
Week 10: Theoretical predictions for the CMB

temperature power spectrum

April 5, 2012

1 Introduction

Last week we defined various observable quantities to describe the statistics of CMB temperature
fluctuations, chief among them the power spectrum CTT

l . This week we will discuss the theoretical
prediction for the CMB temperature power spectrum from inflationary density perturbations. The
precise calculation is straightforward but extremely complicated. Rather than push through in
its entirety, we will simply calculate it in the large-angle limit, and only under some simplifying
assumptions. We will then discuss some of the qualitative features of the power spectrum on
smaller scales. Next week we will discuss CMB polarization and then inflationary gravitational
waves. Interestingly enough, the full calculation of the CMB power spectrum is simpler in that
case than for the density perturbations because the complications associated with gauge choices
with scalar perturbations are avoided, and we will go through that in detail.

To begin, let’s return to our earlier discussion of density perturbations from inflation. There we
showed that the freezeout of quantum fluctuations in the inflaton gives rise to a primordial spectrum
of inflaton (φ) perturbations with power spectrum

Pφ(k) =
(
H

2π

)2
∣∣∣∣∣
k=aH

. (1)

We then waved our hands and said that if the inflaton dominates the energy density of the Universe
during inflation, then inflaton fluctuations δφ should induce density perturbations δρ. We will now
make this connection precise, recalling that the definitions of these inflaton and density perturba-
tions is gauge dependent; it requires specification of the coordinates we choose for the perturbed
FRW spacetime.

Recall that a coordinate choice on the perturbed FRW involves a threading: i.e., a selection of
timelike curves of fixed ~x. Since the gradients in any such threading (i.e., the physical separation at
fixed t between any two points of fixed ~x) are already first order in perturbations, the perturbations
to scalar quantities (the density and also φ) must be independent of our choice of the threading.

A coordinate choice also involves a slicing of the perturbed FRW spacetime; i.e., a choice of surfaces
of constant t. Recall that the comoving slicing is the slicing in which hypersurfaces of constant t

1



are perpendicular to worldines of comoving (although not necessarily freely-falling) observers. And
the spatially flat slicing is that in which the spatial curvature (3)R = 0.

Now recall that the most general perturbed FRW spacetime can be written,

ds2 = a2(τ)
{
−(1 + 2ψ)dτ2 + 2widτdx

i + [(1− 2ϕ)γij + 2hij ]dxidxj
}
, (2)

with hij traceless: γijhij = 0. Remember also that ψ(~x, τ) and ϕ(~x, τ) are scalars, wi(~x, τ) is a
vector, and hij(~x, τ) is a symmetric trace-free tensor. We also choose hij to be traceless, as any
trace can be absorbed into ϕ. It is straightforward to calculate the spatial curvature, and it turns
out to be

(3)R =
4
a2
∇2ϕ. (3)

If, however, we change to new coordinates x̃0 = x0 + δτ(xµ) and x̃i = xi + δxi(xµ), then in this
new gauge, ϕ̃ = ϕ+ aHδτ .

Now suppose that we have defined a scalar-field perturbation δφ(~x, t) in the spatially-flat slicing.
Then, under a coordinate transformation t̃ = t+ δt(t, ~x), δφ̃ = δφ− φ̇δt. During slow-roll inflation,
φ̇ → 0, so δφ becomes gauge-independent in this limit. Consider now the comoving gauge. In
this gauge, lines of fixed ~x are those in which there is no momentum density; in other words,
~N = −φ̇∇φ = 0. This implies that the time displacement needed to change between the comoving
and spatially-flat slicing is δt = δφ/φ̇ → ∞ as φ̇ → 0. Therefore, the curvature perturbation
R ≡ −ϕ = aHδτ (a gauge-dependent quantity) becomes infinite on comoving slices (and is zero in
the spatially-flat slicing). This singularity is, of course, just a coordinate singularity; it means that
comoving slicing is pretty worthless when φ̇→ 0.

We have now defined a gauge-dependent curvature perturbation R which is 0 in one gauge and
infinite in another....not too useful. We do expect, however, that scalar-field perturbations will in
fact yield honest-to-goodness density perturbations, or at least they should if they are to be at all
useful for seeding primordial structure. We’ll now see how this is done. Recall that

(3)R =
4
a2
∇2ϕ = − 4

a2
∇2R (4)

is the curvature perturbation on spatial hypersurfaces. Let us now focus on an individual Fourier
mode ~k of the scalar-field perturbation δφ. We can then consider the Fourier amplitude of the
density field and the Fourier amplitude R~k

of the curvature perturbation. In what follows, we will
leave out the subscript ~k to avoid cluttered equations. Then,

(3)R = −4k2

a2
ϕ =

4k2

a2
R. (5)

SinceR is independent of the threading, thisR will be the same for any gauge with the same slicing.
Above, we argued that in the limit φ̇→ 0, δφ is the same on any slicing that is nonsingular. We can
therefore assume that the analysis that gave us δφ~k

from inflation gives us δφ in the spatially-flat
slicing. We also know from the definition of R that R = Hδt, where δt is the time-coordinate
displacement between the spatially-flat and comoving slicing. But since this is δt = δφ/φ̇, that
means that R = H(δφ/φ̇). The next step, which we will gloss over (and perhaps leave for a
homework assignment) is to note that the solution of the combined Einstein, continuity, and Euler-
Lagrange equation guarantees that R is constant while k/a � H. Then, the power spectrum for
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the curvature perturbation will be, both at the end of inflation and at horizon re-entry in matter
or radiation domination,

PR(k) =

(
H

φ̇

)2 (
H

2π

)2
∣∣∣∣∣
k=aH

. (6)

During slow-roll inflation, 3Hφ̇ = −V ′, and H2 = 8πV/3m2
Pl, and so we get our final result,

PR(k) =
128πV 3

m6
Pl(V ′)2

=
8

3π2

V

m2
Plε

, (7)

where V and ε are evaluated at k = aH. The Differential Microwave Radiometer (DMR) experiment
aboard

As discussed before, NASA’s Cosmic Background Explorer (COBE; 1991–4) discovered temperature
fluctuations at large angular scales, or large distance scales, in the CMB. Roughly speaking, what
they found was temperature fluctuations corresponding to

[PR(k)]1/2 = 5× 10−5, (8)

at k = a0H0, from which we infer that V 1/4/ε1/4 = 0.027mPl/8π = 6.6 × 1016 GeV. Since ε <∼ 1,
we infer that V 1/4 <∼ 6× 1016 GeV, assuming, of course, that all of the temperature fluctuation is
due to primordial density perturbations. The bound is even stronger if there is some other source
of ∆T/T .

Let’s now understand how those ∆T/T measurements are related to R.

The Sachs-Wolfe plateau. Fig. 1 shows data points from measurements of the CMB power spec-
trum l(l+1)CTT

l /(2π) with the best-fit theory curve superimposed. The first order of business will
be to understand the “Sachs-Wolfe plateau,” the nearly flat behavior of l(l+1)CTT

l , the temperature
power spectrum, for adiabatic primordial density perturbations with a Peebles-Harrison-Zeldovich
(i.e., ns = 1, where ns is the scalar spectral index). More precisely, we will fill in the steps that take
us from the measured temperature power spectrum CTT

l to the amplitude [PR(k)]1/2 ' 5 × 10−5,
claimed in Week 5, for the power spectrum for the curvature perturbation R. (The “Sachs-Wolfe
effect” is the term used loosely for the production of temperature fluctuations in a perturbed FRW
spacetime.) Recalling that

PR(k) =
8
3

V

m4
Plε

, (9)

we will be able to see how measurements of CTT
l constrain this combination of the inflation param-

eters.

Inflation predicts that primordial perturbations are adiabatic; i.e., that the ratios of the energy
densities in each component (baryons, neutrinos, dark matter, photons) is the same from one point
in the Universe to another. Its only the total density that varies from one point to another. What
this means is that the statement that different places in the Universe have slightly different den-
sities is equivalent to the statement that different places in the Universe are at slightly different
cosmological times. In other words, cosmological events like big-bang nucleosynthesis or recombi-
nation proceed in the same way everywhere in the Universe, but at slightly different times in denser
regions than in lower-density regions.
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Figure 1: The temperature power spectrum [l(l + 1)/2π]CTT
l .
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Let’s now consider the CMB fractional temperature fluctuation ∆T (n̂)/T0 as a function of position
on the sky. We will consider temperature fluctuations only on large angular scales (θ � 1◦), those
that probe regions that are causally disconnected at the surface of last scatter. This means that
the temperature fluctuations will depend only on the behavior of superhorizon modes; i.e, the
density-perturbation modes that will contribute to these fluctuations have physical wavenumbers
kphysH � 1, or physical wavelengths λphys � H−1. Thus, the amplitudes of these curvature modes
will be their primordial amplitudes, with the power spectrum given above.

If the conformal time is η [defined by dη = dt/a(t), where t is the time and a(t) the scale factor],
then the unperturbed metric is ds2 = a2(η)(dη2−d~x2). The distance to the surface of last scatter is
thus δη = η0 − ηls, where η0 and ηls are the conformal time today and at last scatter, respectively.

Inflation makes a prediction for the primordial amplitude ϕ of the scalar metric perturbation. We
now need to relate the temperature fluctuation ∆T/T0 to this metric perturbation. When we look
at a direction n̂, we are seeing the surface of last scatter a distance ∆η in that direction. The
first thing to note is that there are two ways that a primordial density perturbation will affect
the temperature we see in a given direction n̂ on the sky. If that region is high density, then the
intrinsic photon temperature will be higher. But a higher-density region corresponds to a deeper
gravitational-potential well, and so the photon temperature will be redshifted as the photons climb
out of that potential well. These two effects (the intrinsic temperature fluctuation and the redshift)
will partially cancel. The degree to which they cancel is determined as follows.

The temperature fluctuation in a given direction is

∆T (n̂)
T0

=
∆Ti

T0
− ϕi, (10)

where (∆Ti/T0) is the intrinsic temperature fluctuation at the surface of last scatter, and ϕi is
the gravitational potential in the Newtonian gauge; i.e., in the gauge where ds2 = a2(η)[−(1 −
2ψ)dη2 + (1− 2ϕ)d~x2]. To simplify, we will approximate the Universe as being completely matter
dominated at the time of decoupling. If so, then ϕ = ψ at decoupling and afterwards. Recall also
that ϕ reduces on sub-horizon scales to the Newtonian potential. We now need to derive a relation
between ∆Ti/T0 and ϕi. Do to so, let’s move to the comoving gauge, that in which time slicings are
isodensity curves. In this gauge, there is no intrinsic temperature fluctuation: (∆Ti/T0)com = 0.
So to get the temperature fluctuation in the Newtonian gauge, we make a change in the time
coordinate t→ t+dt(~x, t), where δt(~x, t) is the time shift required to get from the comoving slicing
to the Newtonian gauge. Remember that aT =constant as the Universe expands, that a ∝ t2/3

during MD, and that in the Newtonian gauge, a proper-time interval is ds = (1 − ϕ)dt. Then,
under the time-coordinate shift δt required to change from comoving to Newtonian gauge, we find
that in the new gauge,

∆Ti

T0
= −δa

a
=

2
3
ϕi. (11)

Putting it all together, we find the famous result,

∆T (n̂)
T0

=
1
3
ϕ(n̂∆η), (12)

relating the observed temperature fluctuation in a direction n̂ to the Newtonian-gauge potential
ϕ(n̂∆η) at the point on the surface of last scatter in that direction.
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Now comes the calculation of the temperature power spectrum. Let’s calculate the contribution of
a single Fourier mode ~k of the density field to the temperature power spectrum CTT

l . To simplify,
we’ll take that Fourier mode to be in the z direction; since Cl’s are rotationally invariant, we’d
get the same result for any other direction. The temperature fluctuation induced by this forward
mode, as a function of n̂ = (θ, φ), is

∆T (n̂)
T

=
1
3
ϕ~k
eik∆η cos θ, (13)

where ϕ~k
is the amplitude of the ϕ Fourier mode. The spherical-harmonic coefficients induced by

this mode are
a

~k
lm =

∫
dn̂

1
3
ϕ~k
eik∆η cos θYlm(n̂). (14)

We then expand the plane wave as

eik∆η cos θ =
∑
l′

(2l′ + 1)jl′(k∆η)Pl′(cos θ), (15)

where Pl(cos θ) = [4π/(2l+1)]1/2 is a Legendre polynomial, and jl(x) is a spherical Bessel function.
Orthonormality of the spherical harmonics then yields,

a
~k
lm =

1
3

√
4π

2l + 1
ϕ~k

(2l + 1)jl(k∆η)δm0, (16)

where δm0 is the Kronecker delta. Using Cl =
∑

m |alm|2/(2l + 1), we find that the contribution of
this mode to the power spectrum is

CTT,~k
l =

4π
9
|ϕ~k
|2[jl(k∆η)]2. (17)

We now have to sum over the expectation value of all Fourier modes ϕ~k
to get the prediction for

the power spectrum CTT
l . To do so requires that we specify our Fourier conventions, which we

haven’t yet done precisely. When this calculation is followed carefully, from the beginning of the
inflationary calculation to the inflationary prediction for Pϕ(k), it turns out that the desired power
spectrum is Pϕ(k) = (k3/2π2)|ϕ~k

|2, and so

CTT
l =

∫
d3k

(2π)3
|ϕ~k
|2 4π

9
[jl(k∆η)]2

=
∫

dk

k
Pϕ(k)

4π
9

[jl(k∆η)]2. (18)

For a Peebles-Harrison-Zeldovich power spectrum (ns = 1) and these Fourier conventions, Pϕ(k) is
constant as a function of k and can thus be taken outside the integral. We then use the fact that∫∞
0 (dx/x)[jl(x)]2 = [2l(l + 1)]−1 to obtain

l(l + 1)CTT
l =

2π
9
Pϕ(k). (19)

This shows that for a scale-invariant primordial spectrum of density perturbations (and for a matter
dominated Universe), l(l + 1)CTT

l is constant on superhorizon scales l � 100, as indicated by the
results of numerical CMB calculations.
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The only remaining step is to figure out how Pϕ(k) is related to PR(k), which is what inflation
gives us. We may be at first tempted to think that ϕ = R, as this is what we inferred was the case
at the end of inflation. However, the relation R = ϕ, does not hold at all times, and is in fact no
longer true when the Universe transitions from the end of inflation to radiation domination and
then later to matter domination. Instead, as shown in Chapter 6 in Dodelson’s book, R = (5/3)ϕ
for modes that enter the Universe during matter domination. (Actually, he shows a factor of 3/2,
but this is the amplitude for modes that enter the horizon during radiation domination. The value
of ϕ for modes that are still superhorizon at matter-radiation equality is decreased by 9/10 at
matter-radiation equality, also as described in Dodelson’s book.) We thus obtain

l(l + 1)CTT
l ' 16π

75
V

εm4
Pl

, (20)

in a critical-density Universe, for l � 200. The measured value is l(l + 1)Cl ' 7 × 10−10, and
from this we infer the value (V/ε)1/4 ' 6.6 × 1016 GeV mentioned in Week 5. If we want to
be a bit more careful, we need to note that this calculation assumes a critical-density Universe.
For a cosmological-constant Universe with Ωm = 0.3 and ΩΛ = 0.7, there is a small additional
contribution (the “integrated Sachs-Wolfe effect”) due to the growth of the gravitational-potential
amplitude at late times, when the Universe becomes Λ-dominated, but this effect is relatively small,
and the inflaton-potential amplitude inferred above is not changed by any more than about 10%.

The reionization optical depth. Through calculations that will be discussed the following two
weeks, the first stars and galaxies to form in the Universe probably do so at a redshift z ∼ 10. The
details of this process are not well understood and it is a subject of very active current investigation.
These stars emit a copious number of ionizing (energies E >∼ 13.6 eV) photons, and these knock
electrons out of hydrogen atoms. With enough such ionizing photons, all of the hydrogen in the
Universe becomes reionized (the “re-” occurs since the stuff was originally ionized at redshifts
z >∼ 1100). Our goal here will be to calculate the optical depth τ for a CMB photon to undergo
Thomson scattering sometime after recombination at redshift z ' 1100 and today. One might
worry (and indeed, we once did) that if that optical depth were comparable to unity, the reionized
intergalactic medium (IGM) would serve as a translucent screen, between us and the surface of
last scatter, that would obscure the structure at the surface of last scatter. In fact, one finds
that if the optical depth is τ , then the probability for a CMB photon from the surface of last
scatter to reach us unimpeded becomes e−τ . Thus, the CMB power spectrum (which is quadratic
in the CMB intensity fluctuation) becomes reduced by e−2τ on scales smaller than the horizon at
the reionization redshift. If the reionization redshift is zr ' 10, then the corresponding multipole
moments are l >∼ lr, with lr ' 200(zr/1100)1/2/

√
3 ' 10 (where the 200 is the multipole moment

corresponding to the sound horizon at recombination, z ' 1100, and the
√

3 is to change from a
sound horizon to a light horizon). Fortunately, a variety of arguments now suggest that τ ' 0.1,
and so the primordial structure in the CMB is visible to us.

Before moving on to calculate τ , it is important and easy to see that only a very tiny fraction
of the baryons in the Universe need to collapse into stars before reionizing the entire Universe.
The basic idea is that roughly 10% of the primordial hydrogen that goes into a star gets burned
to helium releasing, roughly speaking, about 8 MeV per nucleon. Approximating the hydrogen
binding energy by 10 eV, we estimate that roughly 105 atomic binding energies worth of photons
are released for each baryon processed through a star. Not all of this energy is necessarily released in
ionizing photons, but stellar models suggest that a good fraction is. The actual efficiency of ionizing
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photons is a bit lower than one atom per 13.6 eV of photon energy, as some atoms recombine. But
still, the bottom line is that only a tiny fraction of primordial gas is processed through stars before
all of the IGM is ionized.

Let’s assume that all of the electrons in the Universe suddenly become ionized at a redshift zr. The
optical depth to Thomson scattering is thus

τ =
∫ zr

0
neσT c (dt/dz), (21)

where ne = ne,0(1 + z)3, ne,0 = (7/8)Ωbρc/mp (assuming that 75% of the gas in the Universe
is hydrogen and 25% is helium), Ωb is the baryon density in units of the critical density ρc =
3H2

0/(8πG), H0 ' 73.2 km/sec/Mpc is the Hubble constant, mp = 1.67 × 10−24 g is the proton
mass, c is the speed of light, dt/dz is the time interval per given redshift interval, σT = 6.65×10−25

cm2 is the Thomson cross section, and G = 6.67× 10−8 cm3/g/sec2 is Newton’s constant. Using

dt/dz

1 + z
= ȧ/a = H(z) = H0E(z), (22)

where (from the Friedmann equation)

E(z) =
√

Ωm(1 + z)3 + ΩΛ + (1− Ωm − ΩΛ)(1 + z)2, (23)

we find

τ =
3(7/8)ΩbσTH0c

8πGmp

∫ zr

0

(1 + z)2

E(z)
dz. (24)

The integral cannot be evaluated analytically easily for generaly cosmology. However, seeing that
E(z) → 1 as z → 0 and that E(z) → Ω1/2

m (1 + z)3/2 for z � 1, it is apparent that the integral is
dominated by the large-z behavior of the integrand. We thus approximate E(z) ' Ω1/2

m (1 + z)3/2

to obtain

τ ' 0.80
(zr/10)3/2(Ωb/0.416)(h/0.732)

(Ωm/0.24)1/2
. (25)

The current best value for τ is roughly 0.1, although with sizeable errors, consistent with zr ∼
10. The value is obtained by fitting the measured CMB power spectra to several cosmological
parameters simultaneously, but roughly speaking, the current value comes from the amplitude of
the large-angle (low-l) reionization bump in the GG (EE) polarization power spectrum, and also by
comparing the amplitude of the temperature power spectrum at l’s corresponding to the acoustic
peak with the Sachs-Wolfe plateau at large angles (small l).

Photon diffusion and small-scale damping of the CMB power spectrum. On small scales,
the CMB temperature power spectrum is damped, or equivalently, it decays with increasing l. This
is due to the effects of photon diffusion or the finite thickness of the surface of last scatter, and
it is sometimes referred to as “Silk damping.” In words, what happens is that during the time of
recombination, the photon mean-free path is increasing, until it last scatters. Consider now the
penultimate scatter. Before the photon last scatters, it scatters from some other electron, and
there will be a typical distance—the photon diffusion length—between the second-to-last scatter
and the alst scatter. As a result, the CMB intensity we see at a given point on the sky actually
samples a region at the surface of last scatter of size comparable to the diffusion length. Making
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the definition and calculation of the photon diffusion length precise is complicated, but roughly
speaking, it corresponds to the mean thickness of the surface of last scatter.

A very rough estimate (actually, a conservative upper limit) of the photon diffusion length can be
obtained in the following way. We recall that recombination takes place at a redshift z ' 1100, but
that it is not instantaneous. The Universe goes from being completely ionized to almost completely
neutral over a fractional redshift range ∆z/z ' 0.1. When the Universe is completely ionized, the
photon mean free path is extremely small, but when it is completely neutral, the photon mean-free
path is extremely large. Thus, the diffusion length must be given by the distance corresponding
to a fraction ∆z/z of the horizon at the surface of last scatter. This gives rise to a characteristic
angular scale roughly one order of magnitude higher than that of the horizon. Thus, the angular
power spectrum should decrease at values of l roughly (z/∆z)/

√
3 times that of the first acoustic

peak, or l ∼ 1000, which is what we see in the numerical calculations.
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