
Week 8: Evolution of Perturbations

March 27, 2017

1 Kinetic Theory

We will follow Ch. 6 in Weinberg’s book quite closely. As seen therein, the exact calculations for
the evolution of radiation perturbations require that we take into account the fact that Thomson
scattering of photons depends on the photon polarization. To simplify and get to the basic physics
results, we will assume that photons are unpolarized and that Thomson scattering is insensitive to
polarization. We will also consider only scalar perturbations—the treatment of tensor perturbations
is then analogous.

We consider an individual Fourier mode with comoving wavenumber ~q. The value of any quantity
X(~x, t) is then ∫

d3q

(2π)3
X(t)α(~q)ei~q·~x, (1)

where X(t) encodes the time dependence, and we are assuming that the time dependence is domi-
nated by a growing mode. Here, α(~q) is an amplitude for this mode.

We work in synchronous gauge in which case the metric perturbation is

δgij(~x, t) =
∫

d3q

(2π)3
α(~q) [Aq(t)δij − qiqjBq(t)] ei~q·~x, (2)

where A(t) and B(t) encode the time dependence of the two different synchronous-gauge scalar
potentials.

We assume that the dark matter is cold—i.e., that the particles have no thermal velocities and that
they interact with each other and everything else only gravitationally. The density-perturbation
amplitude δρDq for therefore satisfies the continuity equation,

δρ̇Dq + 3HδρDq = −ρDψq, (3)

where ψq ≡ (3Ȧq − q2Ḃq)/2 is the gravitational-acceleration term in synchronous gauge.

The analogous equation for baryons is (suppressing the q subcsripts for notational economy),

δρ̇B + 3HδρB − (q2/a2)ρ̄BδuB = −ρ̄Bψq; (4)
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The new term here arises as a consequence of the possibility that baryons may be coupled to the
photons (as we will shortly see), and therefore they do not necessarily fall freely in the gravitational
field, as do the dark-matter particles. The combined photon-baryon plasma satisfies the momentum-
conservation equation which can be written,

δpγ − q2πs
γ + (∂0 + 3H)

[
ρ̄Bδub +

4
3
ρ̄γδuγ

]
= 0. (5)

The description of the photons is far more complicated. Far before decoupling the photons are
tightly coupled through Thomson scattering to the baryons and so δuγ = δuB, δpγ = δργ/3, and
πS

γ = 0. But later, we have to take into account the fact that photons can Thomson scatter from
electrons. We also note that photons move at the speed of light and can therefore carry momentum
from one point to another—i.e., they can develop significant shear stresses, particularly near the
time of CMB decoupling when their mean-free paths become large. As a result, we must derive
a Boltzmann equation which describes the time evolution of the completion photon phase-space
distribution n(~x, ~p, t). This is defined so that n(~x, ~p, t)d3xd3p is the number of photons, at time t
in the physical volume d3x centered at x and the momentum-space volume d3p centered on p. The
Boltzmann equation is a phase-space continuity equation; it says that the number of photons in
any given differential phase-space volume can increase when photons enter it and decrease when
photons exit. Photons are constantly moving into and out of any given physical volume from and to
adjacent volumes. They are re-distributed in momentum space by Thomson scattering. They are
also re-distributed in momentum space by perturbations to the spacetime metric. Schematically,
the Boltzmann equation is

D

Dt
n(~x, ~p, t) = [Collisions] . (6)

Here (D/Dt) is a (Lagrangian) time derivative taken along the photon trajectory, and the right
hand side describes the removal of photons from scattering to other parts of phase space and the
addition of photons due to scattering from other parts of phase space. In the absence of collisions,
Liouville’s theorem is satisfied; i.e., the phase-space density is conserved along a photon trajectory.
In perturbed Universe, the time derivative is taken along a geodesic, which satisfies the geodesic
equation, and so the metric perturbation variables show up in the Boltzmann equation through
D/Dt.

Weinberg provides a complete derivation of the Boltzmann equation. It is important to work
through on your own, but it is too long to go through in class, and I’m not sure there’s much value
added to going through it in class. Here, I’ll summarize the main points.

We write the phase-space distribution as

n(~x, ~p, t) = n̄γ

(
a(t)p0(~x, ~p, t)

)
+ δn(~v, ~p, t), (7)

in terms of homogeneous component and a perturbation. Here,

p0 ≡
√
gij(~x, t)pipj , (8)

and
n̄γ =

[
exp

(
p/a(t)T̄ (t)

)
− 1
]−1

. (9)
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The photon energy-momentum tensor (which we need as input to the Einstein equations that
determine the scalar potentials) is

Tµ
γ ν

=
1√
Detg

∫
d3p

(2π)3
n
pµpν

p0
. (10)

The perturbations to this tensor can be written in terms of a dimensionless intensity J by,

J(~x, p̂, t) ≡ 1
a(t)ρ̄γ(t)

∫ ∞

0
δnγ(~x, pp̂, t)4πp3 dp, (11)

as follows:

δT i
γj

(~x, t) = ρ̄γ(t)
∫
d2p

4π
J(~x, p̂, t)p̂ip̂j , (12)

δT 0
γ j

(~x, t) = a(t)ρ̄γ(t)
∫
d2p

4π
J(~x, p̂, t)p̂j , (13)

δT 0
γ 0

(~x, t) = −ρ̄γ(t)
∫
d2p

4π
J(~x, p̂, t). (14)

(15)

The important point here is that by writing things this way, we have eliminated any direct de-
pendence of the stress-tensor on the magnitude p of the photon momentum. This is important
because photons scatter only via Thomson scattering. While Thomson scattering changes the
photon direction, it does not change its energy.

Now consider a particular Fourier mode. The Boltzmann equation for the Fourier amplitude for
the intensity is then

∂J(~q, p̂, t)
∂t

+ i
p̂ · ~q
a(t)

J(~q, p̂, t) + 2α(~q)
[
Ȧq(t)− (~q · p̂)2Ḃq(t)

]
=

−ωc(t)J(~q, p̂, t) + ωc(t)
∫
d2p̂1

4π
J(~q, p̂1, t) +

4ωc(t)
a(t)

p̂ · ~δuB(~q, t), (16)

where ~δuB(~q, t) = iα(~q)~qδuB(t). Remember, J is related to the phase-space density of photons
with direction p̂. The first two terms on the left-hand side arise even if there are no perturbations
nor scattering; they simply constitute the Lagrangian time derivative, dJ/dt = (∂/∂t +~̂v · ∇)J ,
where ~v is the photon velocity. The last term on the left-hand side describes the deflection of the
photon trajectory in the perturbed spacetime. The first term on the right-hand side describes the
removal of photons from this region of phase-space via scattering with a collision rate ωc(t). The
second term on the right-hand side describes the scattering of photons into this region of phase
space. The last term describes the effects of scattering from baryons if there is a baryon-photon
relative velocity.

We then note that the direction q̂ of the wavevector ~q arises only through a dot product with p̂,
the photon direction. We can thus write J(~q, p̂, t) = α(~q)∆T (q, µ, t), with µ ≡ q̂ · p̂ and define a
“source function” Φ through

∫
(d2p̂/(4π))J(~q, p̂, t) = 3α(~q)Φ(q, t).

We then arrive at an integro-differential equation,

∆̇T (q, µ, t)+i
qµ

at(t)
∆T (q, µ, t) = −ωc(t)∆T (q, µ, t)−2Ȧq(t)+2q2µ2Ḃ(t)+3ωc(t)Φ(q, t)+4iqµωc(t)δuB(t),

(17)
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for each value of q. The reason that its an integro-differential equation is that there is an integral
over µ in the definition of Φ(q, t). This equation is usually solved numerically by expanding the µ
dependence of ∆T (q, µ, t) in Legendre polynomials,

∆T (q, µ, t) =
∞∑

`=0

i−`(2`+ 1)P`(µ)∆T,`(q, t), (18)

Then, using the orthonormality of the Legendre polynomials, the Boltzmann equation can be re-
written,

∆̇T,`+
q

a(2`+ 1)
[(`+ 1)∆T,`+1 − `∆T,`−1] = −2Ȧqδ`0+2q2

(
δ`0
3
− 2δ`2

15

)
−ωc∆T,`+3Φωcδ`0−

4
3
qωcδuBδ`1,

(19)
with Φ = (2∆T,0−∆T,2)/6. In terms of these ∆T` moments, the photon energy-density perturbation
is δργ = ρ̄γ∆T,0; the pressure perturbation is δpγ = (ρ̄γ/3)(∆T,0 + ∆T,2); the photon velocity is
quγ = −(3/4)∆T,1; and the photon shear stress is q2πgamma = ρ̄γ∆T,2.

In practice, what we have done is an oversimplification. In practice, Thomson scattering of photons
depends on their polarization, and so the intensity J is replaced by an intensity tensor Jij ; and
there is an additional set of moments for ∆P,` that must be included to describe the polarization
fluctuations.

There is then an analogous set of Boltzmann equations for the evolution of the neutrino phase-space
distribution. That set of equations is a bit simpler because the neutrinos are assumed to be colli-
sionless. If, however, neutrinos have masses, then it is no longer true that the Boltzmann equations
depend only on the neutrino propagation direction; they also can depend on the magnitude of the
neutrino momentum, and this makes for a very significant additional complication.

We thus have so far derived a simple equation for the evolution of the dark-matter density per-
turbation; a relatively simple equation for the evolution of the baryon-density perturbation; and
then an infinite sequence (usually cut off at some sufficiently high `) of differential equations for
the photons. There are also an analogous set of equations for the neutrinos. The last step are two
Einstein equations for the evolution of the perturbations A(t) and B(t). The first of these can be
written,

∂

∂t

[
a2ψq

]
= −4πGa2

(
δρ+ 3δp− q2π

)
, (20)

in terms of ψ ≡ (3Ȧ − q2Ḃ)/2. Here, the density perturbation δρ receive contributions from
photons, dark matter, baryons, and neutrinos, and the pressure δp and anisotropic stress φ receive
contributions from the photons and neutrinos. The second Einstein equation can be written,

Ȧq = 8πG
[
4
3
ρ̄γδuγ +

4
3
ρ̄νδuν + ρ̄BδuB

]
, (21)

recalling that in synchronous gauge, δuD = 0.

We then must integrate coupled differential equations for the dark-matter density and another for
the baryon density; two for the scalar potentials A(t) and B(t); a huge number for the photon
moments ∆T,` and ∆P,`; and a similar set for the neutrinos. The initial conditions at t → 0 are
specified by the early-Universe theory. For example, in the simplest models the perturbations are
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taken to be adiabatic. This fixes the initial fractional density and pressure perturbations to be
equal and simply related to the initial curvature perturbation, which fixes A(t) and B(t) in the
t → 0 limit. There is then a simple prescription for the intial photon and neutrino phase-space
densities as well.

2 The hydrodynamic limit

The precision of current CMB measurements requires that the complete system of equations, up
to ` ∼ 3000 for the photons, be evolved numerically. Still, qualitative features and approximate
results can be understood with analytic simplifications.

We’ll begin by considering early times (z � 3000), well before recombination, and when the Uni-
verse is radiation dominated (ρ̄M � ρ̄R), with a(t) ∝ t1/2 and H = (2t)−1. Before recombination,
there are plenty of free electrons for photons to Thomson scatter from, and so the photon mean-
free path is tiny. Quantitatively, this is described by taking the limit ωc(t) → ∞ in the photon
Boltzmann equations. As a result, all the photon multipole moments with ` ≥ 2 can be set to zero.
We can also set the photon and baryon velocities to be equal (i.e., the photons and baryons make
up a single photon-baryon fluid). Neutrinos are a bit more complicated because they free-stream,
but we’ll consider superhorizon modes (q/a� H) in which case the neutrino hierarchy can also be
truncated at ` = 1. We then define δα ≡ δρα/(ρ̄α + p̄α).

The synchronous-gauge gravitational field equation for a given Fourier mode then becomes

d

dt
(tψ) = −4πGt

(
ρ̄DδD + ρ̄BδB +

8
3
ρ̄γδγ +

8
3
ρ̄νδν

)
. (22)

The photon-baryon fluid equations are

δ̇γ = δ̇B = −ψq + (q2/a2)δγ . (23)

This equation simply tells us that the photon-baryon fluid falls in the gravitational field (the first
term) but the growth of perturbations is also affected by the fact that the photon-baryon fluid has
a non-zero pressure. The equation of motion for the dark-matter perturbation looks the same, but
without the pressure term:

δ̇D = −ψq. (24)

The neutrino equation looks like the radiation equation:

δ̇ν = −ψq + (q2/a2)δν . (25)

The continuity equation for the photons is

d

dt

(
δuγ√
t

)
= − 1

3
√
t
δγ , (26)

and there is a similar equation for the neutrinos.
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2.1 The growing adiabatic mode

Motivated by inflation, we surmise that at sufficiently early times we can set all the δα equal and
also all the δuα—i.e., adiabatic initial conditions. At sufficiently early times, the dark-matter and
baryon densities contribute negligibly in the Einstein equation, and at sufficiently early times we
can neglect the q2/a2 terms. The resulting equations can then be combined to a single second-order
differential equation for all the δα:

d

dt

(
t
d

dt
δ

)
− 1
t
δ = 0. (27)

This is a second-order equation and so has two solutions. The decaying solution can is irrelevant not
only because it does not survive to late times, but also because it is associated with zero curvature,
R = 0. The growing mode, which is the one we usually refer to as the adiabatic mode, has solution,

δ =
q2t2R0

a2
, ψ = − tq

2R0

a2
, δγ = δν = −2t3q2R0

9a2
, (28)

where here the superscript 0 designates the (constant) value of the curvature on superhorizon scales,
q2/a2 � H.

Most generally, in the absence of the inflation-inspired adiabatic condition, there are eight inde-
pendent initial conditions that must be specified for each Fourier mode and thus eight independent
modes, four of which will be growing relative four others that decay. As one example, there is a
mode with

δD =
ερ̄B

ρ̄B + ρ̄D
, δB =

ερ̄D

ρ̄B + ρ̄D
, (29)

and ψ = δγ = δν = δuγ = δν = 0. This mode has R = 0 and is thus called an “isocurvature” mode.
In this mode, the baryon and dark-matter perturbations are chosen so that the initial total-matter
perturbation and so that the curvature perturbation is zero In the recent literature, this is thus
called a compensated isocurvature perturbation. More generally, the term “isocurvature” is applied
often in the literature to any non-adiabatic mode, even those which (strictly speaking) may have
nonzero curvature. Its just sloppy terminology.

2.2 Extension to later times

We now consider the evolution of modes to later times, when the ratio R ≡ 3ρ̄B/4ρ̄R is not
necessarily small, and to when the perturbations re-enter the horizon, so that q/a is no longer
necessarily negligible compared with H. The equations are thus generalized to

d

dt

(
a2ψ

)
= −4πGa2

[
ρ̄DδD +

(
ρ̄B +

8
3
ρ̄γ

)
+

8
3
ρ̄νδν

]
, (30)

δ̇γ − (q2/a2)δuγ = −ψ, (31)

and similarly for δν ,
δ̇D = −ψ, (32)
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d

dt

(
(1 +R)δuγ

a

)
= − 1

3a
δγ , (33)

d

dt

(
δuν

a

)
= − 1

3a
δν . (34)

The appearance of R in the second to last, but not the last, equation occurs because the photons
are still part of the baryon-photon fluid (we are still working in the regime z >∼ 1100 where the
photons and baryons are tightly coupled in a single photon-baryon fluid).

These equations cannot be solved analytically in full generality. Instead, we will consider the
limits of long wavelengths q � qeq and short wavelengths q � qeq, where the wavenumber qeq
that separate the two regimes is that which enters the horizon at matter-radiation equality; i.e.,
when qeq/aeq = Heq, or R = 3/4. In other words, here long-wavelength modes are those that
enter the horizon later, during matter domination, and vice versa for short-wavelength modes,
which enter the horizon during radiation domination. This critical wavenumber corresponds to a
physical wavelength today of λ0 ≡ 2π/(qeq/a0) = 850(Ωmh

2/0.1)−1 Mpc. This distance scale is
huge compared to those of galaxies and galaxy clusters, and so most of the distance scales relevant
for galaxy surveys entered the horizon during radiation domination. In the CMB, this critical
wavenumber corresponds to a multipole moment ` ∼ 140. Thus, modes that affect the CMB power
spectrum at ` <∼ 140 entered the horizon during matter domination, and those that influence at
` >∼ 140 entered the horizon during radiation domination.

2.2.1 Long-wavelength modes

The solution for long-wavelength modes is obtained in the following way: First, the equations can
be solved for superhorizon perturbations (q/a� H), as was done above, but now including the R
dependence (before we took R � 1). Technically, an analytic solution can be found by replacing
the independent variable t with the scale factor y ≡ ρ̄M/ρ̄R (scaled to unity at matter-radiation
equality). The equations can then also be solved for general q/(aH), assuming matter domination.
In this approximation, one assumes that the radiation density is negligible compared with the
matter density, a ∝ t2/3, and H = 2/3t, and the total-density perturbation is dominated by the
baryon and dark-matter perturbations. One then matches the two solutions near horizon crossing
(for the modes that enter the horizon during MD, as we are considering here) to find solutions
valid at all times. The results are straightforward but lengthy—you can find them in Weinberg’s
book, for example. Here we simply highlight the main results. To be clear, we are considering here
solutions only for adiabatic initial conditions.

The result is that for long-wavelength modes during matter domination, the density perturbation
is

δD =
9q2t2R0

10 a2
, (35)

and the metric perturbation variable is

ψ = −3q2tR0

5 a2
. (36)

Note that since a ∝ t2/3 during MD, the density perturbation grows as δD ∝ t2/3, which recovers
(reassuringly) the result we obtained from our earlier Newtonian analysis for the growth of den-
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sity perturbations in the MD era. Recalling also that the Newtonian potential in the Newtonian
treatment is (from the Poisson equation) φ = −4πGρ̄DδD, we identify φ = −(3/5)R0. We have
thus related the curvature amplitude that results from inflation to the initial conditions for density
perturbations (for long-wavelength modes) when they re-enter the horizon.

The growth of perturbations to the baryon density is a bit more subtle. Once a given mode enters the
horizon, gravitational infall amplifies the growth of dark-matter perturbations, as seen above and as
seen in our earlier Newtonian treatment. The baryons, however, are tightly coupled to the photons
until recombination at z ' 1100, which happens a bit after the Universe transitions to matter
domination, at z ' 3000. For modes with wavelengths so long that they re-enter the horizon after
recombination, the dark matter behaves pretty much like the baryons. However, for those modes
that enter the horizon after matter domination but before recombination, there is a brief period,
between horizon crossing and recombination, when things are a bit more complicated. For these
modes, the pressure in the photon-baryon fluid opposes the growth of density perturbations. Baryon
perturbations on these scales are thus suppressed relative to the dark-matter perturbations. This
becomes a far bigger effect for small-wavelength modes. We therefore now focus on small-wavelength
modes to avoid a significant investment of complication for a not-too-dramatic conclusion.

2.2.2 Short-wavelength modes

The evolution of short-wavelength modes—those that enter the horizon during radiation domination—
is a lot more complicated for several reasons: First and foremost, the photon-baryon fluid has a
considerable pressure, and so perturbations in the photon-baryon fluid wind up oscillating (as
acoustic waves), rather than simply growing monotonically, once they enter the horizon. The am-
plitude of the metric perturbation, and thus the dark matter, which feels only the gravitational
field, does not oscillate as much. While there is a small oscillatory component, the potential and
dark-matter perturbations continue to grow. Since, however, the energy density is dominated by
the radiation, which remains smoother due to its pressure, the growth of dark-matter and poten-
tial perturbations is far slower than it is during superhorizon evolution of perturbations or for
subhorizon perturbations, during matter domination. There is finally dissipation on very small
scales.

In more technical terms, the system of dark-matter, neutrino, and photon-baryon perturbations
constitutes a sixth-order system and is described most generally by six modes, which can be de-
composed into four fast modes (that evolve on timsecales much smaller than the Hubble time) and
two slow modes (that evolve on roughly a Hubble time). The slow modes are important for the
evolution of radiation perturbations (CMB) and experience dissipation, while the fast are more
relevant for dark matter.

2.3 Radiation-dominated era

All short-wavelength modes enter the horizon during radiation domination, when a ∝ t1/2 and
H = 1/2t and when ρR � ρD. As Weinberg shows, the solution for the baryon-photon perturbation
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is,

δ = 3R
(

2
Θ

sinΘ−
(

1− 2
Θ2

)
cos Θ− 2

Θ2

)
, (37)

where Θ = 2qt/(
√

3a); there are similar expression for the other perturbation variables. Of more
importance than the precise analytic form is simply the observation that the solution is oscillatory—
these are the acoustic waves discussed above. The expressions for the dark matter and potential
involve integrals over oscillatory functions, and so are thus evolve more smoothly with time.

Now consider modes on scales sufficiently small that they are well within the horizon and consider
the evolution of the photon-baryon fluid. In this case (as Weinberg shows explicitly, and as our
Newtonian discussion of pressure gradients in connection with the Jeans instability suggests), the
evolution of the photon-baryon fluid is that of a smooth gas in an adiabatically expanding box.
The equations for the perturbations in the photon-baryon fluid then reduce to a wave equation
with sound speed vs = [3(1 + R)]−1/2 (that evolves slowly with time) in an expanding Universe.
For a wave of physical wavenumber q/a, the oscillation frequency is vs(q/a). If this frequency is
large compared with the expansion rate H, then the change in the wavenumber and frequency with
time can be approximated as adiabatic and the wave equation solved with a WKB approximation:

δγ ' (1 +R)−1/4 exp

[
±iq

∫ t

0

dt

a
√

3(1 +R)

]
. (38)

On the very smallest scales, the finite value of the photon mean-free path introduces a finite viscosity
which leads to dissipation (into heat) of the acoustic waves. This is known as Silk damping. The
result is to damp the perturbations by a factor exp

[
−
∫ t
0 Γ dt

]
, where

Γ(t) =
q2tγ

6a2(1 +R)

(
16
15

+
R2

1 +R

)
, (39)

where tγ = (σTne)−1 is the mean-free time for photon scattering. The derivation of this result is
straightforward but pretty complicated (it requires, for example, that you take into account the po-
larization dependence of Thomson scattering), but it is easy to understand in an order-of-magnitude
sense: Γ−1 is simply the time for a photon of mean-free path ctγ to diffuse a distance (q/a)−1. The
photon mean-free path is extremely small at early times. However, when recombination begins,
the free-electron abundance is rapidly reduced, and the photon mean-free path grows very quickly.
Silk damping thus very effectively damps radiation-density perturbations on small scales just before
CMB photons last scatter. It thus leads to a signicant damping of the CMB power spectrum at
large ` (as we will see). However, Silk damping has little effect on the matter power spectrum.

OK. So now we’ve seen that deep within the horizon the radiation perturbations oscillate more or
less as they would in a smooth expanding background spacetime. Now let’s think about what the
dark matter and density perturbations are doing for modes that are deep within the horizon. Above
we saw that the slowness of the cosmological evolution allowed us to decouple the fast oscillations
in the photon-baryon fluid from the (relatively) slow evolution of the Universe. The converse is
now true for the dark matter. Although the photon-baryon fluid has fluctuations, their effect on
the dark matter is smoothed out after averaging over a number of oscillation cycles. If we assume
that the photon-baryon fluid remains smooth, then the equation of motion for the evolution of the
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perturbation to the dark-matter density reduces to that we derived in the Newtonian limit: in the
current notation, we can write it as [Eq. (6.4.33) in Weinberg],

δ̈D + 2
ȧ

a
− 4πGρ̄DδD = 0. (40)

However, now the scale factor is not necessarily a ∝ t2/3 as we assumed for matter domination
but a ∝ t1/2 at early times and more generally some interpolation between the two. Eq. (40)
can be solved by replacing the independent variable t with y ≡ a/aeq. The precise solutions
depend on the baryon density, but in the limit that ρB � ρD, the solution is a linear combination,
δD = c1δ

(1)
D + c2δ

(2)
D of the two linearly independent solutions,

δ
(1)
D = 1 +

3y
2
, (41)

δ
(2)
D =

(
1 +

3y
2

)
ln
(√

1 + y + 1√
1 + y − 1

)
− 3
√

1 + y. (42)

The first of these recovers the late-time (y → ∞, MD) growing mode (δ ∝ t2/3) we found in the
Newtonian analysis—this will be the mode that determines the density perturbation at late times.
To fix the amplitude of this mode, we must choose the coefficients c1 and c2 so that the solution (and
its first derivative) match the solution obtained for the evolution early in the radiation-dominated
era, the solution for δD that corresponds to that for δγ in Eq. (37). This turns out to be

δD = 6R0

(
−1

2
+ γ + lnΘ

)
, (43)

where γ = 0.5772 is the Euler constant. As a result, the dark-matter density perturbation becomes,
deep in the matter-dominated era,

δD =
9Rq0a

aeq

[
−7

2
+ γ + ln

(
4κ√

3

)]
. (44)

where κ =
√

2q/qeq.

2.4 The matter transfer function

In our discussion of Newtonian perturbations, we described the matter power spectrum as P (q) =
Pprimordial(q)[T (q)]2, in terms of the nearly scale-invariant primordial power spectrum from inflation
and a transfer function T (q) that is approximated in the long- and short-wavelength limits by

T (q) '
{

1, q <∼ qeq,
(q/qeq)−2, q >∼ qeq,

(45)

We are now in a position to see how this arises. We found in Eq. (35) that for long-wavelength
modes, which enter the horizon during matter domination, the density-perturbation is

δD =
9q2t2R0

10 a2
T (q), (46)
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with T (q) → 1, while for short-wavelength modes, which enter the horizon during radiation domi-
nation, it takes the same form but [cf. Eq. (44)] with

T (q)→
45 q2eq
4q2

[
−7

2
+ γ + ln

(
4
√

2q√
3qeq

)]
. (47)

which does indeed recover the transfer-function shape discussed above.

The amplitude of small-scale perturbations is suppressed because the growth of subhorizon pertur-
bations is logarithmic during the radiation-dominated era. When perturbations are super-horizon,
their amplitude grows as δD ∝ t during RD and as δD ∝ t2/3 during MD. For long-wavelength
modes, which enter the horizon during MD, the growth continues as δ ∝ t2/3 even when they
become subhorizon. For short-wavelength modes, the growth gets slowed to logarithmic, δD ∝ ln t,
when they enter the horizon during radiation domination (qualitatively, because perturbations to
the dominant radiation density do not grown) before then resuming a δD ∝ t2/3 during matter
domination. This stunting of the growth begins at the time tc when the mode enters the horizon,
given by q/a ∼ 1/tc. Since (a/aeq) ∼ (t/teq)1/2 this is when t ∼ teq(qeq/q)2. The MD growth factor
teq/t ∼ (q/qeq)2 is thus replaced by ln q.

These arguments give us the correct qualitative behavior for the matter power spectrum in the two
limiting regimes, and they also give the correct limits if (a) the baryon density is negligible; (b)
neutrino perturbations are neglected; and (c) to the extent that the slow/fast decomposition of the
small-wavelength behavior is well approximated by the WKB solution. In practice, the precision
of current CMB and galaxy-survey measurements require that the complete set of equations be
evolved numerically not only to get the proper interpolation, but also to get the effects of baryons
and neutrinos right in the small-wavelength limit.

There are also baryon acoustic oscillations in the matter power spectrum that we can understand.
As mentioned above, we assumed in the evolution of the matter power spectrum that the baryon
density was negligible. In practice, though, roughly 1/6 of the nonrelativistic matter in the Uni-
verse is baryons which, before recombination, are tightly coupled to the photons. Since the baryons
move with the photons before recombination, they experience acoustic oscillations. To get a qual-
itative understanding, consider Eq. (37) which although strictly speaking valid only in radiation
domination, remains qualitatively similar in MD. This equation oscillates with Θ ∝ q. Thus, al-
though it oscillates for fixed q with time, it also oscillates, at some fixed time t, with q. Thus, at
recombination, when the tight coupling of baryons to photons ceases, the baryon-density transfer
function oscillates sinusoidally with wavenumber q with period ∼ t−1

rec. The total matter-density
perturbation at recombination is thus (schematically—there are some technical complications in the
detailed calculation) δM = ρ̄DδD + ρ̄BδB. Although δD varies monotonically with wavenumber q,
the baryon perturbation has an oscillatory component. There is thus a small oscillatory component
superimposed on the otherwise smooth power spectrum that would arise without baryons.

The growth of perturbations and baryon acoustic oscillations can be thought of in a configuration-
space (rather than Fourier-space) pictures. Consider a smooth Universe with an initial spherical
adiabatic tophat perturbation superimposed. The dark matter and baryon-photon fluid in this
initial overdensity will at early times both fall similarly in a manner described by the early evo-
lution of a spherical tophat we discussed earlier. At some point, when the photon-baryon fluid
becomes sufficiently overdense, the pressure gradient will overcome the gravitational attraction of
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the overdensity, the photon-baryon fluid will reach a point of maximum compression and then
bounce back, sending a spherical shock wave, which propagates at the speed of sound, back into
the photon-baryon fluid in the surrounding medium. This spherically-symmetric fractional photon-
baryon density perturbation δ(~x, t) at time t can be Fourier transformed as

δ(~x, t) =
∫
k2 d

2π2
δ~q(t)

sin kr
kr

, (48)

where δ~q satisfy the Fourier-space equations we derived above. At recombination, when the CMB
snapshot we see is created, the shock front has propagated a distance ∼ vstrec. This relatively
sharp shock front then winds up having oscillatory features in Fourier space. Thus, the baryon
acoustic oscillations in the matter power spectrum represent a Fourier-space description of these
shock fronts that propagate at the speed of sound.
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