k1)P (k2)P (

n2)(~k1,~k2) + cyclicpermutations
]
, (27)

where

P (
n2)(~k1,~k2) =

5
7

+
~k1 · ~k2

2k1k2

(
k1

k2
+
k2

k1

)
+

2
7

(~k1 · ~k2)2

k2
1k

2
2

. (28)

Strictly speaking, this result is only valid in an EdS universe, but the more general result isn’t too
much different. The three-point correlation function can then be obtained from the bispectrum
by simply evaluating 〈δ(~x1)δ(~x2)δ(~x3)〉. Rather than carry this out in full generality, we simply

9



point out that the zero-lag three-point correlation function,
〈
δ3(~x)

〉
is related to the skewness

S ≡
〈
δ3
〉
/
〈
δ2
〉2. To second order in perturbation theory, S = 34/7 (again in a EdS universe,

although the result is pretty much the same with nonzero Λ). To third order in perturbation
theory, a nonzero kurtosis K ≡ [

〈
δ4
〉
− 3

〈
δ2
〉2]/ 〈δ2〉3 arises. Calculation of this quantity is one of

the few examples where pencil-and-paper theorists in cosmology actually earn their living.

7 Nonlinear clustering

When the density-perturbation amplitude grows to
〈
δ2
〉
∼ 1, linear theory breaks down. One

consequence is that the matter distribution becomes non-Gaussian. Another consequence, however,
is that the shape (i.e., the k dependence) of the power spectrum P (k), which remains unaltered in
linear theory, gets changed by nonlinear evolution. Nonlinear evolution of the power spectrum is
extremely complicated. In the quasi-linear regime, r >∼ 8h−1 Mpc, where σ2(M) <∼ 1, higher-order
perturbative calculations, such as those that give the bispectrum, can be used to determine the
change in the power spectrum. However, the galaxy power spectrum is best determined on smaller
scales. How do we relate the predictions of the highly nonlinear theory with measurements at these
scales? One option is to decide that its too complicated and ignore these measurements. Another
option (probably the best idea) is to determine the nonlinear evolution of the power spectrum
with N -body simulations, where the primordial mass distribution is modeled by a huge number N
of point masses and their trajectories then simply determined by Newton’s laws in an expanding
spacetime.

Then there are analytic techniques. One uses the stable-clustering hypothesis which says that
once objects have undergone gravitational collapse, they are no longer affected by the expansion
of the Universe, and their internal structures remain fixed. If so, then ξ(rproper), where rproper

is the physical distance is constant in time on small scales. This small-scale behavior is then
sewn onto the large-scale linear-theory correlation function through some recipe. Another, more
recent but related, technique is the halo approach to clustering. In this approach, one notes that
numerical simulations seem to indicate that virialized dark-matter halos assume a Navarro-Frenk-
White (NFW) density profile,

ρ(r) ∝ ρ0

(r/rc)(1 + r/rc)2
, (29)

where ρ0 and r0 parameterize the halo density and core radius. The halo approach then notes
that these halos undergo biased clustering, with a bias parameter that increases with halo mass.
Analytic expressions for the two-point correlation function and power spectrum for the mass can
then be obtained.

The parameters in these approaches are then determined by fitting to simulations, and so they
should be seen as theory-inspired semi-analytic fits to simulations, rather than “first-principles”
theory. Still, they can be quite handy, especially is someone else has done the simulations with
which they are calibrated. Qualitatively, nonlinear evolution increases the power on small scales.
It is said that nonlinear evolution moves power from large scales to small scales. Although this
statement is difficult to quantify precisely, it is easy to see how this occurs. Consider a single
sinusoidal primordial density perturbation δ(~x, ti) = δi sin(~k · ~x), with an initial amplitude δi � 1.
In linear theory (as long as δ � 1), the spatial dependence remains sinusoidal. When δ ∼ 1,
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however, the spatial distribution will still be periodic, although not necessarily sinusoidal. The
true density distribution will include higher harmonics: δ(~x) ∝

∑
nAn sin(n~k · ~x). In this way,

power is introduced on smaller scales.

8 Characterization of CMB fluctuations

We measure the temperature T (n̂) of the CMB as a function of position n̂ = (θ, φ) on the sky.
If we restrict our attention to a patch of sky sufficiently small to be considered flat, then we can
approximate the coordinates on this small patch by Cartesian angular coordinates θx and θy. The
temperature map T (θx, θy) can then be represented equivalently in terms of its Fourier components,

T (`) =
∫

d2θ

(2π)2
ei`·θT (θ), (30)

where θ ≡ (θx, θy).

The full-sky temperature map is analogusly expanded in terms of spherical harmonics Y`m(n̂)
through,

T (n̂) =
∑
`m

aT
`mY`m(n̂) (31)

and
aT

`m =
∫
dn̂ T (n̂)Y ∗

`m(n̂), (32)

since spherical harmonics constitute a complete orthonormal basis for scalar functions on the two-
sphere.

We also measure the CMB linear polarization as a function of position on the sky. The linear
polarization is specified in terms of Stokes parameters Q and U . These, however, are coordinate-
dependent quantities. Suppose that they are measured with respect to some x-y axes and that we
then consider some other x′-y′ axes rotated by an angle α with respect to the x-y axes. Under this
rotation, the Stokes parameters (Q,U) transform as components of a symmetric trace-free (STF)
2× 2 tensor, (

Q U
U −Q

)
⇒
(

cosα sinα
− sinα cosα

)(
Q U
U −Q

)(
cosα − sinα
sinα cosα

)
. (33)

Alternatively and equivalently, if we represent the polarization by a complex number P = Q+ iU ,
then P → Pe2iα under a rotation of the coordinate axes by an angle α; i.e., the polarization is a
spin-2 field.

Anything we say about Stokes parameters Q and U are thus tied to the coordinate system we
choose. We will therefore want to find a coordinate-system–independent representation of this
tensor field if we are to make statements about physics that are independent of coordinate system.
Later, we will do this on the full sky, but we first do the simpler case of a flat sky (which also serves
as a good approximation to a small region of the sky).
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8.1 Harmonic analysis on a flat sky

Once the polarization, Q(θ) and U(θ), has been measured as a function of position θ = (θx, θy) on
a flat region of sky, we have measured the polarization tensor field,

Pab =
1√
2

(
Q(θ) U(θ)
U(θ) −Q(θ)

)
, (34)

where the normalization is chosen so that PabPab = Q2 + U2.

We now define gradient (“E modes”) and curl (“B modes”) components of the tensor field that are
independent of the orientation of the x-y axes by

∇2E = ∂a∂bPab, ∇2B = εac∂b∂cPab, (35)

where εab is the antisymmetric tensor.

Writing,

Pab(θ) =
∫

d2`

(2π)2
P̃ab(`)e−i`·θ, P̃ab(`) =

∫
d2θPab(θ)ei`·θ, (36)

the Fourier components of E(θ) and B(θ) are(
Ẽ(`)
B̃(`)

)
=

1√
2

(
cos 2ϕ` sin 2ϕ`

− sin 2ϕ` cos 2ϕ`

)(
Q̃(`)
Ũ(`)

)
, (37)

where ϕ` is the angle ` makes with the x̂ axis. This relation can be inverted,(
Q̃(`)
Ũ(`)

)
=
√

2
(

cos 2ϕ` − sin 2ϕ`

sin 2ϕ` cos 2ϕ`

)(
E(`)
B(`)

)
. (38)

Thus, for a pure B mode in the x̂ direction (ϕ` = 0), we have (as shown in the right panel of
Figure 1) Q̃(`) = 0 and Ũ(`) = B̃(`). For a pure E mode in the x̂ direction, we have (as shown in
the left panel of Figure 1) Q̃(`) = Ẽ(`) and Ũ(`) = 0. Thus, in an E mode, the polarization varies
parallel/perpendicular to the direction of the Fourier mode, while for a B mode the polarization
varies along directions 45◦ with respect to the direction of the Fourier mode.

Since the combined temperature/polarization map is described by three sets, T̃ (`), Ẽ(`), and B̃(`),
of Fourier components, the two-point statistics of the temperature/polarization field are determined
by a total of six power spectra, CX1,X2

` , defined by〈
X̃1(`)X̃2(`′)

〉
= (2π)2δ(` + `′)CX1X2

` , (39)

where X1,X2 = {T,E,B}. Here the angle brackets denote an average over all realizations of the
temperature map.

Now suppose we have a given temperature/polarization map and then consider a parity inversion;
e.g., a reflection about the x-axis. Then

θy → −θy, Q→ Q, U → −U, `x → `x, `y → −`y. (40)
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Figure 1: Shown are the polarization pattern associated with a single E mode (left) and a single B
mode (right) with a horizontal wavevector `. The E mode features a variation of the polarization
along directions parallel/perpendicular to the direction of ` (Stokes parameter Q in a coordinate
system aligned with `), while in the B mode the variation in the polarization is along directions
45◦ with respect to ` (Stokes parameter U in coordinates aligned with `). (From C. Bischoff.)

Also,
T̃ (`) → T̃ (`), Ẽ(`) → Ẽ(`), B̃(`) → −B̃(`). (41)

Thus, T and E have the same parity, while B has the opposite parity. If the physics that gives rise
to temperature/polarization fluctuations is parity conserving, we then expect CTB

` = CEB
` = 0. In

this case, the statistics of the temperature/polarization map are determined entirely by the four
power spectra, CTT

` , CTE
` , CEE

` , and CBB
` .

8.2 Harmonic analysis on the full sky

If our maps extend beyond a small region of the sky, we will have to deal with the curvature of
the sky. We thus generalize the tensor Fourier analysis that we carried out above for STF 2 × 2
tensors to tensors that live on the 2-sphere. In the usual spherical polar coordinates θ, φ, the sphere
has a metric, gab = diag(1, sin2 θ). The polarization tensor Pab must be symmetric Pab = Pba and
trace-free gabPab = 0, from which it follows that,

Pab(n̂) =
1√
2

(
Q(n̂) U(n̂) sin θ

U(n̂) sin θ −Q(n̂) sin2 θ

)
, (42)

where the factors of sin θ follow from the fact that the coordinate basis (θ, φ) is orthogonal but not
orthonormal.

We use a colon (:) to denote a covariant derivative on the surface of the sphere (e.g., Sa
:a denotes

the divergence of Sa) and a comma to denote a partial derivative [e.g., S,a = (∂S/∂xα)]. Appendix
A of arXix:astro-ph/9611125 reviews the rules of differential geometry on the sphere in the notation
we use here.

Any STF 2× 2 tensor field on the sphere can be written as the ‘gradient’, E:ab − 1
2gabE

:c
c , of some

scalar field E(θ, φ), plus the ‘curl,’ (1/2) (B:acε
c
b +B:bcε

c
a), of some other scalar field B(θ, φ), For

comparison, a vector field is analogously decomposed as Va = ∇aE+ εab∇bB. Since any scalar field
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on the sphere can be expanded in spherical harmonics (e.g. for the temperature),

T (n̂)
T0

= 1 +
∞∑

`=1

∑̀
m=−`

aT
`m Y`m(n̂), where aT

`m =
1
T0

∫
dn̂ T (n̂)Y ∗

`m(n̂), (43)

it follows that the polarization tensor can be expanded in terms of basis functions that are gradients
and curls of spherical harmonics,

Pab(n̂) = T0

∞∑
`=2

∑̀
m=−`

[
aE

`mY
E
(`m)ab(n̂) + aB

`mY
B
(`m)ab(n̂)

]
. (44)

The expansion coefficients are given by

aE
`m =

1
T0

∫
dn̂Pab(n̂)Y E ab ∗

(`m) (n̂), aB
`m =

1
T0

∫
dn̂Pab(n̂)Y B ab ∗

(`m) (n̂), (45)

and

Y E
(`m)ab = N`

(
Y(`m):ab −

1
2
gabY(`m):c

c

)
, Y B

(`m)ab =
N`

2

(
Y(`m):acε

c
b + Y(`m):bcε

c
a

)
, (46)

constitute a complete orthonormal set of basis functions for the E and B components of the polar-
ization. The quantity, N` ≡

√
2(l − 2)!/(l + 2)!, is a normalization factor chosen so that∫
dn̂ Y X ∗

(`m)ab(n̂)Y X′ ab
(l′m′)(n̂) = δ``′δmm′ , (47)

for XX′ =EE, EB, and BB. Also, we can integrate by parts to write alternatively,

aE
`m =

N`

T0

∫
dn̂ Y ∗

`m(n̂)Pab
:ab(n̂), aB

`m =
N`

T0

∫
dn̂ Y ∗

(`m(n̂)Pab
:ac(n̂)εcb. (48)

Finally, since T , Q, and U are real, we get aX ∗
`m = (−1)maX

`,−m, where X = {T,E,B}. The
temperature/polarization power spectra are now〈

aX ∗
`ma

X′
`′m′

〉
= CXX′

` δ``′δmm′ , (49)

for XX′ =TT, EE, BB, TE, TB, and EB. The C` here reduce in the small-angle (large-`) limit with
those in Section 8.1 as long as the angles in the flat-sky limit are given in radians.

The Y E
(`m)ab and Y B

(`m)ab are explicitly given by

Y E
(`m)ab =

N`

2

(
W`m X`m sin θ

X`m sin θ −W`m sin2 θ

)
, Y B

(`m)ab =
N`

2

(
−X`m W`m sin θ

W`m sin θ X`m sin2 θ

)
, (50)

where

W`m(n̂)± iX`m(n̂) =

√
(l + 2)!
(l − 2)! ±2Y`m(n̂), (51)

in terms of the spin-2 harmonics ±2Y`m. If we replace (Q,U) by (U,−Q), then E → −B and B → E.
This tells us therefore, that a pure-E polarization pattern becomes a pure-B pattern if we rotate
each polarization vector by 45◦, and vice versa, as can be also inferred from the flat-sky treatment.
Examples of E and B type polarization patterns are shown in Figure 2. The parity properties of
T, E, and B found in the flat-sky treatment remain valid on the full sky.
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E-mode Polarization
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Figure 2: In the top figure we show a polarization pattern composed only of E modes and in the
bottom one composed only of B modes. As indicated on the right, it is seen that around hot spots
(red) the polarization pattern of the E mode is tangential and radial around cold spots (blue). The
polarization pattern surrounding hot and cold spots of the B mode show a characteristic swirling
pattern (with different orientation around hot and cold spots).
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