
Week 4: The growth of density perturbations

January 9, 2012

1 Brief Overview

Over the past few decades, a number of surveys (most recently the Sloan Digital Sky Survey and the
Two-Degree Field) have measured the redshifts of thousands, and now even millions, of galaxies and
used them to plot the three-dimensional distribution of galaxies in the Universe. The conclusion is
that if we smooth the distribution on the largest scales (larger than several hundred Mpc scales),
it approaches a homogeneous distribution, in accord with the assumptions that underlie the FRW
model. However, as we go to smaller scales, there are density fluctuations—overdense regions like
clusters and underdense regions we call voids—which increase in amplitude as we go to smaller
smoothing scales. Roughly speaking, the rms density-fluctuation amplitude is over order unity if
we average on ∼ 10 Mpc scales.

The point of our study of large-scale structure will be to (a) determine how to describe quantitatively
the distribution of mass in the Universe, (b) understand how that distribution is determined from
observations, and (c) understand the origin of this structure; i.e., to develop theoretical models
against which we can compare our quantitative descriptions of the observed Universe. The rules
of the game is that our models for structure formation must be based on the known laws of
physics, primarily gravity, and that the underlying cosmological model is an FRW Universe with
cosmological parameters consistent with observations.

Fifteen years ago, this part of the class would have been a mess; there were tons of scenarios
for structure formation, many of them quite nasty and/or contrived, all of which were consistent
with the scant observations at the time. Now, things are different. We now have a “standard
model” for the growth of structure in the Universe, a well-motivated, relatively simple and elegant
theory that accounts for a huge variety of diverse observations and measurements, some of which
are now quite precise. The name of the model is still up for grabs, but it usually goes by “cold-
dark-matter” (CDM), ΛCDM, or something else. I prefer to call it the inflationary model for
structure formation. This model assumes (all statements to be described more precisely below) (1)
a nearly scale-invariant spectrum of primordial “adiabatic” density perturbations, where the term
“adiabatic” means that the total density of the Universe may vary form one point to another, but
that the ratio of various types of stuff (e.g., the photon-to-baryon or dark-matter–to-baryon ratios)
are the same everywhere. Such primordial perturbations can be produced by inflation, a period of
accelerated expansion right after the big bang. (2) Gravity is the dominant force that moves matter
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on the largest scales. (3) The dark matter, which constitutes ∼ 5/6 of the nonrelativistic matter in
the Universe, is composed of “cold dark matter”, pressureless matter that interacts with everything
else only gravitationally. The best bet is that this stuff is a WIMP, or perhaps another type of
yet-undiscovered elementary particle like an axion, but it could be something else. We will see that
in the CDM model, the interactions of dark matter are assumed to be purely gravitational, and this
simple assumption goes a pretty long way to explaining a lot of observations. (4) The distribution
of galaxies, which are regions of considerable overdensity that contain a lot of gas that can interact
non-gravitationally, is related to the distribution of mass possibly through some non-gravitational
physics.

2 The spherical top hat

The simplest type of perturbation is the spherical top-hat. Consider an Einstein-de-Sitter (i.e.,
critical-density) Universe that is perfectly homogeneous, except for one spherical region of radius
r that has a slightly larger density than the mean density. Birkhoff’s theorem (the relativistic
generalization of Newton’s theorem which states that a spherical shell exerts no gravitational force
on the matter inside) says that we can treat the dynamics of this spherically overdense region by
ignoring everything outside; this is exactly the same argument we used to derive the Friedmann
equations. Then, the acceleration of a mass element at the surface of the sphere relative to the
center of the sphere is

r̈ = −
GM

r2
, (1)

where the dot denotes derivative with respect to time. This equation has a parametric solution,
r = A(1−cos θ) and t = B(θ− sin θ) with A3 = GMB2, which you can check by differentiating and
plugging back into the equation. (The solution should look familiar, because it is the cycloid that
describes the evolution of the scale factor in a closed Universe.) At early times, θ → 0, and we can
expand, sin θ = θ − θ3/6 + θ5/120 − · · · , and cos θ = 1 − θ2/2 + θ4/24 − θ6/720 + · · · . To quintic
order in θ, r = (Aθ2/2)(1 − θ2/12), and t = (Bθ3/6)(1 − θ2/20), so (6t/B)1/3 = θ(1 − θ2/60) and
θ2 = (6t/B)2/3(1 + θ2/30). Therefore,
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The lowest-order behavior as t → 0 is r ∝ t2/3, which is just the growth of the radius of the
unperturbed sphere in the Einstein-de Sitter Universe. The first correction to the unperturbed
behavior results in a fractional change

δr
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, (3)

of the radius of the sphere which implies that the fractional density perturbation is

δ ≡
δρ

ρ
= −3

δr
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=
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, (4)

an approximation that is valid as long as θ ≪ 1, or as long as δ ≪ 1.
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Let us now consider the further evolution of the spherical overdensity. The exact solution indicates
that the sphere reaches a point of maximum expansion, known as “turnaround,” when θ = π at
radius r = 2A at time t = πB. At this time, the radius the sphere would have if it had the mean
(i.e., critical density) is r = (A/2)(6t/B)2/3, so the density contrast at turnaround is

ρ

ρ̄
=


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

(2A)2
[
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2
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)2/3
]3
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
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−1

=
9π2

16
≃ 5.55. (5)

This occurs when the linear theory (which is no longer valid in this regime) predicts δlin =
(3/20)(6π)2/3 ≃ 1.06. In other words, turnaround occurs when the linear-theory perturbation
becomes of order unity.

After turnaround, the sphere begins to undergo gravitational collapse (just like a closed Universe in
its collapsing phase), and the sphere collapses to a point at θ = 2π and t = 2πB, when the (invalid)
linear-theory prediction is δlin = (3/20)(12π)2/3 ≃ 1.69. What happens next falls outside the
framework of the model, but it is supposed that in a real spherical (or nearly spherical) overdensity,
the gas in the spherical overdensity will shock and thus be heated, and the dark matter will
undergo a poorly defined and poorly understood process known as “violent relaxation” in which
the dark-matter particles get redistributed in phase space. The end result is then assumed to
be a gravitationally-bound dark-matter halo with a distribution of gravitational binding energy
U and kinetic energy K given by the virial theorem, U = −2K, and a total energy equal to
the binding energy, U = −GM/rturnaround, at turnaround (when the kinetic energy is zero). If
the final configuration is homogeneous, then the virialization radius rvir = rturnaround = A, and
the radius the critical-density sphere would have at virialization θ = 2π is (A/2)(12π)2/3 . Thus,
at virialization, the density contrast between the virialized sphere and the universal density is
δvir ≡ (ρvir/ρ̄) − 1 = (6π)2/2 − 1 ≃ 177. This analysis has assumed throughout that the outside
Universe has critical density. If Ωm < 1, either because the Universe is open or because it is
critical density with a cosmological constant, then the curvature or cosmological-constant terms in
the Friedmann equation increase the expansion rate of the ambient Universe and so the ambient
density is thus smaller at virialization. A detailed calculation is straightforward by complicated.
The end result is that the virialization density can be approximated δvir ≃ 177Ω−0.7

m .

3 Linear perturbations

The spherical overdensity is instructive since it can be solved exactly, but it is quite an oversim-
plification. More realistically, inflation predicts that the primordial density contrast is δ(~x, ti) with
δ ≪ 1 at some sufficiently early initial time ti, but is otherwise an arbitrary function of position
~x. We will now see what happens to the density perturbation with time. To do so, we write equa-
tions of motion for the cosmological fluid. We will consider volumes of the Universe that are small
compared with the Hubble distance, |~x| ≪ H−1, so that the Hubble velocities are small, v ≪ c.
In that case, we can use the usual nonrelativistic Newtonian fluid-flow equations. The first is the
Euler equation,

∂~v

∂t
+ (~v · ~∇)~v = −

~∇p

ρ
−∇Φ, (6)
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where ~v(~x, t) is the velocity at position ~x at time t, p(~x, t) is the pressure, ρ(~x, t) is the mass density,
Φ(~x, t) is the gravitational potential, and ~∇ = ∂/∂~x. This equation simply says that the acceleration
of a fluid element is determined by the pressure gradient and the gravitational acceleration. The
left-hand side involves the convective derivative D/Dt = ∂/∂t + ~v · ~∇. It says that the rate of
change of a quantity at position ~x is given by the explicit change, as well as the change that occurs
by the movement of fluid at that position. The gravitational potential is determined through the
Poisson equation,

∇2Φ = 4πGρ, (7)

and there is also the continuity equation,

∂ρ

∂t
+ ~∇ · (ρ~v) = 0. (8)

We take as the zero-th order solution to this equation the Hubble flow, ρ(~x, t) = ρ0(t) and ~v=H~x.
The zero-th order solution for the potential is Φ0 = (2πG/3)ρ0|~x|

2. Note that here the subscripts
‘0’ denote the zero-th order (i.e., homogeneous) solution, not the necessarily values today. You can
check that this ρ0, Φ0, and ~v0 satisfy the Euler, continuity, and Poisson equations.

Now we consider small perturbations by writing ~v = ~v0 + δ~v, ρ = ρ0 + δρ, p = p0 + δp, and
Φ = Φ0 + δΦ, where the perturbations are assumed to be small compared with the zero-th order
quantities. Collecting terms in the Euler equation that are first order in the perturbed quantities,

dδ~v

dt
+

ȧ

a
δ~v = −

~∇δp

ρ0
− ~∇δΦ, (9)

where we have used (δ~v · ~∇)~v0 = Hδ~v, and defined d/dt ≡ ∂/∂t + ~v0 · ~∇, the total time derivative
for an observer comoving with the unperturbed expansion. The first-order continuity equation is

dδρ

dt
+ ρ0

~∇ · δ~v + 3Hδρ = 0, (10)

and the Poisson equation is simply ∇2δΦ = 4πGδρ. We then define the fractional density pertur-
bation δ(~x, t) ≡ δρ(~x, t)/ρ0(t), which changes the continuity equation to δ̇ = −~∇·δ~v, where the dot
denotes d/dt, and the Poisson equation to ∇2δφ = 4πGρ0δ. We then note further that δp = c2

sδρ,
where c2

s is the sound speed. We then take the gradient of the (perturbed) Euler equation and
replace ~∇ · δ~v by −δ̇ and arrive at a single equation for δ,

δ̈ + 2
ȧ

a
δ̇ =

(

4πGρ0 + c2
s∇

2
)

δ. (11)

Note that the ∇2 here is a Laplacian with respect to physical (not comoving) coordinate. There is
a slight subtlety in arriving at this equation that arises because ~x = a(t)~r, where ~r is a comoving
coordinate. Because of this, (d/dt)(~∇·δ~v) = (d/dt)(a−1 ~∇r ·δ~v) = (ȧ/a)(~∇r ·δ~v)+a−1~∇r · (dδ~v/dt).
Thus, ~∇ · (dδ~v/dt) = δ̈ − (ȧ/a)δ̇.

Now consider a single Fourier mode of the density field δ(~x, t) = δ~k(t) sin(~k · ~r), where ~k is the
comoving wavenumber of the perturbation, and λ = 2π/k is the comoving wavelength of the
perturbation. Then

δ̈ + 2
ȧ

a
δ̇ =

(

4πGρ0 −
c2
sk

2

a2

)

δ. (12)
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In the absence of expansion (i.e., ȧ = 0), the solution to the equation is δ~k
(t) = e±t/τ , where τ =

(4πGρ0−c2
sk

2
phys)

−1/2 is the growth time (and kphys is the physical wavenumber). For perturbations

with λ > λJ , the Jeans length λJ = 2π/kJ = cs

√

π/Gρ0, gravitational instability overcomes the
pressure resistance, and the perturbations grow. If λ < λJ , the perturbations are stabilized by
pressure gradients, the mode amplitude oscillates with time; i.e., perturbations in the gas propagate
as sound waves, just as they do when we speak in a room. In an expanding Universe, there are
two differences: First, the Jeans wavelength changes with time, and secondly, the growth of the
instability becomes a power law, rather than exponential, as we will now see.

Consider now the case where the pressure is negligible. We then find that linear perturbations
satisfy

δ̈ + 2
ȧ

a
δ̇ − 4πGδρ0 = 0. (13)

The solution to this differential equation governs the time dependence δ(t) of the growth of linear
perturbations. As an example, consider an Einstein-de Sitter (i.e., critical-density) Universe. Then,
ȧ/a = 2/3t, and 4πGρ0 = (3/2)(ȧ/a)2 = 2/3t2. The equation can be solved by plugging in the
ansatz δ = Atn, and the resulting solutions are a growing mode δ(t) ∝ t2/3 ∝ a(t) and a decaying
mode δ(t) ∝ t−1. For the Einstein-de Sitter universe (only), the potential perturbation δΦ remains
constant in time (since ∇2 ∝ a−2 and ρ0 ∝ a−3).

Now consider the growth of nonrelativistic-matter perturbations if the expansion of the Universe
is driven by a combination of radiation and matter (e.g., just before decoupling). Then (ȧ/a)2 =
8πG(ρm + ρr)/3, and if we let y ≡ ρm/rhor = a/aeq serve as our time variable, then we arrive at
an equation,

δ′′ +
2 + 3y

2y(1 + y)
δ′ −

3

2y(1 + y)
δ = 0, (14)

where the prime denotes derivative with respect to y. The solution to this equation is δ ∝ y + 2/3
which at late times is δ ∝ a, the matter-dominated result, but which is constant at early times,
during radiation domination. The other solution to the equation is δ ∝ ln y during radiation
domination. We conclude that perturbations in the nonrelativistic-matter density grow only loga-
rithmically until the Universe becomes matter dominated.

It is important to realize, however, that this analysis is not, strictly speaking, relevant for CDM
models. In this analysis, we have considered nonrelativistic-matter perturbations in an otherwise
smooth radiation background. In CDM models, however, primordial perturbations are adiabatic,
meaning that the fractional energy-density perturbation in the radiation is the same as that in the
matter. The proper treatment of this situation (i.e., the consideration of relativistic perturbations)
is beyond the scope of this class. The basic conclusion that perturbations do not grow during
radiation domination is, however, true for CDM models, although for a different reason. As you will
show in a homework problem this week, sub-horizon perturbations are stabilized during radiation
domination by pressure. More specifically, you will show that the existence of pressure in the
baryon-photon fluid prior to recombination leads to a Jeans length that is comparable to the
horizon. Since the baryon-photon fluid dominates the energy density during radiation domination,
density perturbations do not grow during this time.

Now suppose we have a cosmological constant and/or curvature with Ωm ≪ 1. In this case,
4πGρ0 = (3/2)ΩmH2, and the last term is negligible resulting in an equation, δ̈ + 2(ȧ/a)δ = 0.
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This has solutions δ ∝ constant and δ ∝ a−1. Therefore, the growth of density perturbations is
slowed once the Universe becomes curvature and/or cosmological-constant dominated.

For a model with arbitrary Ωm and ΩΛ, the growing-mode solution is

δgrow ∝
ȧ

a

∫ a

0

da

ȧ3
, (15)

which can be verified by plugging into the differential equation. This integral can be done numeri-
cally, and can be well-approximated by the following semi-analytic fit:

δ(z = 0,Ωm,ΩΛ)

δ(z = 0,Ωm = 1,ΩΛ = 0)
=

5

2

[

Ω4/7
m − ΩΛ +

(

1 +
1

2
Ωm

)(

1 +
1

70
ΩΛ

)]−1

. (16)

For Ωm + ΩΛ = 1, a good approximation is

δ(z = 0,Ωm)

δ(z = 0,Ωm = 1)
≃ Ω0.23

m . (17)

4 Peculiar velocities

According to the continuity equation, δ̇ = −~∇ · δ~v. Therefore, the peculiar velocities induced by
linear density perturbations are curl free. Moreover by re-writing,

δ̇(~x, t) = δ(~x, t)
δ̇

δ
= δ(~x, t)

dδ/da

δ

da

dt
(18)

=
1

a

(a

δ

)

(

dδ

da

)

aHδ(~x, t) = f(Ω)Hδ(~x, t), (19)

where

f(Ω) ≡
a

δ

(

dδ

da

)

≃ Ω0.6
m . (20)

Therefore,
~∇ · δ~v(~x, t) = aHf(Ωm)δ(~x, t). (21)

Therefore, by measuring the peculiar-velocity field and the density field as a function of position
~x, one can measure Ω0.6

m . This was the basis of the POTENT program which in the 1990s was a
popular technique for determining Ωm. Strictly speaking, however, the galaxy distribution that was
used measures δg(~x, t) = bδ(~x, t), where b is the “bias.” In other words, the galaxy distribution is
not necessarily the same as the matter distribution, and the relation between them is quantified by
this fudge factor we call the bias (more below about this). Therefore, what peculiar-velocity surveys
really measured was a quantity β ≡ Ω0.6

m /b, which turned out to be β ≃ 0.6. Note finally that from
the continuity equation, the density perturbation is determined by the gradient of the peculiar
velocity. Thus, peculiar velocities probe in some sense larger scales than do density perturbations.
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5 Cosmological density fields

Inflation does not predict the primordial density field δ(~x, t); it makes predictions about the statis-
tical properties of the density field. We now discuss these statistics. The primordial density field is
said to be a realization of a random field with a correlation function, ξ(~r) = 〈δ(~x + ~r)δ(~x)〉, where
the brackets denote an average over all realizations, or by the ergodic theorem, over the entire
Universe. For a number of reasons which will become apparent later, it is often easier to deal with
the Fourier transform of the density field,

δ̃(~k) =

∫

d3x e−i~k·~x δ(~x). (22)

Note that since δ(~x) is real, δ̃∗(~k) = δ(−~k). With a bit of algebraic manipulation, it then follows
that

〈

δ̃(~k)̃(~k′)
〉

= (2π)3δD(~k + ~k′)P (k), (23)

where δD() is a Dirac delta function, and the power spectrum P (k) is a sort of Fourier transform
of the correlation function,

P (k) =

∫

d3x ξ(~x)e−i~k·~x = 4π

∫

r2 dr ξ(r)
sin kr

kr
. (24)

The inverse transform is

ξ(r) =

∫

d3k

(2π)3
P (k)ei~k·~x =

1

2π2

∫

k2 dk P (k)
sin kr

kr
. (25)

Determination of the matter power spectrum P (k) is a very big deal in physical cosmology today.
Just so you know, some authors prefer an alternative definition,

∆2(k) ≡
1

2π2
k3 P (k), (26)

which is equivalent to d
〈

δ2
〉

/d ln k, where
〈

δ2
〉

= ξ(0) is the zero-lag correlation function, or the
variance of the mass distribution.

If the power spectrum is a power law, P (k) ∝ kn, then the correlation function is a power law
ξ(r) ∝ r−γ with γ = n + 3. For galaxies ξgg(r) ≃ (r/5h−1 Mpc)−1.8 for 1 <∼ ξ <∼ 104, or r <∼ 5h−1

Mpc. The spectral index n > −3 so that ξ → 0 as r → ∞, and it can be shown that n < 4
is required if matter is composed of discrete particles. The spectral index n = 0 is a white-noise
(i.e., no correlations) spectrum, and the n = 1 spectrum is a Peebles-Harrison-Zeldovich or “flat”
scale-invariant spectrum. Such a spectrum is called “flat” because the power spectrum ∆2

Φ(k) for
the potential is k-independent: i.e., k2Φ~k ∝ δ~k.

Strictly speaking, the power spectrum (or correlation function) can be approximated by a power
law over a small range of k (or r), but it cannot be a power law for all k (or all r). To see this,

note that the power spectrum P (K) ∝
〈

|δ(~k)|2
〉

; i.e., it is the variance of the Fourier amplitude

for modes with wavenumber k. It is therefore a positive-definite quantity. Moreover, we must
have P (k) → 0 as k → 0 if homogeneity is to be recovered on large scales. We thus find from
the expression for ξ(r) in terms of P (k) that the correlation function satisfies the integral rule,
∫

∞

0
r2 dr ξ(r) = 0. Therefore, if the mass is correlated (ξ > 0) on small scales, there must be some

anticorrelation (ξ < 0) on large scales to compensate. The correlation function therefore cannot be
a pure power law, and neither can the power spectrum.
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6 The CDM power spectrum

That means that the power spectrum must be something else. We now have a huge amount of
data on the power spectrum, and it agrees quite well with the so-called “CDM” power spectrum,
or more precisely, that predicted by inflation. We will deal with inflation later.

To begin, we note that the comoving scale that entered the horizon at matter-radiation equality
is leq = 16(Ωmh2)−1 Mpc. Fourier modes of the density field with smaller wavelengths therefore
entered the horizon at earlier times, during matter domination, and those with longer wavelengths
entered the horizon at later times, during matter domination. Since we know that the growth of
density perturbations is different during radiation domination than it is during matter domination,
it stands to reason that this distance scale will play an important role in determining the power
spectrum. What we will now see is that the primordial power spectrum Pprim(k), which inflation
predicts is a nearly Peebles-Harrison-Zeldovich primordial power spectrum, Pprim(k) ∝ kn with
n ≃ 1, gets “processed” by the growth of density perturbations once they enter the horizon. The
end result is that the CDM power spectrum today is the “processed” power spectrum P (k) =
Pprimordial(k)[T (k)]2, where T (k) is a “transfer function” that takes into account the effects of
gravitational amplification of a density-perturbation mode of wavelength k.

The precise calculation of T (k) is exceedingly complicated and is accomplished with numerical
codes. The codes calculates for each Fourier mode ~k the time evolution of the density-perturbation
amplitudes for baryons, photons, dark matter, and neutrinos, taking into account interactions
between the photons and the baryons and also taking into account the effects of free streaming
of neutrinos and also free streaming of photons near and after recombination. The growth of the
gravitational potential, as well as more general metric-perturbation variables that arise in a full
relativistic treatment, are also taken into account. There are now publicly available codes, such as
CMBFAST and CAMB, that one can download to calculate the power spectrum for a variety of
cosmological parameters, as well as for different assumptions about the primordial power spectrum,
the nature of primordial perturbation (adiabatic or otherwise), and the masses of neutrinos.

The basic qualitative features of the power spectrum are, however, easy to understand. Inflation
predicts that the primordial perturbations are nearly scale invariant, which means that the ampli-
tude of each Fourier mode Φ~k

of the gravitational potential enters the horizon with roughly the same
amplitude. We then need to recall two other facts: (1) During matter domination, Φ~k

(which is
∝ k−2δ~k) remains constant in time; and (2) during radiation domination, δ~k remains constant with
time (because of the stabilizing effects of radiation pressure, as discussed above). Since the density-
perturbation amplitude (rather than the gravitational potential) remains fixed during radiation
domination, modes that enter the horizon have their growth “stunted” relative to what they would
be if they entered during matter domination. Since δ~k

∝ k2Φ~k
, the small-wavelength modes that

enter the horizon during radiation domination have their growth suppressed by T (k) ≃ (k/keq)
−2.

The transfer function should thus be approximately,

T (k) ≃

{

1, k <∼ keq,
(k/keq)

−2, k >∼ keq,
(27)

where keq = 2π/leq. Thus, if Pprimordial(k) ∝ kn, the processed power spectrum is P (k) ∝ kn for
k ≪ keq and P (k) ∝ kn−4 for k ≫ keq.
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The numerical calculations can be fit reasonably well by the following analytic form,

T (k) =
ln(1 + 2.34 q)

2.34 q

[

1 + 3.89 q + (16.1 q)2 + (5.46 q)3 + (6.71 q)4
]−1/4

, (28)

where

q ≡
k

Ωmh2 Mpc1
. (29)

This functional form has the asymptotic behavior derived above, up to a logarithmic correction
which is related loosely to the logarithmic growth of density perturbations during radiation domi-
nation that we discussed above. When plotted as a function of k, the CDM power spectrum P (k)
rises as kn (with n ≃ 1) at small k, it then peaks near keq, and then falls as kn−4 ∼ k−3 at large
k. The value of k at which the power spectrum peaks is proportional to Ωmh2. Usually, however,
the power spectrum is plotted not as a function of k, but as a function of the observable kh (since
distances scale with the Hubble parameter h). Thus, when plotted as a function of kh, the value
of kh at which the power spectrum peaks scales with the parameter Γ ≡ Ωmh.

Neutrino damping. There is one other important thing to note. During the times just before
and then after matter-radiation equality, when density perturbations begin to grow, neutrinos
are free streaming; i.e., they move with the velocity of light. They can therefore transport en-
ergy/momentum from one point in the Universe to another and therefore act to smooth the density
field. If, however, the neutrinos constitute a negligible fraction of the energy density of the Uni-
verse (which is true if they are massless), then the effect of free streaming on the power spectrum
is negligible. If, however, the neutrino has a small mass (e.g., a few eV), then it might contribute
to the energy density in a non-negligible way. If so, then free streaming of neutrinos will serve to
damp the perturbations on scales smaller than their “free-streaming length”, which is defined to
be the distance they travel before they become nonrelativistic; i.e., the horizon distance when the
temperature becomes comparable to the neutrino mass Tν ≃ mν . You will calculate this distance
more precisely in your homework. Roughly speaking, though, the neutrino damping length is on
order 10 Mpc for mν ∼eV; i.e., scales probed by galaxy surveys like SDSS and 2dF. Measurements
of the power spectrum by these surveys can thus limit the neutrino mass to less than a few eV, a
more stringent bound than the Cowsik-McLelland bound of ∼ 10 eV.

7 Smoothed density fields

In practice, it is impossible to measure the density perturbation δ(~x) at a particular point. Instead,
it is only possible to measure the density perturbation smoothed over some volume. We thus replace
the density field δ(~x, t) by a smoothed field,

δR(~x, t) =

∫

d3r W (~r)δ(~x + ~r), (30)

where W (~r) is a window function. The most common window function is the spherical top hat of
radius R: WR(r) = 3/(4πR3) for r < R and W (r) = 0 for r > R. The Fourier transform of this
particular window function is W (k) = (3/y3)(sin y − y cos y) = 3j1(y)/y, where y = kR and j1(y)
is a spherical Bessel function. The power spectrum for the smoothed density field is P (k)|W (k)|2,
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and the variance of the mass distribution smoothed with a sphere of radius R is thus,

σ2(R) =
1

2π2

∫

P (k) |W (k)|2 k2 dk. (31)

This leads us to the famous σ8 which is the variance of the mass distribution smoothed on R = 8h−1

Mpc scales: i.e.,

σ2
8 =

1

2π2

∫

P (k)

[

3j1(kR)

kR

]2

k2 dk. (32)

This quantity is often used to normalize the power spectrum. It turns out to be σ8 ≃ 1 for galaxies.

10


