
Week 6: Perturbations to the FRW metric

March 2, 2017

1 Motivation

Note: These lectures taken largely from Ed Bertschinger’s “Cosmological Dynamics,”
astro-ph/9503125.

Last quarter we introduced the FRW metric to describe an isotropic and homogeneous Universe,
determined the equation of motion (the Friedmann equation) for its scale factor a(t), and learned
that our Universe is flat (or very close to it) and consists of 70% vacuum energy, 25% nonbaryonic
nonrelativistic dark matter, 5% baryons, and roughly 10−4 of critical density in a T = 2.7 K photon
blackbody, and a T = 1.96 K neutrino background.

We also saw that the temperature of the CMB is the same to 1 part in 105 in every direction on
the sky, and we also see fluctuations in the temperature at this level. And since these photons
last scattered at a redshift z = 1100, we know that the early Universe was very smooth. However,
when we look at the Universe today, it is highly clumpy: there are galaxies, clusters of galaxies, and
deviations from homogeneity on even larger scales (although the amplitude of these inhomogeneities
becomes small at large scales, a statement that the Universe is homogeneous on the largest scales).
Heuristically, it is understandable that gravity amplified the tiny primordial perturbations implied
by the ∆T/T ∼ 10−5 CMB fluctuations into the large-scale structure we see today: Overdense
regions will accrete matter from the underdense regions. In this way, the overdensities become
increasingly overdense and the underdense regions increasingly underdense. Our purpose this week
will be to describe these inhomogeneities quantitatively and to derive equations of motion, from
general relativity, for the growth of these perturbations.

2 The perturbed metric

We begin by writing the FRW metric in terms of the conformal time τ , defined by dτ = dt/a(t), as

ds2 = gµν dx
µ dxν = a2(τ)

[
dτ2 − γij dx

i dxj
]
,

1



where Latin indices indicate spatial components and Greek indices run over all four spacetime
coordinates. We will restrict our attention to a flat Universe, in which case γij = δij . The gener-
alization to a nonflat Universe is straightforward, vastly more complicated, and conceptually not
very illuminating.

We now consider small perturbations to this metric. The most general perturbed FRW metric can
be written,

ds2 = a2(τ)
{
−(1 + 2ψ)dτ2 + 2widτdx

i + [(1− 2φ)γij + 2hij ]dxidxj
}
,

with hij traceless: γijhij = 0. Here, ψ(~x, τ) and φ(~x, τ) are scalars, wi(~x, τ) is a vector, and
hij(~x, τ) is a symmetric trace-free tensor. We may choose hij to be traceless, as any trace can be
absorbed into φ. The quantities ψ, φ, wi, and hij are all functions of spacetime, and they are all
assumed to be � 1. Throughout, we will work only to linear order in these perturbation variables.
Therefore, we may consistently treat the perturbation variables as 3-tensors with components raised
and lowered with the metric γij . Note, however, that four-vector indices are still raised and lowered
with gµν . We know that this is the most general linear perturbation, as these functions represent
10 = 1+1+3+5 independent components corresponding to the 10 components of the most general
metric gµν . Since we are allowed to choose our four spacetime coordinates (τ, ~x) in any way we
want without changing any physical quantities, only six of these fields represent physical degrees
of freedom. Since ds2 = gµνdx

µdxν must be invariant under a general coordinate transformation
(“gauge transformations”), the fields φ, ψ, wi, and hij will also change under an infinitesimal
coordinate transformation.

Let’s first consider the vector wi(~x, t). This vector can be decomposed into a curl and curl-free part:
~w = ~w‖+ ~w⊥, with ~∇× ~w‖ = ~∇· ~w⊥ = 0, or in components, wi = w‖,i+w⊥,i with εijk∂jw‖,k = 0 and
∂iw⊥,i = 0. This last relation implies that w‖,i can be written wi = ∂iw, for some scalar function
w, and so the vector wi can actually be decomposed into a scalar function w(~x, t) and a vector
perturbation ~w⊥ that is the transverse component of wi.

Similarly, the symmetric trace-free tensor field hij(~x, t) can be decomposed into a longitudinal,
solenoidal, and transverse part (or scalar, transverse-vector, and tensor parts): hij = h‖,ij +h⊥,ij +
hT,ij . The first and second components can be written in terms of a scalar function h(~x, t) and a
transverse vector hi(~x, t), meaning ∂ihi = 0 (you can distinguish between the scalar, vector, and
tensor, by the number of indicies) as follows:

h‖,ij = Dijh, h⊥,ij = ∇(ihj), ∇ih
i
T,j = 0,

where the parentheses denote symmetrization, and Dij is a symmetric trace-free second derivative:

∇(ihj) ≡
1
2
(∇ihj +∇jhi), Dij ≡ ∇i∇j −

1
3
γij∇2.

The divergences of h‖,ij and h⊥,ij are a longitudinal vector (one that can be written as the gradient
of some scalar function) and a transverse vector (an honest-to-goodness vector),

∂ih‖,ij =
2
3
∇j∇2h, ∂i · h‖,ij =

1
2
∇2hj .

We have decomposed the tensor hij into parts that can be obtained from a scalar and a vector,
and a part that is pure tensor, but this decomposition is not necessarily unique. First of all,
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the scalar h(~x, t) and vector hi(~x, t) are only defined up to a constant. Secondly, the vector hi

can be changed by solutions to Killing’s equation, ∂ihj + ∂jhi = 0. Vectors that satisfy this
equation are Killing vectors, associated with the symmetries (translations and rotations) of the
space (which here is restricted to flat 3-d space). For example, hi can be changed by the vector
field (hx, hy, hz) = (−y, x, 0) (a rotation around the z axis) without changing hij , although we
probably wouldn’t want to use this hi if we impose the more restrictive constraint (although its
not necessary in full generality) hi � 1, in addition to hij � 1.

The tensor part hT,ij is also not unique. The divergence-free condition ∂ihT,ij = 0 and the trace-free
condition are still satisfied even if we add to hT,ij a tensor ζij ≡ Dijζ, where ζ(~x, t) is a scalar that
satisfies ∇2ζ = 0. However, this shift is just equivalent to changing the scalar component h‖,ij .

We therefore have decomposed the most general metric perturbation into four scalar components
(φ, ψ, w, and h), each having one degree of freedom, two transverse-vector components (w⊥,i, hi,
with ∂iw⊥,i = ∂ihi = 0), each with two degrees of freedom, and a symmetric trace-free divergence-
free tensor part (hT,ij) having two degrees of freedom (five components for a symmetric trace-free
tensor minus the thre divergence-free conditions), totalling to 10 degrees of freedom.

3 The stress-energy tensor

According to the Einstein equations, perturbations to the stress-energy tensor will induce pertur-
bations to the FRW metric. We therefore need to understand how we quantify perturbations to
the stress-energy tensor.

For a perfect fluid, the stress-energy tensor is Tµν = (ρ+p)uµuν+pgµν , where ρ and p are the proper
energy density and pressure in the fluid rest frame, and uµ = dxµ/ds is the fluid four-velocity. In
locally flat coordinates in the perfect-fluid frame, T 00 = ρ is the energy density, the momentum
density T 0i = 0, and the spatial stress tensor Tij = pδij .

For an imperfect fluid, the stress-energy tensor may have additional components that describe shear
and bulk viscosity or thermal conduction. The most general stress tensor is thus

Tµν = (ρ+ p)uµuν + pgµν + Σµν ,

where Σµν can be taken to be traceless Σµ
µ and flow orthogonal Σµ

νuν = 0. In locally flat coordinates
in the fluid rest frame, only the spatial components Σij are nonzero (and Σi

i = 0). With Σµν so
defined, the fluid velocity uµ is defined so that ρuµ is the energy-current four-vector, and not the
mass times particle-number four-vector. Then ρuµ includes heat conduction, and p includes bulk
viscosity, and Σµν (the shear stress) includes shear viscosity.

The components of the stress-energy tensor will need to be evaluated in the comoving coordinate
frame of our perturbed metric, and to begin we will need the components of the four velocity in the
perturbed spacetime. The comoving frame is defined by that where the fluid is at rest: i.e., ui = 0.
The normalization uµuµ = −1 then requires u0 = a−1(1−ψ) to lowest order in ψ, and lowering the
index with the full metric (again to linear order in perturbation variables) gives u0 = −a(1 + ψ)
and ui = awi.
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The appearance of ψ and wi in u0 arises because the proper-time interval a(τ)(1+ψ)dτ now depends
on position; as we will see, the ψ perturbation reduces in the Newtonian limit to the gravitational
potential, and two observers in two different potential wells cannot necessarily synchronize their
watches; it is the gravitational redshift associated with the potential well. If wi 6= 0, then an
observer at xi sees a clock at xi + dxi run faster by an amount widx

i; this is a frame-dragging
effect.

So far we have written four-velocity components for a comoving fluid element, defined by ui = 0.
Now consider a fluid element that moves with a “peculiar velocity,” a coordinate 3-velocity (a
Cartesian three-vector), vi ≡ dxi/dτ = dxi/dx0; i.e., it moves a coordinate distance dxi during the
elapse of a time dτ . If spacetime perturbations are small, then the induced peculiar velocities will
be small and so vi � 1 is linear in the perturbation variables. Strictly speaking, vi is not the proper
3-velocity, as with the presence of perturbations, adxi is not a proper distance and adτ is not a
proper time. However, to lowest order in the perturbations, v is the proper 3-velocity. To linear
order in perturbation variables, the four-velocity components of a fluid element with a 3-velocity
vi are

u0 = a−1(1− ψ), ui = a−1vi, u0 = −a(1 + ψ), ui = 1(vi + wi).

If wi 6= 0, then the worldline of an observer that comoves in the coordinate system defined by our
perturbed metric (i.e., vi = 0) is not normal to the hypersurfaces τ =constant. In other words,
uµξ

µ = awiξ
i 6= 0 for a four-vector that lives in the three-space (ξi 6= 0 and ξ0 = 0). What this

means is that if wi 6= 0, we are not in a locally inertial frame, in which the worldline of a freely-
falling observer is normal to the spatial directions. Thus, wi is interpreted as a frame-dragging
effect. By making a local transformation dxi → dxi +widτ , we can eliminate wi at any given point.
The transformation corresponds to choosing a locally inertial frame, the normal frame, that moves
with 3-velocity −wi relative to the comoving frame. In the normal frame, the fluid 3-velocity is
more generally vi + wi.

Since there are four coordinates we can choose arbitrarily and 10 metric components, we can always
find a coordinate system in which wi = 0. However, if wi 6= 0 and it varies spatially, then this
corresponds to shearing and/or rotation of the comoving frame relative to the normal frame...this is
dragging of inertial frames. In general, the comoving frame is noninertial: nongravitational forces
must be applied to keep a particle at fixed xi.

With the components of uµ, we can write the stress-energy tensor. We do so with mixed indices to
reduce the presence of metric-perturbation variables. The components are:

T 0
0 = −ρ, T i

0 = −(ρ+ p)vi,

T 0
i = (ρ+ p)(vi + wi), T i

j = pδi
j + Σi

j .

Note that the traceless shear stress Σij can be decomposed into scalar, vector, and tensor parts,
as for hij , and the energy-flux density (ρ + p)vi can similarly be decomposed into a scalar and
transverse-vector part. The pressure appears in the flux density to account for the pdV work done
when the fluid expands. The only approximations that we have made here are that v, and Σij are
of the same order as the metric-perturbation variables, and we neglect terms of quadratic order in
these perturbations.
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To linear order, energy-momentum conservation ∇µT
µ
ν becomes

∂τρ+ 3(aH − φ̇)(ρ+ p) + ∂i[(ρ+ p)vi] = 0,

and
∂τ [(ρ+ p)(vi + wi)] + 4aH(ρ+ p)(vi + wi) + ∂ip+ ∂jΣi

j + (ρ+ p)∂iψ = 0.

The first equation generalizes the usual continuity equation. This is clear if we take p � ρ and
H = 0. The presence of p takes into account the modification in the flux density when pdV work
is included. The aH term describes the dilution due to expansion, and the φ̇ in that term is
included there since the local scale factor is changed from a to a(1−φ) in the perturbed spacetime.
The second equation is the momentum-conservation (Euler) equation, where the ∂ip, ∂jΣi

j , and
(ρ+ p)∂iψ terms are the nongravitational and gravitational acceleration.

4 Gauges and gauge transformations

4.1 Synchronous gauge

Recall that there are ten spacetime-perturbation variables, and four can be eliminated if we choose,
with the right choice of the four spacetime coordinates. The synchronous gauge corresponds to
a choice of coordinates (actually, as we will see, a class of coordinates) in which wi = ψ = 0
everywhere. In these coordinates, there is a set of comoving observers who freely fall without
changing their spatial coordinates xi. These are called “fundamental” comoving observers. These
follow from the geodesic equation,

duµ

dλ
+ Γµ

αβu
αuβ = 0,

for the trajectory xµ(λ), where dλ = (−ds2)1/2 for a timelike geodesic, and uµ = dxµ/dλ. Then
Γi

00 = 0, implying that ui = 0 is a geodesic.

In synchronous gauge, the proper time t (or conformal time τ =
∫
dt/a) measured by a clock

carried by each comoving observer, and their fixed spatial coordinates xi define the coordinate
system. There is then a residual gauge freedom that comes from the freedom to adjust the initial
settings of the clocks and the initial coordinate labels of the observers.

Since each comoving observer carries a fixed xi, these coordinates are Lagrangian coordinates. The
coordinate system will break down in the nonlinear regime, when δρ ∼ ρ̄, during “shell crossing”,
when the trajectories of different fundamental observers intersect. However, in the linear regime,
δρ� ρ̄, there is no problem.

For consistency with the literature, we absorb φ into hij , and consider an hij that is no longer
traceless: h ≡ hi

i 6= 0. Then, the metric can be written economically as

ds2 = a2(τ)[−dτ2 + (γij + hij)dxidxj ].

Some straightforward but horrendous tensor manipulation then yields the components of the Ein-
stein tensor:

−a2G0
0 = 3a2H2 + aHḣ− 1

2
∇2h+

1
2
∂i∂jh

ij ,
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a2G0
i =

1
2
(∂iḣ− ∂j ḣ

j
i ), Gi

0 = −γijG0
j ,

−a2Gi
j = 2 ˙(aH) + (aH)2δi

j +
(

1
2
∂2

τ + aH∂τ −
1
2
∇2

)
(hδi

j − hi
j) (1)

+
1
2
γik(∂k∂jh− ∂k∂lh

l
j − ∂j∂lh

l
k) (2)

+
1
2
(∂k∂lh

kl)δi
j , (3)

(4)

where, to be clear, ∇2 = ∂i∂i. Note that the unperturbed parts are what they should be.

The next task will be to separate the perturbed Einstein equations into separate equations for the
scalar, vector, and tensor parts. We first write (as before, but now with the trace term)

hij =
1
3
hγij +Dij(∇−2ξ) + ∂(ihj) + hT,ij ,

requiring ∂ih
i = ∂ih

i
T j = 0. Note that there are two vector degrees of freedom, two tensor, and

two scalars, for a total of six physical degrees of freedom. As you will show in the homework, the
Einstein equations separate into 7 different parts:

G0
0 :

1
3
∇2(ξ − h) + aHḣ = 8πGa2(ρ− ρ̄),

G0
i,‖ :

1
3
∂i(ḣ− ξ̇)− ∂i(∇−2ξ̇) = 8πGa2[(ρ+ p)vi]parallel,

G0
i,⊥ : −1

4
∇2ḣi = 8πGa2[(ρ+ p)vi]⊥,

Gi
i : −(∂2

τ + 2aH∂τ )h+
1
3
∇2(h− ξ) = 24πGa2(p− p̄),

Gi
j 6=i,‖ :

(
1
2
∂2

τ + aH∂τ

)
Dij(∇−2ξ) +

1
6
Dij(ξ − h) = 8πGa2Σij,‖,

Gi
j,⊥ :

(
1
2
∂2

τ + aH∂τ

)
∇(ihj) = 8πGa2Σij,⊥,

Gi
j,T :

(
1
2
∂2

τ + aH∂τ −
1
2
∇2

)
hij,T = 8πGa2Σij,T .

Note that we have too many equations: four scalar equations for h and ξ, two vector equations
for hi, and one tensor equation for hT,ij . The G0

µ equations, the first three equations, involve only
one time derivative, while the rest (the Gi

µ equations) involve two time derivatives. A closer look
suggests that we can discard either the first three equations, or the second three equations; they
are redundant. This follows from the constraint ∇µT

µ
ν = 0. Something similar happens in the

unperturbed case with the two forms of the Friedmann equations, which both lead to the same
dynamics. It can be checked that the two forms of the perturbed equations also lead to the same
dynamics.

The final equation is the wave equation for propagation of gravitational waves (symmetric, traceless,
and transverse or divergence-free tensor metric perturbations). The aH term simply arises from
the expression for the Laplacian in an expanding Universe. The right-hand side is the transverse-
traceless stress, which acts as the source for gravitational waves.
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4.2 Gauge modes

In the above, we chose a coordinate system in which there were only six perturbation degrees of
freedom, corresponding to the six physical modes. However, in the most general perturbed FRW
spacetime, there will be 10 perturbation variables, four of which correspond to non-physical, or
“gauge” modes. A gauge transformation in this context is simply a change of coordinates:

τ̂ = τ + α(~x, τ), x̂i = xi + γij∂jβ(~x, τ) + εi(~x, τ),

with ∂iε
i = 0, and where we have split the transformation into a scalar (for the time) and longitu-

dinal and transverse parts for the spatial transformation.

In an unperturbed FRW metric, there is a natural notion of simultaneity: namely, equidensity
hypersurfaces, which are always orthogonal to the worldlines of freely-falling observers. In a per-
turbed Universe, this is not as clear. In particular, our coordinate choice may seem to indicate
perturbations, even when there aren’t any. For example, consider an unperturbed FRW Universe,
in which the density ρ depends only on τ , and now transform the coordinates with a nonzero α.
Then in the transformed (x̂i) system, ρ(τ̂ , ~x) = ρ̄(τ) + (∂τ ρ̄)α(~x, τ). This example shows that we
must think a bit harder about what is a physical perturbation and what is a lousy coordinate
choice.

When we transform the coordinates, we must also transform the perturbation variables so that ds2

remains invariant. This results in

ψ̂ = ψ − α̇− aHα, φ̂ = φ+
1
3
∇2β + aHα,

ŵi = wi + ∂i(α− β̇)− ε̇i, ĥij = hij −Dijβ −∇(iεj).

The transformed fields are to be evaluated at the same coordinate values as the original fields.

Consider now the synchronous gauge, with ψ = wi = 0 (and defining the trace h = −6φ). You then
see that ψ and wi transform into themselves, while hij and φ transform into themselves. There is
thus a whole family of synchronous gauges that are related to each other by

ĥ = h− 2∇2β − 6aHβ̇, ξ̂ = ξ − 2∇2β, ĥi = hi − 2εi,

where the variables α and β have been restricted by α = β̇, and

β = β0(~x)
∫

dτ

a(τ)
, εi = εi(~x).

In other words, there is a family of synchronous gauges related to each other by a scalar function
β0 and a transverse-vector function of the spatial coordinates. In 1980, Bardeen defined scalar
perturbations ΦA and ΦH (to replace h and ξ),

ΦA = −1
2
∇−2(ξ̈ + aHξ̇), ΦH =

1
6
(h− ξ)− 1

2
aH∇−2ξ̇.

that are invariant under synchronous gauge transformations.
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4.3 Poisson gauge

There are plenty of other gauge choices that one could make, and some are preferable to others
either for numerical reasons, or because they look more like Newtonian equations. Here we will
consider the Poisson gauge, by imposing the following gauge conditions:

∂iw
i = 0, ∂ih

i
j = 0,

which counts as four constraint equations. In this gauge, there are two scalar potentials ψ and
φ, one transverse-vector potential wi, and one transverse-traceless tensor potenial hij , accounting
for 6 degrees of freedom. In the literature, a more restrictive version, known as longitudinal or
conformal Newtonian gauge, imposes wi = hij = 0, but this can only be used if there are no vector
or tensor perturbations. This is therefore not really a gauge choice, but a restriction of the physical
degrees of freedom.

The most general perturbed FRW metric can be brought into Poisson gauge if

α = w + ḣ, β = h, , εi = hi,

where w is defined from w‖,i=−∇w, while h and hi are the fields that describe the longitudinal
and solenoidal parts of hij . Since these transformations involve no derivatives, the transformation
is almost unique, except for the addition of arbitrary functions of time alone to α (representing
changes in the units of time and length) and εi (representing a shift in the origin).

In terms of the synchronous-gauge variables, the Poisson-gauge variables are

ψ = −1
2
∇−2(ξ̈ + aHξ̇), φ =

1
6
(ξ − h) +

1
2
aH∇−2ξ̇, wi = −1

2
∂τhi,

so ψ = ΦA and φ = −ΦH . The Poisson-gauge vector part is related to the synchronous-gauge
solenoidal part.

In this gauge, the Einstein equations are

G0
0 : ∇2φ− 3aH(φ̇+ aHψ) = 4πGa2(ρ− ρ̄),

G0
‖,i : −∂i(φ̇+ aHψ) = 4πGa2[(ρ+ p)(vi + wi)]‖,

G0
⊥,i : ∇2wi = 16πGa2[(ρ+ p)(vi + wi)]⊥,

Gi
i : φ̈+ aH(ψ̇ + 2φ̇) + [2 ˙(aH) + (aH)2]ψ − 1

3
∇2(φ− ψ) = 4πGa2(p− p̄),

Gi
‖,j 6=i : Dij(φ− ψ) = 8πGa2Σ‖,ij ,

Gi
⊥,j : −(∂τ + 2aH)∂(iwj) = 8πGa2Σ⊥,ij ,

Gi
T,j : (∂2

τ + 2aH∂τ −∇2)hij = 8πGa2ΣT,ij .

In this gauge, the perturbation variable φ, ψ, and wi are determined by the instantaneous matter
distribution, with no time evolution required. The third equation determines wi and the fifth
determines a combination of φ and ψ. Then by combining the first two, we get an equation for φ:

∇2φ = 4πGa2[δρ+ 3aHΦf ], −∂iΦf ≡ [(ρ+ p)(vi + wi)]‖.
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Bardeen has defined a matter perturbation variable εm ≡ (δρ+3aHΦf )/ρ̄, which is a measure of the
energy-density fluctuation in the normal (intertial) frame at rest with matter such that vi +wi = 0.

Note that with no expansion (H = 0), this reduces to the Newtonian Poisson equation. For H 6= 0,
Φf (a longitudinal momentum density) is also a source for φ, but for a perturbation of characteristic
size (length) λ� H−1, aHΦf is smaller than δρ by a factor λH. We next note that the shear stress
can never exceedO(ρc2s), where cs is the sound speed, implying that φ ' ψ unless there is relativistic
viscous matter. Finally, the third equation implies that wi ∼ (vH/c)2vi, where vH = λH is the
Hubble velocity across a distance λ. Therefore, the scalar potential φ generalizes the Newtonian
gravitational potential in the Poisson gauge. The Poisson-gauge potential φ also has the advantage
that it almost always remains small, even when the density perturbations become large, δρ ∼ ρ.
Note also that the tensor-mode equation is identical to that for synchronous gauge. This is simply
because the gauge freedom, which consists of scalar and vector degrees of freedom, does not allow
for any gauge freedom in the tensor modes.

4.4 Newtonian gauge and conservation of super-horizon curvature

As mentioned above, the restriction of the Poisson gauge to scalar perturbations is the Newtonian
(or conformal-Newtonian or longitudinal) gauge, in which the metric is

ds2 = a2(τ)
[
−(1 + 2ψ)dτ2 + (1− 2φ)γijdx

idx2
]
. (5)

(Note that Weinberg and others switch phi and ψ relative to those used here.) After Fourier
transforming the metric and density perturbations, the Einstein equations for a Fourier components
for wavevector ~k become (suppressing, for notational economy, the ~k subscripts on the perturbation
variables),

k2φ+ 3
ȧ

a

(
φ̇+

ȧ

a
ψ

)
= −4πGa2δρ, (6)

k2

(
φ̇+

ȧ

a
ψ

)
= 4πGa2(ρ̄+ P̄ )θ, (7)

φ̈+
(

2
ä

a
− ȧ2

a2

)
ψ +

k2

3
(φ− ψ) = −4πGa2δp, (8)

k2(φ− ψ) = 12πGa2(ρ̄+ p̄)Θ, (9)

where ρ̄ and p̄ are the mean density and pressure respectively; θ = ∇ivi is a velocity-perturbation
variable; and (ρ̄+ p̄) ≡ −(k̂ik̂j − δij/3)Σi

j is the shear. Recall that the dot here denotes derivative
with respect to conformal time.

We now show that there is a quantity, the curvature perturbation, that is under certain circum-
stances, conserved in the superhorizon limit; i.e., when k/a � H. This is important, as during
inflation, the physical wavelength of a comoving mode becomes superhorizon during inflation and
then re-enters the horizon during matter/radiation domination. As we will see, curvature pertur-
bations are produced during inflation and then later provide the initial conditions for the growth
of density perturbations during matter/radiation domination when the mode re-enters the horizon.
The conserved quantity then allows us to relate the amplitude of primordial density perturbations
inferred from the CMB and/or galaxy surveys, to the predictions of inflation.
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The conserved quantity, R~k
, can be shown to be the curvature perturbation, but for now, think of it

simply as a constant that fixes the amplitude of phi~k, ψ~k
, δρ~k

, and the other perturbation variables
inferred from these. Now consider the Newtonian-gauge Einstein equations above in the limit
k/a � H. Next suppose that φ = ψ—the conservation only arises in this case. Fortunately, this
is what is expected during inflation and then on superhorizon scales through matter and radiation
domination. You can then show that the Einstein equations are solved, in the limit k/a� H, by

φ(τ) = ψ(τ) = R
[
−1 +

ȧ

a3

∫ τ [
a(τ ′)

]2
dτ ′

]
, (10)

θ(τ) = k2R
a

∫ τ [
a(τ ′)

]2
, (11)

δs = − R ˙̄s
[a(τ)]2

∫ τ [
a(τ ′)

]2
. (12)

(Note that the equations look a bit different than those in Weinberg, as we are working with
conformal time rather than time.) Here, s(~x, τ) is any scalar quantity—e.g., the density or the
pressure. For example, the first Einstein equation becomes,

k2φ+ 3
ȧ

a

(
φ̇+ 3

ȧ

a
φ

)
= −4πGa2δρ, (13)

You then use H2 = 8πGρ/3 to verify that the solutions above satisfy this equation. The second
Einstein equation is then satisfied by the solution for θ. The third Einstein equation looks more
complicated, but is in fact degenerate (for φ = ψ) with the first, in the same way that the two
forms for the Friedmann equation are degenerate.

As the derivation in Weinberg’s book shows, the result for δs is obtained in the following way: As
k → 0, we are considering perturbations on distance scales far greater than the Hubble distance.
Causal processes cannot occur at such large separations, and so the densities, pressures, etc. in
one region simply evolve as they would in a homogeneous Universe with a slightly different scale
factor as that in another region of the Univerese; i.e., the densities/pressures in one region are
related to that in another by a simple rescaling of τ and ~x (i.e., a change in φ = ψ can be absorbed
by a re-scaling of τ and ~x. For this reason, the fractional perturbations are said to be adiabatic;
i.e., (δρα/p̄α) = δpα/p̄α = −θα/k

2 are the same for all constituents α (e.g., baryons, dark matter,
neutrinos, photons, etc.), regardless of whether there is microscopic energy exchange between these
species or not. Another heuristic way to describe adiabatic perturbations is to say that every
comoving region of the Universe undergoes the same time evolution, but the starting time for each
is slightly different. Adiabatic perturbations arise in single-field slow-roll inflation because during
inflation, the energy density at any point is determined by the value of the scalar field; there is
nothing else. There is thus only one “quantum number” that we can assign to each point in the
Universe. The canonical inflationary scenario is, for this reason, also sometimes referred to as
“single-clock” inflation.

Adiabatic perturbations are to be contrasted with models (models other than single-field slow-roll
inflation) in which there may also be “isocurvature” or “entropy” perturbations, those in which the
fractional perturbations to the energy densities and pressures of different constituents are different.
Current measurements, as we will see, are consistent with primordial adiabatic perturbations. The
amplitudes of primordial isocurvature perturbations are constrained to be no greater than ∼ 10%
of the adiabatic amplitude.
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