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1 Introduction

Last week we discussed relativistic cosmological perturbation theory. CMB fluctuations provide one
of the principal motivations for developing relativistic cosmological perturbation theory. We will
shortly see how this works. First, though, we need to discuss how CMB fluctuations (temperature
and polarization) are quantified; i.e., what you measure and what the theory is supposed to predict.

2 CMB Temperature Fluctuations: Flat Sky

Suppose we are given a temperature map on a small region of the sky. The entire sky is a spherical
surface (a two-sphere), but a sufficiently small region can be approximated as flat. In this case,
measurements provide a map T (~θ) as a function of ~θ on the sky. The description of this temperature
field is analogous to that for the projected galaxy distribution that we dealt with earlier. First, we
expand T (~θ) in terms of Fourier modes,

T̃ (~l) =
∫

d2~θ T (~θ)ei~θ·~l. (1)

The theory does not predict what T (~θ) nor what T̃ (~l) are—rather, theory makes predictions for
the statistics of this temperature field. The simplest such statistic is (in Fourier space) the power
spectrum CTT

l defined by 〈
T̃ (~l)T̃ (~l′)

〉
= (2π)2δD(~l +~l′)CTT

l , (2)

where the average is over all realizations of this field. Since T (~θ) is real, T̃ ∗(~l) = T (−~l). Thus,
Eq. (3) can equivalently be written,〈

T̃ (~l)T̃ ∗(~l′)
〉

= (2π)2δD(~l −~l′)CTT
l , (3)

In principal, a precise measurement of CTT
l would require that we average over many realizations

of the temperature field. Nature, though, provides us with only one realization; i.e., our Universe.
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There is thus always some finite precision, some “cosmic variance,” with which this power spectrum
can be measured. We’ll make that statement more precise later.

The presence of the Dirac delta function is a consequence of, or statement of, statistical homogene-
ity; i.e., that there is no preferred location in the Universe. This can be understood as follows:
Each of these plane waves can be thought of as a state of momentum ~̀. In QFT, invariance of
a theory under spacetime invariance leads to momentum conservation, and that conservation of
momentum introduces a momentum-conserving delta function in correlation functions. The same
argument applies here. Likewise, the fact that the power spectrum CTT

l depends only on the mag-
nitude l ≡ |~l|, and not on the direction of ~l, is a consequence of statistical isotropy; i.e., there is no
preferred direction in the Universe.

A given power spectrum implies a two-point correlation function (check signs and factors of
two in last step),

CTT(α) ≡
〈
T (~θ)T (~θ + ~α)

〉
=

∫
d2~l

(2π)2
CTT

l

=
∫ ∞

0

l dl

2π
J0(lθ)CTT

l . (4)

Note that the two-point correlation function is independent of position ~θ, a consequence of statistical
homogeneity, and independent of the direction of α, a consequence of statistical isotropy.

If the temperature field is Gaussian, then each Fourier amplitude T̃ (~l) is selected from a Gaussian
distribution of variance CTT

l . More precisely, Gaussianity implies that the two-point probability
distribution function P (T1, T2) for the temperature to take on a value T1 at position ~θ1 and T2 at ~θ2

is a multivariate Gaussian with variances CTT(0) and covariance CTT(|~θ1− ~θ2|). This then implies
that all odd-number higher correlation functions vanish:〈

T (~θ1)T (~θ2) · · ·T (~θn)
〉

= 0 for n = odd. (5)

It also implies that all even-number higher correlations are disconnected; e.g., the four-point cor-
relation function is〈

T (~θ1)T (~θ2)T (~θ3)T (~θ4)
〉

= CTT(|~θ1 − ~θ2|)CTT(|~θ3 − ~θ4|)

+CTT(|~θ1 − ~θ3|)CTT(|~θ2 − ~θ4|) + CTT(|~θ1 − ~θ4|)CTT(|~θ2 − ~θ3|).(6)

A six-point correlation function would consist of all 15 permutations of products of two-point
correlation functions, etc.

In Fourier space, Gaussianity implies that all odd-numbered higher spectra are zero:
〈
T̃ (~l1)T̃ (~l2) · · · T̃ (~ln)

〉
=

0 for all odd n. E.g., the “bispectrum,” the three-point correlation function in Fourier space, is zero.
The even-numbered spectra functions are simply related to the power spectrum. So, for example,
the “trispectrum” T (~l1,~l2,~l3,~l4), the four-point correlation function in Fourier space, defined by〈

T̃ (~l1)T̃ (~l1)T̃ (~l1)T̃ (~l1)
〉

= (2π)2δD(~l1 +~l2 +~l3 +~l4)T (~l1,~l2,~l3,~l4), (7)
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is
T (~l1,~l2,~l3,~l4) = Cl1Cl3δD(~l1 +~l2)δD(~l3 +~l4) + 2permutations. (8)

The simplest single-field slow-roll (SFSR) models of inflation predict that primordial perturbations
should be extremely close to Gaussian, and current measurements constrain departures from Gaus-
sianity to be extremely small, no more than O(0.1%)—we will make this statement more precise
below. Still, models for inflation beyond the simplest SFSR models often predict departures from
Gaussianity. If so, then, e.g., the bispectrum may be predicted to be nonzero, although small. There
are also a variety of late-time effects that may make the observed temperature map non-Gaussian,
even if the primordial map is Gaussian. For example, weak gravitational lensing induces small
departures from Gaussianity, as we will see below, and there may be other more exotic late-time
effects that induce non-Gaussianity.

For example, some inflationary models (e.g., the curvaton, in which it is quantum fluctuations
in a spectator field, the “curvaton,” not the inflaton, that give rise to primordial perturbations)
predict non-Gaussianity to be approximated by “local-model” non-Gaussianity. In this model, the
temperature T (~θ) is written in terms of a Gaussian field t(~θ) as

T (~θ) = t(~θ) + 3fnl

{
[t(~θ)]2 −

〈
[t(~θ)]2

〉}
, (9)

where fnl, the non-Gaussianity parameter, quantifies the departure from Gaussianity. In the limit
that fnl → 0, T (~θ) becomes Gaussian. Noting that

〈
[T (~θ)]2

〉
∼ (10−5)2, the non-Gaussian term,

fnlt
2, is smaller than the Gaussian part by a factor of ∼ fnl

〈
T 2
〉
. Current constraints are |fnl| <∼ 100,

implying that non-Gaussianity is empirically at the <∼ 0.1% level.

If we have non-Gaussianity of the form, it induces a bispectrum B(l1, l2, l3), defined by〈
T̃ (~l1)T̃ (~l2)T̃ (~l3)

〉
= (2π)2δD(~l1 +~l2 +~l3)B(l1, l2, l3), (10)

(note the momentum-conserving delta function, a consequence of statistical homogeneity), with

B(l1, l2, l3) = 6fnl(Cl1Cl2 + Cl2Cl3 + Cl1Cl3), (11)

which follows if t(θ) is Gaussian with power spectrum Cl. In other models for non-Gaussianity, the
bispectrum may have a different functional dependence on l1, l2, l3. Note, however, that statistical
isotropy/homogeneity dictates that the bispectrum be a function only of the magnitudes l1, l2, and
l3, not their directions. In other words, the bispectrum depends only on the size and shape of the
triangle, not its orientation in space. There will then be a nonzero three-point correlation function
(in configuration) space associated with this bispectrum.

The local model also induces a trispectrum a new connected part (i.e., the part in addition to the
disconnected part given above) of the trispectrum given by

Tc(~l1,~l2,~l3,~l4) = f2
nl

[
P l1l2

l3l4
(|~l1 +~l2|)

+ P l1l3
l2l4

(|~l1 +~l3|) + P l1l4
l2l3

(|~l1 +~l4|)
]
,

(12)
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where

P l1l2
l3l4

(|~l1 +~l2|) ≡ 4C|~l1+~l2| [Cl1Cl3 + Cl1Cl4

+Cl2Cl3 + Cl2Cl4 ] . (13)

The trispectrum is nonvanishing only for ~l1 + ~l2 + ~l3 + ~l4 = 0, that is, only for quadrilaterals in
Fourier space.

We have not yet discussed measurement of the power spectrum, bispectrum, correlation functions,
etc. That is more easily understood in the full-sky formalism to which we now turn.

3 CMB Temperature: Full-sky formalism

Suppose now that we have data from a satellite experiment, like COBE, WMAP, or Planck, that
provides the temperature T (n̂) as a function of the direction n̂ = (θ, φ) on the full sky. A spherical-
harmonic transform,

T (n̂) =
∑
lm

aT
lmYlm(n̂), (14)

aT
lm =

∫
dn̂ T (n̂)Y ∗

lm(n̂), (15)

provides the full-sky analog of a Fourier transform. Statistical isotropy and homogeneity now imply〈
aT

lm(aT
l′m′)∗

〉
= Clδll′δmm′ . (16)

Here the “momentum-conserving” Dirac delta function, a consequence of statistical homogeneity,
is replaced by an “angular-momentum–conserving” Kronecker delta. The lack of any dependence
on m is a consequence of statistical isotropy; i.e., no preferred m implies no preferred direction (or
vice versa). Reality of T (n̂) now implies a∗lm = (−1)mal,−m.

Suppose now that we had a perfect (i.e., no instrumental noise, full sky coverage, and perfect
angular resolution) map T (n̂). We would then construct the aT

lms and our estimator for the power
spectrum would then be

ĈTT
l =

1
2l + 1

l∑
m=−l

|aT
lm|2. (17)

Let’s think about this measurement a bit more carefully, though. Theory predicts the expectation
values

〈
|aT

lm|2
〉

= CTT
l when averaged over a ensemble of universes, or assuming ergodicity, a spatial

average over all observer positions in the Universe. However, we only observe a single realization
of the ensemble from a single location. Therefore, even if we had an ideal (full-sky coverage, no
foreground contamination, infinite angular resolution, and no instrumental noise) experiment, the
accuracy with which the estimator above could recover the power spectrum would be limited by a
sample variance known as “cosmic variance.” Moreover, there will be finite angular resolution and
instrumental noise to be taken into account, even if we have a full-sky map. The naive estimator
above must then be altered to take these effects into account, and the noise with which we can
measure the power spectrum may then be increased beyond the irreducible cosmic variance.
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Consider a temperature map Tmap(n̂) of the full sky which is pixelized with Npix pixels. If we assume
that each pixel subtends the same area on the sky then we can construct multipole coefficients of
the temperature map using

dT
lm =

∫
dn̂

(
Tmap(n̂)

T0

)
Ylm(n̂) ' 1

T0

Npix∑
j=1

4π

Npix
Tmap

j Ylm(n̂j), (18)

where Tmap
j is the measured temperature perturbation in pixel j, and n̂j is its direction. The

difference between dlm and alm is that the former includes the effects of finite beam size and
detector noise. The observed temperature Tmap

j = Tj + T noise
j is due to a cosmological signal Tj

and a pixel noise T noise
j . If we assume that each pixel has the same rms noise, and that the noise in

each pixel is uncorrelated with that in any other pixel, and is uncorrelated with the cosmological

signal, i.e.
〈
T noise

i T noise
j

〉
= T 2

0

(
σT

pix

)2
δij and

〈
Ti T

noise
j

〉
= 0, then

〈
dT

lmdT ∗
l′m′

〉
=

〈
aT

lmaT ∗
l′m′

〉
+
〈
aT,noise

lm

(
aT,noise

l′m′

)∗〉
= |W b

l |2CT
l δll′δmm′ +

〈
aT,noise

lm

(
aT,noise

l′m′

)∗〉
, (19)

where we have written the expectation value of the cosmological signal in terms of that, , CTT
l ,

predicted by theory multiplied by a (Fourier-space) window function |W b
l |2. This window function

arises because the thing we measure is not the temperature in direction ~θ, but rather the smoothed
temperature field,

∫
d2~θ′T (~θ′)W (|~θ − ~θ′|), where W (α) is a window function which we model as a

Gaussian of full-width half-maximum of θfwhm. Thus, if the observed temperature is a convolution
of the actual temperature with a window function W (α), then in Fourier space, the observed Fourier
moments are multiplied by the Fourier transform W b

l which, if the beam is Gaussian, is given by
W b

l ≈ exp(−l2σ2
b/2), with σb = θfwhm/

√
8 ln 2 = 0.00742 (θfwhm/1◦).

The second term in Eq. (19) is

〈
aT,noise

lm

(
aT,noise

l′m′

)∗〉
=

1
T 2

0

Npix∑
i=1

Npix∑
j=1

(
4π

Npix

)2 〈
T noise

i T noise
j

〉
Ylm(n̂i) Y ∗

l′m′(n̂j)

=
(
σT

pix

)2

Npix∑
i=1

4π

Npix
Ylm(n̂i) Yl′m′(n̂j)

 4π

Npix

=
4π
(
σT

pix

)2

Npix
δll′ δmm′ ≡ CTT,noise

l δll′δmm′ , (20)

where the last line defines the noise power spectrum CTT,noise
l . Therefore, the moments measured

by the map are distributed with a variance〈
dT

lmdT ∗
l′m′

〉
= DTT

l δll′δmm′ , (21)

where
DTT

l ≡ CTT
l |W b

l |2 + CTT,noise
l , (22)

is the power spectrum for the map.
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So now let’s suppose we’re given a map—i.e., we’re provided with measured temperatures Tj in
each pixel. We then do the (discretized) spherical-harmonic transform in Eq. (18) to get the dT

lm,
and from those we get an estimator

D̂TT
l =

1
2l + 1

l∑
m=−l

|dT
lm|2, (23)

for the map power spectrum. Once we have this, we then obtain an estimator for the CMB power
spectrum CTT

l from
ĈTT

l =
(
D̂TT

l − CTT,noise
l

)
|W b

l |−2. (24)

We now evaluate the measurement error associated with this estimator for CTT
l . Recall that if

xi are Gaussian random variables with variances 〈xixj〉 = σ2
ij , then

〈
x2

i x
2
j

〉
= σ2

iiσ
2
jj + 2σ2

ij , and〈
x3

i xj
〉

= 3σ2
iiσ

2
ij .

〈(
D̂TT

l

)〉
=

∑
mm′

〈
|dT

lm|2|dT
lm′ |2

〉
(2l + 1)2

=
∑
mm′

(
DTT

l

)2

(2l + 1)2
[(1− δmm′) + 3δmm′ ]

=
(
DTT

l

)2
[
1 +

2
(2l + 1)2

]
. (25)

Thus, the variance with which CTT
l can be measured is(

∆CTT
l

)2
≡

〈(
ĈTT

l

)2
〉
−
〈(

ĈTT
l

)〉2

=
{〈(

D̂TT
l

)2
〉
−
〈(

D̂TT
l

)〉2
}
|W b

l |−4

=
2

2l + 1

(
CTT

l + CTT,noise
l |W b

l |−2
)2

. (26)

Note that even if we are given a perfect map—i.e., no noise, CTT,noise
l = 0—there is a cosmic-

variance error ∆CTT
l =

√
2/(2l + 1)CTT

l with which we can measure the power spectrum. In-
strumental noise increases the error. Note also that the presence of the window-function factor
|W b

l |−2 ∝ el2σ2
b implies that the noise contribution grows expontially for l >∼ σ−1

b which makes
sense: you can’t measure structure effectively on angular scales smaller than the beam.

Let’s now turn to the bispectrum on the full sky. The CMB bispectrum is given by

Bm1m2m3
l1l2l3

≡ 〈al1m1al2m2al3m3〉 . (27)

The reduced or angle-averaged bispectrum is defined as

bl1l2l3 ≡
∑

m1m2m3

(
l1 l2 l3
m1 m2 m3

)
Bm1m2m3

l1l2l3

√(2l1 + 1)(2l2 + 1)(2l3 + 1)
4π

(
l1 l2 l3
0 0 0

)−1

(28)
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where the matrices are Wigner-3j symbols. The bispectrum Bm1m2m3
l1l2l3

must satisfy the triangle
conditions and selection rules: m1 + m2 + m3 = 0, l1 + l2 + l3 = even, and |li − lj | ≤ lk ≤ li + lj for
all permutations of indices. Thus, Bm1m2m3

l1l2l3
consists of the Gaunt integral, Gm1m2m3

l1l2l3
, defined by

Gm1m2m3
l1l2l3

≡
∫

d2n̂Yl1m1(n̂)Yl2m2(n̂)Yl3m3(n̂)

=

√
(2l1 + 1) (2l2 + 1) (2l3 + 1)

4π

(
l1 l2 l3
0 0 0

)(
l1 l2 l3
m1 m2 m3

)
. (29)

This Gaunt integral Gm1m2m3
l1l2l3

is real, and satisfies all the conditions mentioned above.

The bispectrum can be written in terms of the reduced bispectrum through

Bm1m2m3
l1l2l3

= Gm1m2m3
l1l2l3

bl1l2l3 , (30)

using used the identity,

∑
m1m2m3

(
l1 l2 l3
m1 m2 m3

)
Gm1m2m3

l1l2l3
=

√
(2l1 + 1)(2l2 + 1)(2l3 + 1)

4π

(
l1 l2 l3
0 0 0

)
. (31)

With a little effort, you can convince yourself that the reduced bispectrum bl1l2l3 is equivalent in
the flat-sky limit (li � 1) to the flat-sky bispectrum B(l1, l2, l3) discussed above.

Eq. (28) provides the recipe to measure the bispectrum. Ignoring instrumental noise, the estimator̂bl1l2l3 is constructed from that equation by replacing Bm1m2m3
l1l2l3

by aT
l1m1

aT
l2m2

aT
l3m3

. The effects of
noise can be dealt with following a sequence of steps analogous to those for the power spectrum.

You can show that the functional form for the full-sky bispectrum for the local model is identical
to that (derived above) for the flat sky.

The skewness,

S3 ≡
〈(

∆T (n̂)
T

)3
〉

(32)

is the simplest statistic characterizing the non-Gaussianity. It is expanded in terms of bl1l2l3 from

S3 =
1

2π2

∑
2≤l1l2l3

(
l1 +

1
2

)(
l2 +

1
2

)(
l3 +

1
2

)(
l1 l2 l3
0 0 0

)2

bl1l2l3 . (33)

This is the honest-to-goodness skewness of the CMB. However, if we are measuring the CMB with
an experiment with window function W b

l then the skewness of the map is obtained by including a
factor W b

l1
W b

l2
W b

l3
in the right-hand side. The l = 0 and l = 1 modes are excluded from the sum as

they cannot be measured.
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