Ay101 Fall 2002

PHYSICS OF STARS

Problem Set 4

Due Mon, October 28, 2002

- 1. In this problem we apply the Eddington approximation with boundary conditions from the two-stream approximation to determine what happens when an incident radiative flux F_I falls on a planetary atmosphere that only scatters radiation (no absorption or emission) that lies above a ground that absorbs all radiation. Let F_R be the reflected flux. Take the atmosphere to have optical depth τ_* and the ground to be completely absorbing (i.e., neglect any energy emitted by the ground).
 - a. Calculate the mean intensity $J(\tau)$ as a function of optical depth τ in the atmosphere.
 - b. Solve for F_R/F_I .
 - c. Determine the limb darkening function $I(\mu)/I(0)$.

2.

- a. Calculate the ratio of H^- to neutral hydrogen for T=6000 K and an electron pressure of 30 dynes/cm². Assume all the atoms in a given ionization state are in the ground state of that ion. The statistical weight for the ground state of neutral hydrogen is 2 and that for H^- is 1. The ionization potential of H^- is 0.7 eV.
- b. For a wavelength near 6000 Å, which levels of H can contribute to the bound-free opacity? What is the population of those levels relative to the ground state? What is the ratio of the H⁻ bound-free opacity to that of H at that wavelength? What happens at a wavelength of 3000 Å? What has changed there?
- 3. Make a flow chart for a program that computes model stellar atmospheres. Your flow chart should contain at least 5 and not more than 25 subroutines. Provide a few-sentence description of the function of each of the subroutines in your program.
- 4. Imagine that for the stellar atmosphere for the Sun, the only source of opacity was hydrogen absorption; i.e., neglect H⁻, metals, etc. Calculate the emergent energy distribution in the continuum. For simplicity, use a grey atmosphere temperature distribution and a depth-independent absorption coefficient; i.e., use $\kappa(H)$ for $T_{\rm eff} = 5800$ K. Plot the emergent flux $F_{\lambda}(0)$ for the surface. Describe qualitatively how inclusion of H⁻ and free-free emission would change your results.