
Weeks 9-10: Cosmic Microwave Background

Fluctuations

April 12, 2017

We will follow Ch. 7 in Weinberg’s book primarily, although the discussion here will be a com-
bination of guide through Weinberg’s calculation, rather than detailed re-derivation, and then a
description of the resulting temperature power spectra. We again simplify as we did last week by
ignoring the photon polarization, and we will consider only scalar perturbations (not tensor). The
goal of this week will be to understand why the CMB temperature power spectrum looks like this:

1 The CMB fluctuation induced by a single Fourier mode

To begin, we return to the dimensionless intensity J(~x, p̂, t) and note that if evaluated today, at
time t0, and at our position, which we take to be ~x = 0, then becomes J(~x = 0,−n̂, t0) the CMB
specific intensity we observe from a direction n̂ on the sky. Moreover, since for a blackbody J ∝ T 4,
the fractional temperature perturbation we observe in direction n̂ is ∆T (n̂)/T0 = J(~x = 0,−n̂, t0).
Recall further that we wrote the contribution to J of a Fourier mode of wavevector ~q as J(~q, p̂, t) =
α(~q)∆T (q, µ = q̂ · p̂, t), with α(~q) the primordial amplitude, set presumably by inflation, of the
mode. Therefore, if we have a primordial density distribution specified by some set of α(~q)’s, the
CMB temperature fluctuation we will see from position n̂ is given by

∆T (n̂)
T0

=
1
4

∫
d3q α(~q)∆T (q,−q̂ · n̂, t0). (1)

Recall now that for each value of ~q, ∆T satisfies a Boltzmann equation, an integro-differential
equation for µ and t,

∆̇T (q, µ, t)+i
qµ

at(t)
∆T (q, µ, t) = −ωc(t)∆T (q, µ, t)−2Ȧq(t)+2q2µ2Ḃ(t)+3ωc(t)Φ(q, t)+4iqµωc(t)δuB(t).

(2)
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The left-hand side accounts for the effects of expansion and free-streaming of the photon. The first
term on the right describes the effects of scattering of photons from the direction q̂. The second two
describe the deflection of the photon trajectory in the metric perturbation. The Φ term accounts
for the addition of photons with direction q̂ from Thomson scattering from other directions. And
the last term describes the Doppler shift in the intensity if the scatterers (here, electrons which
during early times are tightly coupled to the photons) are moving.

As shown in Weinberg (and as you can easily verify), this equation (which is a linear first-order
differential equation in time t) has a formal solution (valid well after recombination),

∆T (q, µ = q̂ · n̂, t0) =
∫ t0

t1

dt exp
[
iµq

∫ t0

t

dt′

a(t′)
−

∫ t0

t
dt′ ωc(t′)

]
×

[
−2Ȧ(t) + 2q2µ2Ḃ(t) + 3ωc(t)Φ(q, t)− 4iq2µ2ωc(t)δB(t)/a(t)

]
, (3)

where t1 is some early initial time (taken to be well before recombination). With some algebraic
re-arrangement, this can be separated into two parts, ∆T = ∆early

T + ∆isw
T , with

∆early
T (q, µ, t0) =

∫ t0

t1

dt P (t), eiqµ[τ0−τ(t′)] [3Φ(q, t)

−2a2(t)B̈(t)− 2a(t)ȧ(t)Ḃ(t)− iq2µ2
(
2δB(t)/a(t) + 2a(t)Ḃ(t)

)]
, (4)

where τ(t) is the conformal time, and

∆isw
T (q, µ, t0) = −2

∫ t0

t1

dt exp
[
iqµ [τ0 − τ(t)]−

∫ t0

t
dt′ ωc(t′)

]
d

dt

[
A(t) + a2(t)B̈(t) + a(t)ȧ(t)Ḃ(t)

]
.

(5)
Here, the function,

P (t) = ωc(t) exp
(
−

∫ t0

t
dt′ωc(t′)

)
, (6)

is the visibility function, the probability that a given CMB photon last scatters at time t. It is
defined so that ∫ t0

t1

P (t) dt = 1. (7)

Since ωc(t) drops sharply near the redshift zr of recombination from something huge compared
with the expansion rate to something extremely small, P (t) is narrowly centered around the time
of recombination.

If we now make the approximation that recombination occurs suddenly at redshift zc, at time
tc, then P (t) is approximated as a delta function, and the time integral in Eq. (4) goes away.
With this approximation, we can also assume tight coupling until recombination in which case
Φ = ∆T,0/3 = 4δT/(3T̄ ). We then have

∆early
T (q, µ, t0) = eiqµ[τ0−τL] [F (q) + iµG(q)] , (8)

with

F (q) = 4
δT (tL)
T̄ (tL)

− 1
2
a2()B̈(tL)− 1

2
a(tL)ȧ(tL)Ḃ(tL), (9)

G(q) = −4q
(
δuγ(tL)/a(tL) + a(tL)Ḃ(tL)/2

)
. (10)
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Likewise, the ISW term becomes

∆isw
T (q, µ, t0) = −2

∫ t0

t1

dt exp (iqµ [τ0 − τ(t)])
d

dt

[
A(t) + a2(t)B̈(t) + a(t)ȧ(t)Ḃ(t)

]
. (11)

Let’s now look at Eq. (8), which is not too complicated. It tells us that the CMB temperature
fluctuation induced at the surface of last scatter by a Fourier mode ~q. The eiqµ(tau0−τL) factor
accounts for the sinusoidal variation associated with the particular Fourier mode. Associated
with given Fourier mode is a real part and an imaginary part, out of phase, but only the real
part is physical. The function F (q) thus describes the amplitude of the sine, say, and G(q) the
amplitude of the cosine. The F (q) factor accounts for some combination of the intrinsic radiation-
temperature fluctuation and metric perturbation at the given point at the surface of last scatter.
In Newtonian gauge, this factor becomes F (q) = Φq(tL)+ δTq(tL)/T̄ (tL) which for adiabatic initial
conditions becomes F (q) = Φq(tL)/3. Although we should be cautious about applying Newtonian
reasoning to this relativistic situation, the form of G(q) suggests that we can think of this term as a
temperature fluctuation induced by the Doppler shift due to the peculiar velocity, induced by this
density perturbation, along the line of sight. The factor of i multiplying G(q) arises then because the
peculiar velocity associated with this particular mode is out of phase with the density perturbation.
Eq. (8) is obtained by assuming an infinitely thin surface of last scatter. Roughly speaking, the
effects of the finite width of the surface of last scatter can be obtained by multiplying ∆early

T by

exp
[
−

∫ tL
0 Γ(t) dt

]
which, as we saw above, suppresses small-scale power by some e−q2/q2

Silk .

The second term, the “integrated-Sachs-Wolfe” term, provides another (generally smaller) con-
tribution to the temperature fluctuation due to the travel of the photon through time-varying
gravitational fields along the line of sight. In Newtonian gauge, the quantity in the brackets in
Eq. (11) reduces to 2Φ̇. It can be shown (e.g., from the Newtonian Poisson equation Φq ∝ H2a2δρ
and a(t) ∝ t2/3 during MD) that there is no contribution to the ISW effect during matter domi-
nation. There is thus a small early-ISW contribution shortly after recombination due to the small
residual contribution of the radiation density to the expansion rate. There is also a small late-ISW
effect that arises during cosmological-constant domination at redshifts z <∼ 1.

2 The CMB power spectrum

From the observed temperature pattern, Eq. (1), we can obtain the spherical-harmonic coefficients,

T`m =
∫

d2n̂Y ∗
`m(n̂)

∆T (n̂)
T0

. (12)

This, along with the normalization 〈α(~q)α∗(~q′)〉 = δ3(~q − ~q′), and the plane-wave expansion,

eiq̂·n̂ρ = 4π
∑
ellm

i`j`(ρ)Y`m(n̂)Y ∗
`m(q̂), (13)

allow us to infer that the temperature power spectrum C`, defined by

〈a`ma`′m′〉 = C`δ``′δmm′ , (14)
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is (check normalization!)

C` = π2

∫
q2 dq, |∆T`(q)|2 . (15)

This can be evaluated by numerically solving the Boltzmann hierarchy derived earlier.

Alternatively, the predicted power spectrum can be evaluated using the approximate expressions
for ∆T (q, µ, t0) derived above. To simplify, we will ignore the ISW term. Doing so, the power
spectrum can be approximated,

C` = 16π2

∫ ∞

0
q2 dq

∣∣j`(q∆τ)F (q) + j′`(q∆τ)G(q)
∣∣2 e−2q2/q2

Silk . (16)

Note that the derivative on the spherical harmonic in the second term arises through an integration
by parts. Here ∆τ = τ0 − τL is essentially the comoving distance to the surface of last scatter. For
` � 1 the spherical Bessel function j`(x) is roughly zero for x < ` and then oscillates with a slowly
decaying amplitude. From this, we infer that a given Fourier mode of wavenumber q contributes to
fluctuation with ` <∼ q∆τ , and the multipole moment ` receives contributions from wavenumbers
q >∼ `/∆τ (SIMPLE PICTURE). But roughly speaking, each C` can be thought of, very roughly,

as C` ∼ 16π2q3
`

[
|F (q`)|2 + |G(q`)|2

]
, with q` = `/∆τ .

The resulting power spectrum look like the following:

The features can be understood as follows: First, there is the Sachs-Wolfe plateau at ` <∼ 100.
Recall that these angular scales probe modes that enter the horizon during matter domination.
Since G(q) probes peculiar velocities, this term should be negligible for these superhorizon modes,
and we also inferred that F (q) = Φ/3 in terms of the Newtonian potential, which is itself related to
the primordial curvature perturbation by Φ = (3/5)R. In this case, the power spectrum becomes
(for ` � 100),

CSW
` ' 2

9π

∫
q2 dqPR(q) [j`(q∆τ)]2 PR(q). (17)

Earlier, we derived a relation for ∆2
R(q) = [q3/(2π2)]PR(q) ∝ V/ε, in terms of the inflaton-potential

V and slow-roll parameter ε. Evaluating the integral, we then find, for a nearly scale-invariant
spectrum, for ` <∼ 100,

`(` + 1)C` ∝
V

M4
Plε

. (18)

From the measured value, `(` + 1)C` ' 7 × 10−10, we thus infer ∆2
R ' 2.2 × 10−9 from which we

infer an upper limit V 1/4 <∼ 6.6× 1016 GeV, or if ε <∼ 0.1, V 1/4 <∼ 3.6× 1016 GeV.

Acoustic peaks. Now let’s consider the bumps and wiggles at ` >∼ 200. These correspond to
wavelengths that are at maximum compression (highest density) at the time of last scatter (DRAW
SZ PICTURE). The position of the first peak thus reflects the sound horizon at the surface of
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last scatter, and the corresponding angle θ ' (` = 200)/π is that subtended by the sound horizon
at the surface of last scatter. Note that the third peak is a bit higher than the second peak. This
arises because the baryonic fluid is for the odd peaks moving in the same direction as the dark
matter, while for even peaks it is moving in the opposite direction. There are then the troughs,
which are nonzero. These are nonzero because in addition to the intrinsic radiation-temperature
fluctuation, there is also a peculiar velocity associated with the density perturbation, and this is
out of phase; when the radiation-density perturbation is zero, for a particular ~q mode, the peculiar
velocity is maximal. This peculiar velocity induces a (smaller) Doppler shift in the temperature.

Silk dampling. There is then damping of the power at higher ` due to Silk damping which can also
be understood as a blurring of the anisotropies on angular distances that probe physical distances
smaller than the distance over which photons undergo their second-to-last scatter.

Late-time ISW effect Upon close inspection, you will see that there is a slight departure from flat
`(` + 1)C` at low `. There are two reasons for this. First, the late-time ISW effect contributes
at multipole moments ell <∼ 5. This angular scale corresponds roughly to angle subtended by the
horizon at redshift z ' 1 at which the cosmological constant becomes dynamically important.

Reionization. The second reason for an excess at ` ∼ 10 is reionization. Until now, we’ve supposed
that electrons recombine at z ' 1100 and that photons streamed freely since then. However, at
redshifts z <∼ 40 gravitationally bound objects begin to form (as dicated by Press-Shechter theory).
Objects with virial velocities large enough to allow hydrogen gas to cool and fragment into stars
become abundant at redshifts z ' 10−20 (the details of these processes are highly uncertain). When
the first stars form, they produce ultraviolet photons that reionize the Universe. If this occurs at
z ∼ 10, then roughly one in 10 CMB photons we see last scattered not near recombination, but
at a redshift z ∼ 10. This re-scattering does two things: First, it generates new fluctuations on
angular scales ` ∼ 10− 20 comparable to the angle subtended by the horizon at redshift z ∼ 10 of
reionization. These are generated essentially by re-scattering of photons from gas that—due to the
existence of density perturbation—is moving toward or away from us. Second (and perhaps more
important), if a fraction τ of photons re-scatter, then the power spectrum is suppressed by e−2τ on
multipoles ` >∼ 20.

Early ISW effect. There is a contribution to C` at ` <∼ 200, in the rise to the first peak, from the
early-ISW effect.

Spectral index. The cartoon shows the power spectrum for ns ' 1. If ns is larger (more power on
small scales), the C`’s get tilted toward higher ` and vice versa for lower `.

The location of the first acoustic peak. The ` at which the first peak occurs is perhaps empirically
the most precisely determined phenomenological parameter that describes the CMB. This quantity
is determined by the angle subtended by the sound horizon at the surface of last scatter, and this
angle is the comoving sound horizon at the surface of last scatter divided by the comoving distance
to the surface of last scatter. This angle is increased (and ` thus decreased) if the sound horizon
is larger, which can occur if the expansion rate prior to recombination is somehow decreased. The
sound horizon is also decreased a bit if the baryon density is increased (although the Ωb dependence
is fairly weak). The comoving distance to the surface of last scatter is increased (and the value of
`peak increased) if the expansion rate is smaller in the post-recombination Universe, and vice versa
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for larger expansion rate. Likewise, an increase in w, away from the cosmological-constant value
w > −1, increases the expansion rate and thus decreases `peak, with all other parameters held fixed.
There is a fairly strong dependence also on the spatial curvature. If the Universe is open, the peak
moves to higher `, and it moves to smaller ` in a closed Universe. The evidence from the CMB for
a value of Ωtot that is very close to unity provides the most compelling evidence that our Universe
is flat, or at least very close to flat.

3 Polarization for scalar perturbations

So far, we have assumed that photons are not polarized. The polarization changes the detailed
quantitative results we have obtained so far (a result of the polarization dependence of Thomson
scattering) but does not change the qualitative conclusions. The polarization is, however, observ-
able, and the theory makes specific predictions for the power spectrum of the polarization as well
as its cross-correlation with the temperature. There is also additional information, both in the way
of additional statistical power and qualitatively different information, in the polarization.

We’re not going to go through all the details in class—that would entail increasing significantly the
complexity of the previously derived equations, without much additional insight. Instead, we will
try to understand qualitatively what comes from the polarization.

Linear polarization arises through Thomson scattering. Light is fully linearly polarized when it
scatters at a right angle. More generally, the differential cross section for Thomson scattering for
a wave with initial polarization ε̂ to a final polarization ε̂′ is

dσ

dΩ
=

3σT

8π

∣∣ε̂ · ε̂′∣∣2 . (19)

Given that the cross section is thus proportional to a scattering cos2 θ, where θ is the scattering
angle, it follows that if we have initially unpolarized radiation incident on a cloud of scatterers,
the scattered radiation is polarized only if the incident radiation has an intensity quadrupole. In
particular, if we have radiation incident on a cloud of scatterers, and the cloud has a Thomson-
scattering optical depth τ , then the radiation scattered into the ẑ direction will have polarization,

Q− iU =

√
3

40π
τa22, (20)

where a22 is the coefficient of the spherical harmonic Y22(θ, φ) in a spherical-harmonic expansion of
the incident-radiation intensity in a coordinate system in which the line of sight is in the ẑ direction
and the Stokes parameters Q and U are measured with respect to the x and y axes.

Well before recombination, when photons and baryons are tightly coupled, the radiation field
at any given point has a negligible quadrupole moment—it is proportional to the inverse of the
scattering rate. Near recombination, though, the photon mean-free path increases, the scattering
rate decreases, and the quadrupole moment begins to grow. If we look at photons from a given
point at the surface of last scatter, the radiation field incident on that last-scattering region most
generally has a nonzero quadrupole, and so the radiation we see winds up having a polarization.
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Figure 1: Light becomes fully polarized when it undergoes scattering by 90◦. The polarization of
light scattered in some region is thus proportional to the intensity (or temperature) quadrupole at
that point.
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The intensity quadrupole moment can be approximated by the tight-coupling approximation. Let’s
consider the photon Boltzmann equation we derived earlier.

∆̇T,`+
q

a(2` + 1)
[(` + 1)∆T,`+1 − `∆T,`−1] = −2Ȧqδ`0+2q2

(
δ`0

3
Bq −

2δ`2

15

)
−ωc∆T,`+3Φωcδ`0−

4
3
qωcδuBδ`1.

(21)
Let’s consider the equation for ` = 2, the radiation quadrupole in the tight-coupling limit, ωc � H.
In this case ∆T,3 is negligible by a factor (ωc/H)−1. The terms proportional to A and B are
negligible also compared with the other terms on the right-hand side. The terms on the left are
the total time derivative for Θ2, which we are trying to evaluate. We thus obtain,

∆̇T2 =
2
5

q

a
∆T1 + ωc∆T2, (22)

(the last term is actually multiplied by 9/10 when polarization dependence of photon scattering is
taken into account). In the limit of large ωc, the term on the left is negligible, and we find that

∆T2 ∼
q

aωc
ΘT1. (23)

From this, we infer that the phase of the polarization resembles that in the peculiar velocity.
Recall, that the peaks in the temperature power spectrum are due to density perturbations, while
the power in the troughs is contributed by the peculiar velocity (i.e., ∆T1). It thus follows (and
numerical results confirm) that the polarization power peaks are aligned in ` space with the troughs
in the CMB power spectrum. The fact that ΘT2 ∝ q∆T1 also implies that the polarization power
spectrum `2CEE

` rises more rapidly as ` increases, and it then peaks at higher ` (more like ` ' 1000
than does the temperature power spectrum, `2CTT

` , which peaks at ` ' 200.

Only E modes from density perturbations. We can also infer, without too much analysis, that
density perturbations produce only E modes, and no B modes. To see this, consider a single
Fourier mode of the density field in the ẑ direction. The temperature pattern—and thus polarization
pattern—produced by this mode must, by symmetry, be independent of φ, the azimuthal angle.
The polarization must always be aligned or perpendicular to the lines of constant longitude. The
variation of the polarization is thus always along directions parallel/perpendicular to the direction
in which the polarization varies, and this is the hallmark of a pure E mode.

TE Cross correlation. Since some of the temperature fluctuation comes from the temperature
dipole, which also sources the polarization, there is a temperature-polarization (TE) cross-correlation.

The reionization bump. As discussed above, the polarization power spectrum from the surface
of last scatter becomes small as `2 as ` becomes small (large angular scales). But recall that
a fraction τ ' 0.1 of CMB photons re-scatter at a redshif z ∼ 10. The reionized regions from
which the photons re-scatter see a temperature quadrupole for the same reason that we do, and so
the photons they re-scatter to us are polarized. The correlation scale of this reionization-induced
polarization is the horizon at reionization, which subtends angles corresponding to ` ∼ 10. There is
thus a large-angle reionization bump in the polarization power spectrum due to reionization. This
polarization is correlated with the reionization-induced large-angle temperature bump, and so there
is a large-angle bump also in the TE power spectrum. Since the polarization amplitude is so small,
the signal is most easily seen in TE—i.e., through cross-correlation with the stronger temperature
signal. This turns out to provide a unique constraint to the epoch of reionization. Measurement
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of polarization on large angular scales is, however, notoriously difficult, and there is some tension
between the τ ∼ 0.9-ish values WMAP obtained and the τ ∼ 0.6-ish values Planck is now getting.
CLASS, a JHU-led project, should hopefully clarify the situation.

4 Tensor perturbations, polarization, and B modes

The Boltzmann-ology we worked out above for scalar metric perturbations can be altered to describe
CMB fluctuations from primordial tensor metric perturbations (i.e., gravitational waves), such as
those from inflation. The upshot is that inflationary tensor perturbations wind up producing a B
mode in CMB polarization at ` <∼ 100. If slow-roll inflation describes how things transpired in the
early Universe, then measurements that suggest ε ∼ 0.1 also suggest that this B-mode signal should
be not too small. There is thus considerable effort focussed now on detecting these B modes.

Although there are some complications (e.g., the tensor structure and two polarizations of the
tensor spacetime perturbation), calculation of CMB fluctuations for tensor perturbations entails
a number of simplifications. First of all, there is no gauge degree of freedom to worry about.
Second, the equation of motion for the spacetime metric is trivial—it is just a wave equation in an
expanding Universe. Third, the signal becomes negligible at ` >∼ 100 and so numerical evaluations
are far simpler.

The discussion here is cut and paste from arXiv:1510.06042 by Ely Kovetz and me. We now show
how gravitational waves induce temperature fluctuations and polarization in the cosmic microwave
background. We first derive the angular distribution of photon intensities in the presence of a
gravitational wave (GW). Suppose that the Universe is filled with photons that do not scatter.
In this case, the photon energies are affected only by the form of the metric. Consider a single
monochromatic plane-wave gravitational wave, which appears as a tensor perturbation to the FRW
metric,

ds2 = a2(τ)
[
dτ2 − dx2(1 + h+) + dy2(1− h+) + dz2

]
, (24)

where τ is the conformal time and

h+(~x, τ) ' h(τ)eikτe−ikz, (25)

describes a plane wave propagating in the ẑ direction. This is a linearly-polarized gravitational
wave with “+” (rather than “×”) polarization. Here h(τ) is the amplitude; at early times when
kτ <∼ 1, h(τ) ' const, but then h(τ) redshifts away when kτ >∼ 1. If we construct the Einstein
tensor Gµν from the metric, Eq. (24), then the vacuum Einstein equation Gµν = 0 leads to the wave
equation for h+(~x, t). The “'” sign appears in Eq. (25) because the gravitational waves do not
propagate in a vacuum but rather in a Universe filled with a cosmic fluid. The anisotropic stress of
this fluid (to which the neutrino background contributes after neutrinos decouple) modifies slightly
the time evolution, a calculable ∼ 10% correction to Eq. (25).

Photons that propagate freely through this spacetime experience a frequency shift dν during an
expansion interval dτ determined by the geodesic equation, which in this spacetime takes the form,

1
ν

dν

dτ
= −1

2
(1− µ2) cos 2φe−ikz d

dτ
(heikτ ), (26)
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where µ is the cosine of the angle that the photon trajectory makes with the z axis, and φ is
the azimuthal angle of the photon’s trajectory. This redshifting is polarization-independent, but
polarization is then induced by Thomson scattering of this anisotropic radiation field. To ac-
count for the polarization, we must follow the time evolution of four distribution functions (DFs)
fs(~x, ~q; τ) where ~q is the photon momentum, for s = I, Q, U , and V , the four Stokes param-
eters required to specify the polarization. The original (unperturbed) distribution function is
f̄I(~q, ~x; τ) =

[
ehν/kBT (τ) − 1

]−1
, where kB is the Boltzmann constant and T (τ) the unperturbed

CMB temperature at conformal time τ , and f̄Q = f̄U = f̄V = 0. We then define perturbations
∆se

i~k·~x = 4δfs/(∂f̄/∂ lnT ), suppressing an index ~k for notational economy. Thomson scattering
induces no ciruclar polarization, so ∆V = 0 at all times. Since the gravitational redshift and Thom-
son scattering are frequency independent, the evolution of the distribution function is the same for
all frequencies. Since the ei~k·~x spatial dependence of the DFs is separated out in the definition
of ∆s, the perturbed DFs are functions ∆s(q̂; τ) only of the direction q̂ of the photon and the
conformal time τ . Finally, if we define perturbation variables ∆̃s by

∆I = ∆̃I(1− µ)2 cos 2φ, ∆Q = ∆̃Q(1 + µ)2 cos 2φ, ∆U = ∆̃U2µ sin 2φ, (27)

the new variables ∆̃s(µ; τ) are now functions only of µ and there is a relation ∆̃Q = −∆̃U for
the gravitational wave, a consequence of the fact that the orientation of the photon polarization is
fixed by the direction of the photon with respect to the GW polarization tensor. As a result, the
Boltzmann equations for the distribution functions reduce to two equations,

˜̇∆I + ikµ∆̃I = −ḣ− aωc

[
∆̃I −Ψ

]
, ˜̇∆Q + ikµ∆̃Q = −aωc [∆P + Ψ] , (28)

where here the dot denotes derivative with respect to conformal time. Here, the variable

Ψ ≡
[

1
10

∆̃I0 +
1
7
∆̃I2 +

3
70

∆̃I4 −
3
5
∆̃Q0 +

6
7
∆̃Q2 −

3
70

∆̃Q4

]
, (29)

is given in terms of the Legendre moments ∆̃I`(τ) = (1/2)
∫ 1
−1 dµ ∆̃I(µ; τ)P`(µ) (and similarly for

∆̃Q`), where P`(µ) is a Legendre polynomial. The quantity ωc is, as before, the scattering rate.

Eqs. (28) and (29) look complicated but describe relatively simple physics. The left-hand sides of
Eq. (28) are simply the Lagrangian time derivatives for a Fourier mode of wavenumber k. The ḣ in
the first equation accounts for the intensity variation (described above) induced by the gravitational
redshift; its absence from the second equation is because the gravitational redshift is polarization-
independent. As the presence of the scattering rate ωc suggests, the terms on the right-hand sides
of Eqs. (28) involving Ψ, ∆̃I , and ∆̃P account for Thomson scattering. They are derived using the
dependence dσT /dΩ ∝ (ε̂i · ε̂f )2 of the Thomson differential cross section on the polarization vectors
ε̂i and ε̂f of the initial- and final-state photons. This dependence also explains why a quadrupolar
anisotropy in the incoming radiation is required in order to generate the linear polarization signal.

Still, Eqs. (28) and (29) constitute a set of coupled partial integro-differential equations. In practice,
they are solved numerically by expanding ∆̃I and ∆̃Q in terms of their Legendre moments and thus
recasting the equations as an infinite set of coupled Boltzmann equations for ∆̃I`(τ) and ∆̃Q`(τ).
They are then solved numerically by integrating from some early time and truncating the hierarchy
at some sufficiently high `.

Later we will return to these equations, but for now we show in Fig. 2(b) the resulting CMB
temperature-polarization pattern induced by one gravitational wave propagating in the ẑ direction.
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Figure 2: (a) The CMB temperature-polarization pattern induced by one Fourier mode of the
density field (i.e., a scalar metric perturbation). The polarization pattern varies along a direction
parallel/perpendicular to lines of constant longitude that align with the direction of the wave. The
induced polarization pattern is thus a pure E mode. (b) The same for a single gravitational wave
(i.e., a single Fourier mode of the tensor field). We see that in this case, there is variation of the
polarization not only parallel/perpendicular to lines of constant longitude, but also along directions
45◦ with respect to these lines. There is thus a B mode induced.
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The quadrupolar variation (i.e., the cos 2φ dependence) of the temperature-polarization pattern can
be seen as one travels along a curve of constant latitude, and the wavelike pattern can be seen as one
moves along a line of constant longitude. It can be seen that as we move along the line of constant
longitude, there are variations in Q, the component of the polarization perpendicular/parallel to
those constant-longitude lines. It can also be seen, however, that there are variations in U , the
component of the polarization 45◦ with respect to constant-longitude lines. This, as we will see
below, is a signature of the B mode in the CMB polarization pattern induced by the gravitational
wave. This is to be contrasted with the polarization pattern, shown in Fig. 2(a), for a single Fourier
mode of the density field. In this case, there is no variation along lines of constant latitude, and
there is only variation in Q, and thus no B mode.

5 E and B modes from gravitational waves

The upshot of the above discussion is that the gravitational wave in the ẑ direction, with + polar-
izatoin, induces a polarization tensor,

Pab
~k,+

(θ, φ) =
T0

4
√

2

∑
`

(2` + 1)P`(cos θ)∆̃Q`

(
(1 + cos2 θ) cos 2φ 2 cot θ sin 2φ

2 cot θ sin 2φ −(1 + cos2 θ) csc2 θ cos 2φ

)
.

(30)
If we expand this in tensor spherical harmonics, the resulting coefficients are

aE k̃,+
`m =

√
π(2` + 1)

4(δm,2 + δm,−2)−1

[
(` + 2)(` + 1)∆̃Q,`−2

(2`− 1)(2` + 1)
+

6`(` + 1)∆̃Q`

(2` + 3)(2`− 1)
+

`(`− 1)∆̃Q,`+2

(2` + 3)(2` + 1)

]
, (31)

and

aB k̃,+
`m =

−i

2
√

2

√
2π

(2` + 1)
(δm,2 − δm,−2)

[
(` + 2)∆̃Q,`−1 + (`− 1)∆̃Q,`+1

]
. (32)

We have thus shown explicitly that both the E and B components are nonzero for a gravitational
wave, confirming the heuristic arguments above.

This particular gravitational wave (in the ẑ direction with + polarization) contributes

CBB, ~k,+
` =

1
2l + 1

∑
m

|aB
`m|2 =

π

2

[
` + 2
2` + 1

∆̃Q,`−1 +
`− 1
2` + 1

∆̃Q,`+1

]2

. (33)

to the BB power spectrum, and similarly for CEE
` , with the replacement B→E in Eq. (33). Since

CBB
` is a rotationally invariant quantity, any gravitational wave of this wavenumber k pointing in

any direction, with either polarization, will contribute similarly to CBB
` . We thus obtain the BB

power spectrum from the stochastic gravitational-wave background by summing all Fourier modes,∫
d3k/(2π)3, and over both gravitational-wave polarization states. The final result for CBB

` is thus,

CBB
` =

1
2π

∫
k2 dk

[
` + 2
2` + 1

∆̃Q,`−1(k) +
`− 1
2` + 1

∆̃Q,`−1(k)
]2

, (34)

and analogously for CEE
` . Note that the cross-correlation power spectrum vanishes, CEB

` =
∑m=`

m=−`(a
E∗
`maB

`m)/(2`+
1) = 0, as it should, because aE

(`m) ∝ (δm,2+δm,−2), while aB
(`m) ∝ (δm,2−δm,−2) for a + polarization

gravitational wave propagating in the ẑ direction, and similarly for CTB
` .
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Figure 3: Polarization power: Spectra are shown for primordial B modes with r = {0.1, 0.01, 0.001}
(cyan), lensing-induced B modes (magenta), as well as scalar E modes (red), for comparison. The
±1σ uncertainty due to the current τ constraint is indicated for the r = 0.1 case by the (cyan) shad-
ing. A 90% delensed signal is also shown for comparison (dashed-magenta). Plots were generated
using CAMB with Planck 2015 best-fit parameters.
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Fig. 3 shows results of numerical evaluation of Eq. (34) using CAMB, with the Planck 2015 cosmo-
logical parameters. The “recombination peak” in the power spectrum [multiplied by `(` + 1)/2π]
at ` ∼ 100 arises from gravitational waves that enter the horizon around the time of CMB decou-
pling at redshift z ' 1100. The power drops at smaller ` because longer-wavelength modes were
superhorizon at the time of decoupling and thus have a suppressed effect on subhorizon physics.
The power drops at higher ` because the amplitudes of shorter-wavelength gravitational waves,
which entered the horizon earlier, have begun redshifting away by the time of CMB decoupling.
The “reionization bump” at ` <∼ 10 arises from re-scattering of the CMB by free electrons that
were reionized at redshift z ∼ 8 by ultraviolet radiation from the first stars. The wiggles at higher
` arise from the difference in phases of gravitational waves at different wavelengths at the time of
CMB decoupling. The overall amplitude scales with the tensor-to-scalar ratio r.
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