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1. Rybicki and Lightman calculate the cooling rate in a plasma due to brehmsstrahlung

from electron-ion elastic scattering. Why can we neglect electron-electron scattering?

Or proton-proton scattering? What about proton–alpha-particle scattering in a fully

ionized plasma with 25% helium by weight? Estimate in order of magnitude only the

cooling rates from these other processes.

2. This problem considers free-free emission from HII (ionized hydrogen) regions (the anal-

ysis can also apply to x-ray observations of galaxy clusters). Assume an HII region has

a uniform electron temperature T and density ne, which we would like to determine by

observational means. The emission measure EM is defined to be

EM ≡

∫

n2

e ds.

a. Show that the free-free optical depth in the radio regime can be written

τ ff
ν = 0.018 T−3/2Z2ν−2ḡff .

b. Show that this implies that the integrated flux from the HII region is Fν ∝ ν2 for

ν < ν∗ and that Fν is nearly flat, but slowly falling, for ν > ν∗. (You will need to

use expressions from Fig. 5.2 in RL to do this latter part.)

c. The Orion nebula has a spectrum that looks like that in part b, with ν∗ ∼ 1 GHz

and Fν∗ ∼ 300 Jy, and it subtends an half-angle of 4 arcmin at a distance of 500 pc.

Estimate the temperature T and the electron density ne. Now suppose someone tells

you that the temperature is 8000 K. What is the electron density you obtain?

d. Now suppose that the HII region is spherically symmetric and has roughly constant

temperature, but is not uniform in density and has ne ∝ r−m, with m some constant

value. Show that the free-free emission from such a source has Fν ∝ να with α =

(6− 4m)/(1− 2m). What limitations on m are required for validity of this formula?

3. The Crab nebula surrounds the radio pulsar PSR 0531+21 created by the supernova of

1054 AD. The nebula has a radius of 1.8 pc (3 arcmin), and its highly polarized emission

is believed by some to be due mostly to synchrotron radiation from electrons, positrons,



and magnetic field expelled by the central pulsar and entering the nebula at a termination

shock of radius 0.1 pc (10 arcsec). The radio spectrum of the nebula is astonishingly

uniform, Iν ∝ ν−0.27 for 107 Hz< 1013 Hz, with variations of spectral index of less than

0.01. The emission from 1012.5
−1013.5 Hz is dominated by thermal emission from heated

dust in and around the nebula. Above 1013.5 Hz, the spectrum is again dominated by

synchrotron radiation, and gradually steepens from Iν ∝ ν−0.75 in the optical through

ν−1 in soft x-rays and still steeper in the hard x-ray and gamma-ray. The spectrum of

the integrated light from the nebula is shown in the figure.

At frequencies above the radio, the spectral index is not constant: half of the total radio

flux comes from within 100 arcsec, half of the total optical flux from within 70 arcsec,

and half of the total 1 keV x-ray flux from within 40 arcsec.

a. Suppose that beginning at time t = 0, relativistic electrons have been injected at a

constant (in time) rate S(γ) ∝ γ−p with a power-law distribution in Lorentz factor

γ; i.e., S(γ)dγ is the number of electrons in the interval γ → γ +dγ injected per unit

time. Determine the electron distribution N(γ, t), where N(γ, t)dγ is the number of

electrons with Lorentz factors between γ and γ + dγ. Define γc to be the Lorentz

factor for which the cooling time tc = γ/γ̇ equals the age T of the remnant. Show

that for γ < γc (cooling time longer than the age), N(γ, T ) ∼ TS(γ), while for

γ > γc (cooling time shorter than the age), N(γ, T ) ∼ tcS(γ). Thus, show that

the synchrotron spectrum Fν ∝ ν−α steepens in spectral index by ∆α = 0.5 above

νc ≃ 3Beγ2

c /(4πmec).

b. Such a steepening (“break”) occurs around 1013 Hz in the Crab. Use this and your

result of (a) to estimate the injection-energy index p and the magnetic field B (in

Gauss) in the Crab nebula.

c. Show that the total energy We in the electrons that produce the Crab’s synchrotron

radiation is

We = 3 × 1048

(

3 × 10−4 G

B

)1.5

erg.

Hints: Do not worry about factors of two. Show that the contributions to We from

electrons radiating at frequency ν is ∝ ν1/2Lν ∝ ν1/2−α, and thus from the figure is

dominated by the electrons radiating in the decades around 1013 Hz.

d. Compare the energy We to the total magnetic energy WB = V B2/8π, where V is

the volume of the Crab nebula. Find the B that minimizes We +WB. How does this

compare to the B you estimated in part (b)?

e. Using the B you estimated in part (b), estimate the energy, synchrotron lifetime,

and gyroperiod of the electrons radiating at 5 × 1014 Hz (optical), 2.4 × 1017 Hz (1

keV), and 2.4 × 1021 Hz (MeV).

f. In a simple magnetically dominated magnetohydrodynamic model of the pulsar wind

shock, the post-shock wind has v ∼ 0.5c(rs/r)
2, where rs = 0.1 pc is the radius at

which the pulsar wind reaches ram-pressure balance with the nebula. The post-shock



B(r) ∝ r. Assume that B(r) reaches the value you found in part (b) at 1 pc, half

the nebula radius. Assume that all the electron acceleration occurs at the shock

and that thereafter the electron energies are affected only by synchrotron losses.

Calculate the size you expect for the x-ray emitting region, and compare it to the

value quoted in the introduction. Show that the size at other frequencies should

scale as r(ν) ∝ ν−1/9.

g. In the best current theory for acceleration at the pulsar wind shock, the electron

spectrum is a relativistic Maxwellian [i.e., S(γ) ∝ γ2 exp(−γmec
2/kT )] with kT ∼

500 GeV with a power-law tail S(γ) ∝ γ−2 extending to 1000 TeV. What portions of

the spectrum shown in the figure can this theory explain? Be careful when thinking

about the radio region of the spectrum, and be sure to consider what N(γ) is for a

Maxwellian for γmec
2
≪ kT .


