Particle Astrophysics (171.697) Spring 2012

Problem Set 13

Due: Monday the week after classes end

1. PPN parameter for Brans-Dicke theory: In this problem you will calculate the parameterized post-Newtonian (PPN) parameter γ in BransDicke theory in terms of the Brans-Dicke parameter ω, and you will also relate the Newtonian gravitational constant to ω and the value of the Brans-Dicke scalar λ (in Carroll's notation). To do so, consider the weakfield limit of the spherically-symmetric static vacuum spacetime that surrounds a spherical massive body (e.g., the Sun). Thus, write the spacetime metric as

$$
\begin{equation*}
d s^{2}=-A(r) d t^{2}+B(r) d r^{2}+r^{2} d \Omega^{2} \tag{1}
\end{equation*}
$$

with $A(r)=1+a(r)$ and $B(r)=1+b(r)$, where $a(r) \ll 1$ and $b(r) \ll 1$ (and are both linear in the central mass M) in the weak-field limit. You will also need to write the Brans-Dicke scalar as $\lambda=\lambda_{0}[1+\epsilon(r)]$, where λ_{0} is the value of the Brans-Dicke scalar at large distances, and $\epsilon(r) \ll 1$ (and will also be linear in M). You will then obtain equations of motion for $a(r), b(r)$, and $\epsilon(r)$ by plugging into the Brans-Dicke field equations (for the metric and for the scalar field) retaining terms only to linear order in $a(r), b(r)$, and $\epsilon(r)$. The Newtonian limit is taken by identifying $a(r)=2 G M / r$ (do you know/remember why? if not, think about it), and the PPN parameter γ is defined from $b(r)=2 \gamma G M / r$.
2. The Schwarzchild spacetime and variational principle: Show explicitly that the spherically symmetric static vacuum spacetime that minimizes the Einstein-Hilbert action is the Schwarzchild metric. To do so, write the metric in the form,

$$
\begin{equation*}
d s^{2}=-A(r) d t^{2}+B(r) d r^{2}+r^{2} d \Omega^{2} \tag{2}
\end{equation*}
$$

and show explicitly that the Einstein-Hilbert action is invariant to any linear variations to $A(r)=(1-2 M / r)$ and $B(r)=(1-2 M / r)^{-1}$.
3. (Problem 3.9 in Zwiebach's "A first course in string theory") Gravitational field of a point mass in a compactified (4+1)-dimensional world: In this problem you will show that if there is an extra dimension, curled up into a circle of radius a, then at distanves $r \gg a$, the gravitational force due to a point mass decreases as $1 / r^{2}$, but that at distances $r \ll a$, the force law rises (as $r \rightarrow 0$) as $1 / r^{3}$. This departure, at small
distance scales, from the $1 / r^{2}$ force law has now been sought in the laboratory (most notably by Eric Adelberger and collaborators in Seattle) at distances smaller than 1 mm . OK, Here's the problem: Consider a $(4+1)$ d spacetime with space coordinates (x, y, z, w) not yet compactified. A point mass M is located at the origin $(x, y, z, w)=(0,0,0,0)$.
(a) Find the gravitational potential $V_{g}^{(5)}(r)$. Write your answer in terms of M, the five-dimensional gravitational constant G_{5}, and $r=\left(x^{2}+\right.$ $\left.y^{2}+z^{2}+w^{2}\right)^{1 / 2}$. [Hint: Use $\nabla^{2} V_{g}^{(5)}=4 \pi G_{5} \rho_{m}$ and the divergence theorem.]
(b) Now let w become a compact dimension, a circle with radius a, while keeping the mass fixed. Write an exact expression for the gravitational potential $V_{g}^{(5)}(x, y, z, 0)$. This potential is a function of $R \equiv\left(x^{2}+y^{2}+z^{2}\right)^{1 / 2}$ and can be written as an infinite sum.
(c) Show that for $R \gg a$, the gravitational potential takes the form of a four-dimensional gravitational potential, with Newton's constant G_{4} given in terms of G_{5}, as derived in class. [Hint: Turn the infinite sum into an integral.]

