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February 24, 2017

1 Motivation

The standard hot big-bang model with an (flat) FRW spacetime accounts correctly for the observed
expansion, the CMB, BBN, etc. However, it leaves a number of questions unanswered.

The flatness problem. First of all, there is the flatness problem. I.e., why is our Universe so close
to flat? One possibility is that it simply began as flat; i.e., with zero curvature. In some sense,
this is strange because even if we started with a precisely flat Universe, then if there were even
tiny density perturbation in the initial state, then an observable region of the Universe would have
locally a density different than the critical density. Thus, imagine there was some initial nonzero
curvature, k 6= 0 and ignore the cosmological constant since it remains dynamically negligible until
a redshift z ∼ 1. Then, at redshifts z >∼ 1, Ωm is extremely close to 1. The Friedmann equation
can be rearranged to give

Ωm − 1 =
k

a2H2
.

During matter (radiation) domination, a ∝ t2/3 (a ∝ t1/2), and H ∝ 1/t at all times, so if Ωm is
not precisely equal to 1, then it diverges from 1 with the expansion of the Universe. For Ωm ' 0.3
today, the matter density at BBN must have been |Ωm(tbbn)− 1| <∼ 10−16, and at the time of the
quantum-gravity event that presumably gave rise to the FRW Universe, |Ωm(tPl)− 1| <∼ 10−60. In
other words, the Universe would have had to be extremely close to flat in the initial state, or put
another way, could have tolerated no more than the very tiniest density fluctuations, no more than
1 part in 1060. Put another way, if the Universe were born at the Planck time with equal energy
density in the curvature and matter degrees of freedom, it would have survived no longer than a
Planck time; the problem is sometimes then phrased as “why is the Universe so old?” This is also
sometimes referred to as the “Dicke coincidence,” although it was noted presumably much earlier
by Einstein, who therefore concluded that the Universe must be precisely flat.

Horizon problem. We know that CMB photons last scattered at a redshift zlss ' 1100 when the
Universe was tlss ' 380, 000 years old, and that today it is t0 ' 13.8 billion years old and very close
to flat. We can thus infer that a causally connected region at the surface of last scatter subtends an
angle θ ' (1 + zlss)(tlss/t0) ∼ 1◦. However, there are 4π steradians' 40, 000 square degrees on the
sky. We are therefore looking at roughly 40,000 causally disconnected patches of the early Universe
when we look at the CMB. Yet each has a temperature that is the same to one part in 105. How
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did these causally disconnected regions of the early Universe know to have the same temperature?
This is the horizon, causality, or smoothness problem. A related problem is that the Universe must
have also been very smooth on very small scales. The horizon at the time of BBN enclosed roughly
a solar mass of material, more than 20 orders of magnitude less mass than the horizon encloses
today. The predicted light-element abundances are nonlinear functions of the baryon density. If
there were density fluctuations of order unity on solar-mass scales at the time of BBN, then the
observed light-element abundances would be different from those that are observed and that are
observed to be in good agreement with the predictions. We therefore know that the Universe must
have been smooth on small scales as well as large.

Monopole problem. Grand unified theories predict the existence of magnetic monopoles, topological
defects with masses ∼ MGUT ∼ 1015 GeV. According to the Kibble mechanism, roughly one such
monopole is produced in every Hubble volume at the GUT phase transition near T ∼ 1015 GeV.
You will show in a homework problem that this would result in a monopole density many orders
of magnitude greater than the critical density.

Acausal primordial perturbations. We see in the CMB primordial density fluctuations (δρ/ρ̄) ∼ 10−5

with a nearly scale-invariant spectrum. We also see that they are seemingly acausal; i.e., there are
Fourier modes of the perturbations that have wavelengths larger than the horizon size at the surface
of last scatter. Where did these come from?

2 Homogeneous evolution

2.1 Kinematics

An expanding isotropic and homogeneous Universe is described by a Friedmann-Robertson-Walker
(FRW) spacetime, with line element ds2 = −dt2 + a2(t)dx2, in terms of a scale factor a(t) that
parametrizes the physical distance that corresponds to a given comoving distance. As the Universe
expands [i.e., the scale factor a(t) increases with time t], the Hubble length H−1, where H ≡ ȧ/a is
the Hubble or growth rate, increases. During radiation and matter domination, (d/dt)(aH)−1 > 0,
and so the Hubble distance H−1 increases more rapidly than the scale factor. As a result, with
time, an observer sees larger comoving volumes of the Universe, and objects and information enter
the horizon. This observation leads to the horizon problem: if the Universe began with a period of
radiation domination, then how did the ∼ 40, 000 causally disconnected patches of CMB sky know
to have the same temperature (to roughly one part in 100,000)?

If, however, (d/dt)(aH)−1 < 0, then an observer sees with time a smaller comoving patch (even
though the physical or proper size of the observable patch may still be increasing), and ob-
jects/information/perturbations exit the horizon. In this way, the Universe becomes increasingly
smooth, thus explaining the remarkable large-scale homogeneity of the Universe.

The requirement (d/dt)(aH)−1 =
[
(Ḣ/H2) + 1

]
/a < 0 implies that we must have ε ≡ −Ḣ/H2 < 1

for inflation. Most generally, Ḣ 6= 0 (so that inflation can end, if for no other reason). As we will
see, however, theory and measurement suggest ε � 1, implying that the scale factor grows almost
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exponentially, a(t) ∝ eHt, during inflation.

If we assume the validity of general relativity, as we do here then the time evolution of the scale
factor satisfies the Friedmann equations, H2 = ρ/(3MPl

2) and Ḣ +H2 = −(ρ+3p)/(6MPl
2), where

p and ρ are the pressure and energy density of the cosmic fluid, respectively. We work in particle-
physics units, with h̄ = c = 1 and have written Newton’s constant G = (8πMPl

2)−1 in terms of the
reduced Planck mass, MPl = 2.435× 1018 GeV. These two Friedmann equations imply that

ε = (3/2) (1 + p/ρ) , (1)

from which we infer that the equation-of-state parameter w ≡ p/ρ must be w < −1/3 in order for
inflation to occur.

2.2 Scalar-Field Dynamics

In the simplest paradigm for inflation, and that on which we focus, this exotic equation of state is
provided by the displacement of a scalar field φ, the “inflaton,” from the minimum of its potential
V (φ). The homogeneous time evolution of the scalar field then satisfies, in an FRW spacetime,
the equation of motion, φ̈ + 3Hφ̇ + V ′(φ) = 0, where the dot denotes a derivative with respect to
time and prime a derivative with respect to φ. We thus see that the expansion acts as a friction
term. The scalar field has energy density ρ = (1/2)φ̇2 + V (φ) (a kinetic-energy density and a
potential-energy density) and pressure p = (1/2)φ̇2 − V (φ). If V (φ) is nonzero and sufficiently flat
and the friction term in the φ equation sufficiently large, then the kinetic-energy density will be
(1/2)φ̇2 < 2V (φ), in which case p < −ρ/3 and inflation ensues (see Figure 1).

This condition is made more precise by solving the scalar-field equation of motion along with
the Friedmann equation, H2 = (ȧ/a)2 =

[
V (φ) + (1/2)φ̇2

]
/(3m2

Pl). During inflation φ varies
monotonically with time t and can thus be used as the independent variable (rather than t). Let us
suppose that the field and potential are defined so that φ̇ > 0 during inflation. We then differentiate
the Friedmann equation with respect to time, obtaining 2HḢ = φ̇

[
V ′(φ) + φ̈

]
/(2m2

Pl). Then

rearranging the scalar-field equation of motion, −3Hφ̇ = φ̈ + V ′(φ), we get Ḣ = φ̇2/(2m2
Pl). We

thus infer that

ε = 3
φ̇2/2

V + φ̇2/2
' MPl

2

2

(
V ′

V

)2

, (2)

where the last expression is the result of the slow-roll approximation, ε � 1, in which φ̇2/2 � V .
Note that in much of the literature, ε is defined in terms of V and V ′ through this relation, rather
than through ε = −Ḣ/H2, as is done here, a distinction whose subtlety will be unimportant in
this article, although it can be important for quantitative conclusions given the precision of current
measurements. We also define a second slow-roll parameter,

η = −2
Ḣ

H2
− ε̇

2Hε
' MPl

2 V ′′

V
, (3)

which will become important below; the approximation in Equation 3 is valid during slow-roll,
when η � 1.
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Figure 1: Inflation postulates that at some point in the early history of the Universe, the cosmic
energy density was dominated by the vacuum energy associated with the displacement of some
scalar field φ (the inflaton) from the minimum of its potential. Shown here for illustration are two
toy models for the inflaton potential: on the left, a quadratic potential and on the right, a hilltop
potential

2.3 Duration of inflation and evolution of scales

The number of e-folds of inflation between the end of inflation and a time t during inflation is

N(t) ≡ ln
a(tend)
a(t)

=
∫ tend

t
H dt = − 1

2m2
Pl

∫ φend

φt

H

H ′ dφ =
∫ φt

φend

dφ

MPl

1√
2ε(φ)

. (4)

The largest comoving scales exit the horizon first during inflation, and they are the last to re-enter
the horizon later during matter or radiation domination. To evaluate the number of e-foldings
required to solve the horizon problem, consider a physical wavenumber kphys. Its ratio to the
Hubble scale today is

kphys

a0H0
=

akHk

a0H0
=

ak

aend

aend

areh

areh

aeq

aeq

a0

Hk

H0
, (5)

where ak and Hk are the scale factor and Hubble parameter when this particular wavenumber exits
the horizon; aend is the scale factor at the end of inflation; aeq is the scale factor at matter-radiation
equality; and aeh is the scale factor at the time of reheating. Plugging in numbers, we find that the
number of e-foldings between the end of inflation and the time at which the wavenumber k exits
the horizon is

N(k) = 62− ln
kphys

a0H0
− ln

1016 GeV

V
1/4
k

+ ln
V

1/4
k

Vend
− 1

3
ln

V
1/4
end

ρ
1/4
reh

, (6)

where ρ
1/4
reh is the energy density at reheating. If the energy scale of inflation is near the current

upper limit V 1/4 <∼ 1016 GeV (see below), but higher than the energy scale of electroweak symmetry
breaking (Vk >∼ 103 GeV), then the number N of e-folds between the time that the largest observable
scales today exited the horizon and the end of inflation falls in the range 30 <∼ N <∼ 60. Recent
treatments that consider different families of inflationary potentials, include current constraints
to the scalar spectral index ns (see below), as well as plausible reheating scenarios, find a range
40 <∼ N <∼ 60. More conservatively, the near scale-invariance of primordial density perturbations
over the ∼ 3 orders of magnitude over which they have been measured tells us that N >∼ 10 at the
very least.
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3 Exact Solutions

There are a few models for which the scalar-field and scale-factor EOMs can be solved exactly. The
first example is power-law inflation, which features a potential,

V (φ) = V0 exp
(
−
√

2
p

φ

mPl

)
.

This model has a scale factor a(t) = a0t
p and the scalar field moves with time t according to

φ

mPl
=
√

2p ln

(√
V0

p(3p− 1)
t

mPl

)
.

There is inflation for p > 1, and the slow-roll parameters are ε = η/2 = 1/p, and w = 2/3p. In this
model, there is no end to inflation.

Intermediate inflation has a scale factor a(t) ∝ exp[Atf ] with 0 < f < 1 and A > 0. This is
obtained from rolling down a potential,

V (φ) ∝
(

φ

mPl

)−β (
1− β2

6
m2

Pl

φ2

)
,

where β = 4(f−1 − 1).

4 Hamilton-Jacobi formulation

The idea here is to use the fact that φ changes monotonically during inflation to replace the time
variable as the independent variable in the equations of motion by φ. This then allows us to combine
the scalar-field and scale-factor equations of motion. Take φ̇ > 0. Then differentiate the Friedmann
equation with respect to time:

d

dt

[
H2 =

8π

3m2
Pl

(
V (φ) +

1
2
φ̇2

)]
.

This yields

2HḢ =
8π

3m2
Pl

(
V ′(φ)φ̇ + φ̇φ̈

)
.

Then rearranging the scalar-field EOM, −3Hφ̇ = φ̈ + V ′(φ), we get Ḣ = 4πφ̇2/m2
Pl, but since

d/dt = φ̇(d/dφ), we also have φ̇ = H ′(φ). We then plug this back into the Friedmann equation to
get the Hamilton-Jacobi equation,[

H ′(φ)
]2 − 12π

m2
Pl

H2(φ) = − 4π

m4
Pl

V (φ).

This is an exact equation that is equivalent to the combined scalar-field and scale-factor EOMs.
The advantage of this formalism is that it allows one to generate exact solutions. So, for ex-
ample, if I take H(φ) ∝ φ−β/2, I get the potential for intermediate inflation, and if I take
H(φ) ∝ exp

[
−
√

1/2p(φ/mPl)
]
, then I recover power-law inflation.
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The other advantage is that it also makes the slow-roll conditions for inflation more precise. Define

εH = 2m2
Pl

(
H ′

H

)2

,

and

ηH =
2m2

Pl

8π

H ′′

H
.

Then

εH = 3
φ̇2/2

V + φ̇2/2
= −d lnH

d ln a
,

and

ηH = −3
φ̈

3Hφ̇
= −d ln φ̇

d ln a
= −d lnH ′

d ln a
.

We now see that ä > 0 corresponds to εH < 1 exactly. Note also that with this formalism, the
number of e-foldings of inflation is

N ≡ ln
a(tend)
a(t)

=
∫ tend

t
H dt = − 1

2m2
Pl

∫ φend

φ

H

H ′ dφ.

Inflation as attractor. The HJ formalism also allows us to justify earlier statements that inflation
produces the requirements for inflation. Suppoose H0(φ) is a solution to the HJ equation of motion,[

H ′(φ)
]2 − 12π

m2
Pl

H2(φ) = − 4π

m4
Pl

V (φ).

Now consider another solution, H(φ) = H0(φ) + δH(φ). Then

H0δH
′ ' 2π

m2
Pl

H0δH,

or

δH(φ) = δH(φi) exp
(

12π

m2
Pl

∫ φ

φi

H0(φ)
H ′

0(φ)
dφ

)
.

The quantity in the exponent is negative, and this therefore implies that all perturbations die away
during inflation. In particular, during inflation, εH < 1, so

δH(φ) < δH(φi) exp
[
− 3√

2
φ− φi

mPl

]
= δH(φ0) exp [−3(Ni −N)] .
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