
High-Energy Astrophysics
(Ay125), Spring 2009

Problem Set 5

Due: In class, 7 May 2009

1. Problem 2.1 in Frank, King, and Raine.

2. The Trapping Radius in Spherical Accretion (from Phinney via
Bildsten). Consider a purely spherical flow onto a black hole with mass
M that dissipates (and radiates) an energy per gram of ≈ GM/r as it falls
from r to r/2. Even though clearly some of the energy must be escaping
as radiation, presume that the matter still is roughly falling at the free-fall
speed all the way, as we outlined in the opening paragraph at top.

(a) Calculate the optical depth to Thomson scattering from an inner
radius r to infinity

∫
σThnedr as a function of the accretion rate.

(b) At what accretion rate (call this Ṁc) does the optical depth become
unity at rg = 2GM/c2? How does Ṁc relate to ṀEdd?

(c) For Ṁ > Ṁc, the innermost parts of the flow becomes optically thick
and the flow just takes in all the internal energy. The black holes goes
gulp! Calculate the “trapping radius”, rt, as a function of Ṁ/Ṁc.

(d) What is the luminosity, L, that escapes to infinity in the regime
Ṁ > Ṁc? How does the efficiency, η, depend on the ratio Ṁ/Ṁc?

(e) Find L and Ṁc for a 108 M⊙ black hole.

3. Stellar spindown due to Keplerian disk (from Bildsten adapted from
FKR 4.1). Imagine a Keplerian disk where matter is neither expelled nor
accreted, but simply extracts angular momentum from the central star at
a constant rate No = Iω̇, where ω is the central star’s spin frequency and
I is the stellar moment of inertia.

(a) Show that at a distance far from the stellar surface, the flux from a
surface of the disk is

F (r) =
3No(GM)1/2

8πr7/2
, (1)

where M is the stellar mass.

(b) Integrate this flux up to the stellar surface so as to get the total
luminosity. How does it compare to the rotational energy loss of the
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central star, Lrot = Iωω̇? Is it more or less? Does the ratio of the
luminosities depend in some simple way on the rotation rate of the
central object, ω. Discuss the energy balance and what assumptions
might go bad as one gets close to the star.

(c) Again, focus on the region at large radii where the simple equation
1 should be adequate. Start by replacing No with Lrot and then
fully work out an α disk model presuming that Kramer’s opacity
predominates and that the pressure is that of a completely ionized
ideal gas. Do this for a neutron star with M = 1.4M⊙ and scale your
solution with a fiducial Lrot = 1036 erg s−1 and a spin period of one
second. Find h, T in the mid-plane, and Σ as a function of radius
(for r > 100 km).

(d) Given the density and temperature in the mid-plane, estimate the ra-
dius at which the hydrogen becomes neutral. How does this position
depend on Lrot?

4. Irradiated thin disk. Here’s a simplified version of FKR 5.3. Consider
a spherical star of radius R∗ and uniform temperature T∗ radiating like a
blackbody. Assume the star is surrounded by an infinitesimally thin disk
of optically thick material. Show that the temperature T (r) of this “pas-
sive” disk scales as r−3/4 at large distances r. Compare this temperature
distribution with that from a standard thin accretion disk and explain
how you would distinguish the two with observations of a young star.

5. Do FKR problem 5.5.
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