
Particle Astrophysics 171.697, Spring 2012

Problem Set 6

Due: First class, week 7

Suggested Reading: Carroll, 8.8; Kolb and Turner, Ch. 8; Dodelson, Ch. 6; Liddle
and Lyth, Cosmological Inflation and Large-Scale Structure, Ch. 3; Peebles, Ch. 17.

Preview: This should be an interesting problem set; in it, you will work out several possi-
bilities, many relevant to current research, for inflation, dark energy, and dark matter. The
problems themselves are technically pretty simple, but together they cover quite a bit of
territory. Problem 1 is a straightforward exercise in which you will show that a rolling scalar
field (i.e., a scalar field in a kinetic-energy–dominated phase) acts like matter with pressure
p = ρ. Problem 2 is a pretty involved problem in which you will work out pretty fully the
phenomenological consequences of a particular model for inflation. Problem 3 works through
a particularly intriguing quintessence model (i.e., a scalar-field model for negative-pressure
dark energy in the Universe today) in which the dark-energy density tracks that of the dom-
inant component (e.g., radiation or matter) of the cosmological energy density. Problem
4 is an order-of-magnitude calculation that shows that magnetic monopoles produced at a
GUT phase transition should overwhelm the density of the Universe today (if there were no
inflation); this reproduces a calculation that John Preskill was the first to do around 1980.
Problem 5 shows that oscillations in an anharmonic scalar-field potential can give rise to
exotic equations of state.

1. A w = 1 equation of state from a rolling scalar field. Consider a massless scalar
field; i.e., a scalar field φ(~x, t) whose potential-energy density is V (φ) = 0. Now suppose

that this scalar field is initially rolling, so φ̇ 6= 0, and that the kinetic-energy density
associated with this rolling dominates the energy density of the Universe. Show from the
stress-energy tensor p = ρ for this type of matter. Show that this implies that ρ ∝ a−6,
where a is the scale factor, in two ways: (1) by recalling how the energy density of matter
with an equation of state p = wρ scales with a; and (2) by solving the equation of motion
for φ in an expanding Universe. (This should be a very simple problem.)

2. (From LL 3.7) Phenomenology of λφ4 inflation. Consider V (φ) = λφ4, where λ
is the self-coupling. Assume that the field rolls toward φ = 0 from the positive side.
Calculate the value of φ where each of the slow-roll conditions (i.e., ǫ ≪ 1 and η ≪ 1)
first break down. Do they break down at the same place? Assuming that inflation ends
when ǫ = 1, calculate the number of e-foldings of inflation that occur for an initial value
φi. Demonstrate that the slow-roll solutions with φ = φi and a = ai at t = ti are
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Use the solution for φ to calculate the time that inflation ends. Demonstrate that the
number of e-foldings calculated using the solution for a is the same as that which you
calculated above. Expand the solution for a at small t − ti to demonstrate that the
inflation is approximately exponential in the initial stage. Calculate the time constant
κ [from a ∼ exp(κt)] and demonstrate that it equals the (slow-roll) Hubble parameter
during inflation.

3. Tracker field. Consider a scalar field that rolls down a potential-energy density V (φ) =
V0e

−φ/φ0 . Now suppose that the energy density of the Universe is dominated by ordinary
non-relativistic matter (so a ∝ t2/3), and that the energy density of the rolling scalar field
is negligible compared with the non-relativistic matter. Show that there is a solution to
the scalar-field equation of motion such that the energy density ρφ = (1/2)φ̇2 + V (φ) of
the scalar field scales as ρφ ∝ a−3, the same as the ordinary matter. Does the same thing
happen if the energy density of the Universe is dominated by relativistic matter? This
is the basis for the “tracker-field” solutions that have been discussed in the literature
recently.

4. The monopole problem. Calculate the relic density of magnetic monopoles, assuming
that there is one GUT-mass (∼ 1015 GeV) monopole produced per Hubble volume at the
GUT phase transition (T ∼ 1015 GeV). You should get an unreasonably large number.
There is a bound Ωmonopole

<∼ 10−6 (the Parker bound) to the relic density of magnetic
monopoles in the Universe today. Calculate the number of e-folds of inflation after the
GUT transition required to solve the monopole problem.

5. Anharmonic scalar-field oscillations. In class we argued that if we have a real scalar
field φ with a quadratic potential V (φ) = (1/2)m2H2, and if m >∼ H (implying that the
oscillation frequency is large than the expansion rate), then coherent oscillations of the
scalar field imply that the pressure p = 0 when averaged over an oscillation cycle and thus
that the energy density ρ ∝ a−3. Now consider oscillations in a potential V (φ) = c|φ|n,
where c is a constant. Show that coherent oscillations in such a potential give rise to an
energy density that decays as ρ ∝ a−α, and determine α. Of course, you should recover
α = 3 for n = 2. What value of n is required to produce α = 4 (i.e., radiation)? Can
you think of a physical argument that justifies your result? Likewise, is there a value of
n that produces α = 0? Can you explain this result in physical terms?


