Ay101

Fall 2002

PHYSICS OF STARS

Problem Set 1

Due Wed, October 9, 2002

1. Assume a star obeys a linear density model so that

$$\rho(r) = \rho_c(1 - r/R),$$

where ρ_c is the central density and R is the radius of the star.

- a. Find the ratio of the radiation pressure to the gas pressure at the center of this star as a function of the total stellar mass (expressed in units of M_{\odot}).
- b. Evaluate the central pressure P_c ; i.e., find the values of A, x, and y in the expression $P_c = A(M/M_{\odot})^x (R/R_{\odot})^y$.
- 2. An eclipsing-binary system has a parallax of 0.1 arcsec, and for the moment we assume that this measurement is extremely accurate. It consists of two solar-mass stars identical to the Sun with a semi-major axis of 500 R_{\odot} . The period is very accurately known.
 - a. What is the angular size of each of the stars and of the semi-major axis? If you can measure angles on the sky with a 1σ rms accuracy of 0.01 arcsec, what is the percentage accuracy of the measurement of the semi-major axis and of the radius of each star?
 - b. Assume that the flux as a function of wavelength is given by a Planck function (i.e., its a blackbody) with effective temperature $T_{\rm eff} = 5800$ K. Assume that we have measurements of the flux ratio between $\log(\nu) = 14.0$ and 15.0 (where ν is given in Hz) that have an accuracy of 10%. With what precision can we determine the $T_{\rm eff}$ of the stars from these measurements?
 - c. What is the uncertainty in the mass of the system if the uncertainty in the parallax is taken as given in part a, 0.01 arcsec?
 - d. What is the luminosity of each star calculated from the T_{eff} and the R, and what is the uncertainty in the calculated luminosity of each star in this binary?
 - e. We can measure the apparent flux at the Earth from this star to an accuracy of 5%. Can we derive a more accurate luminosity and/or a more accurate radius from this observation than from relying on the measured parallax and the $T_{\rm eff}$ determined in part d?

- 3. Assume that the star-formation rate per unit mass of gas cloud is equal to 0 for $M \leq 0.05\,M_{\odot}$, and equal to KM^{-x} , where M is the stellar mass, K is a constant, and x=2.5 for $M \geq 0.05\,M_{\odot}$. Assume that the star-formation rate has been constant for the age of the galaxy, which we take as 12 billion years. In addition, assume that the main-sequence lifetime varies as K_1M^{-3} for $M \leq 10\,M_{\odot}$ and K_2M^{-2} for $M \geq 10\,M_{\odot}$. The relationship between K_1 and K_2 is determined by the condition that the main-sequence lifetime is continuous at $M=10\,M_{\odot}$.
 - a. Determine the stellar mass M_* whose main-sequence lifetime is 12 Gyr.
 - b. Let N_1 , N_2 , N_3 , and N_4 equal the number of stars per unit volume in the mass intervals $M < M_*$, $M_* < M < 1.4 M_{\odot}$, $1.4 M_{\odot} < M < 10 M_{\odot}$, and $M > 10 M_{\odot}$. Find the predicted ratios N_2/N_1 , N_3/N_1 , and N_4/N_1 .