
Magnetic Fields and Cosmic Rays
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The material on magnetic fields is assembled from several sources, but primarily from various places
in Bruce Draine’s book. The section on cosmic rays is taken primarily from Ch. 40 in Draine.

1 Flux freezing

The first thing to know is that magnetic fields are frozen into a plasma; i.e., the magnetic fields
are preserved within and move with the plasma. To a very good approximation, the degree of
ionization in almost any astrophysical system is sufficiently large, even in molecular clouds and HI
regions, so that magnetic fields are flux frozen.

To see this, we start with Ampere’s and Faraday’s laws which are, respectively,

∇× B =
4π

c
J

∇× E = −1

c

∂B

∂t
, (1)

and we also recall that the magnetic field is divergence-free, ∇·B = 0. Note that we have neglected
the displacement current, (1/c)∂E/∂t, on the right-hand side of Ampere’s law. You can convince
yourself that if the fluid motions in question are all nonrelativistic, v ≪ c, then the effect of this
term are negligible. If the plasma is ionized, then there will be free electrons that can carry an
electric current; i.e., there will be a finite conductivity σ. Free electrons are accelerated in the
presence of E and B fields by the Lorentz force, or put another way, there is a current given by
Ohm’s law,

J = σ
(

E +
v

c
× B

)

, (2)

where v is the fluid velocity. We now solve this equation for E and substitute into Faraday’s law
to obtain,

1

c

∂B

∂t
= −∇×

(

J

σ
− 1

c
v × B

)

. (3)

We then eliminate J in favor of B with Ampere’s law to obtain

∂B

∂t
= ∇× (v × B) +

c2

4πσ
∇2B, (4)

where we have used ∇×∇× B = −∇2B (which follows from ∇ ·B = 0).
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Now consider a closed loop L that moves with the fluid, and let Φ(t) be the magnetic flux through
that loop:

Φ(t) =

∫

dS · B, (5)

where the integral is over a surface S bounded by the loop. The time derivative of the flux is

dΦ

dt
=

∫

dS · dB

dt
+

∮

B · (v × dL)

=

∫

dS · dB

dt
+

∮

dL · (B × v)

=

∫

dS · dB

dt
+

∫

dS · ∇ × (B × v)

=

∫

dS ·
[

∂B

∂t
+ ∇× (B × v)

]

=

∫

dS · c2

4πσ
∇2B. (6)

Thus, in the limit σ → ∞, the flux through the loop is conserved; i.e., magnetic-field lines move

with the plasma.

Still, the conductivity is finite. For v = 0, we have (∂B/∂t) = (c2/4πσ)∇2B, a diffusion equation
with diffusion coefficient c2/4πσ. Thus, the timescale for a magnetic field with a coherence length
L to decay is roughly

τdecay ≃ 4πσL2

c2
. (7)

The finite conductivity in a hydrogen plasma arises from electron-proton Coulomb scattering, and
the conductivity is then

σ ≃ 0.59
(kT )3/2

e2m
1/2
e ln Λ

= 4.6 × 109 sec−1

(

T

100K

)3/2 (

30

ln λ

)

, (8)

where ln Λ is the Coulomb logarithm. We thus find

τdecay ≃ 5 × 108 yr

(

T

100K

)3/2 (

30

lnλ

) (

L

AU

)2

. (9)

The bottom line is that magnetic fields are very long-lived for ISM distance scales.

2 Evidence for ISM magnetic fields

2.1 Faraday rotation

A plasma has a frequency-dependent index of refraction. The speeds of electromagnetic waves that
propagate through that plasma thus have a frequency-dependent velocity. If there is a source (e.g.,
a pulsar) that emits pulsed radiation, then the arrival times of those pulses will depend on the
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frequency (and the time delay depends on ν−2, where ν is the frequency). Measurement of these
time delays can be used to infer the dispersion measure,

DM ≡
∫ L

0

ne dL, (10)

where ne is the electron density and the integral is carried out along the line of sight to the source.
For example, a pulsar at a distance of 3 kpc might have a dispersion measure DM ≃ 100 cm−3 pc,
obtained from a pulse time delay ∼ 0.4 sec.

If the plasma is magnetized, then there is an additional effect that acts on the polarization of
the electromagnetic wave. Suppose there is a magnetic field in the plasma directed along the line
of sight. Electrons will then spiral in one particular direction around this magnetic field, and so
the indexes of refraction for right- and left-circularly polarized electromagnetic waves will differ.
The propagation speeds for right- and left-circularly polarized waves will therefore differ slightly.
Recalling that a linearly-polarized wave is a superposition of two circularly-polarized waves, the
linearly-polarized wave will undergo something like a beat phenomenon that occurs when two waves
of slightly different frequencies are superposed. What this results in is a rotation of the linear
polarization of a linearly polarized EM wave by an angle, Ψ = RM λ2, where λ is the wavelength
and

RM =
1

2π

e3

m2
ec

4

∫ L

0

neB‖ dL = 8.12 × 10−5

∫ L
0

neB‖dL

cm−3 µG pc
rad cm−2. (11)

Then, if the DM and RM are both measured, the electron-density–weighted mean line-of-sight
magnetic field is

〈

B‖

〉

=
RM

8.12 × 10−5 rad cm−2

cm−3 pc

DM
µG. (12)

This can be measured along many different lines of sight, and also to pulsars at different distances
along similar lines of sight, to get information about the three-dimensional magnetic field. Mea-
surements indicate magnetic fields B ∼ 2 − 4µG in the spiral arms and slightly smaller in the
interarm regions, with a sign flip between arm and interarm.

2.2 Synchrotron radiation

Evidence for Galactic magnetic fields also comes from synchrotron radiation emitted by relativistic
electrons moving in Galactic magnetic fields. There are two lines of reasoning: (1) The intensity
of synchrotron radiation depends on both the magnetic-field strength and the energy density in
relativistic electrons; as the magnetic-field strength is increased, the electron density is decreased
and vice versa. The total energy density (magnetic field plus electron density) is minimized, and
obtains a reasonable value, in “equipartition,” the magnetic-field and electron energy densities are
comparable.

(2) Synchtron radiation is polarized if the magnetic fields are coherent. If the magnetic field is
homogeneous, then the polarization is p = (γ + 1)/(γ + 7/3) ≃ 0.73, where γ is the electron
spectral index. Observations show p = 0.1−0.2, typically, a consequence of incoherence or Faraday
depolarization, beam effects, etc. Still, the variation of the polarization across the sky can be used
to infer a magnetic-field pattern in the Galaxy.
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2.3 Zeeman shift

A magnetic field splits the electronic energy states of the same l into 2l + 1 energy levels split by
energies ∼ µBB ≃ 5.78× 10−15 (B/µG) eV, where µB = e~/2mec is the Bohr magneton. Magnetic
fields of strength 1−100µG give rise to level splittings that are too small to be detected in sub-mm
or shortward (hν >∼ 10−4 eV). The splitting in the 21-cm line (hν = 5.9×10−6 eV) is split by ∼ 10−8

for a 10 µG field. This is smaller than the v/c ∼ 10−5 frequency shifts from velocity broadening
in molecular clouds or the IGM and thus unobservable. However, Zeeman splitting gives rise to a
difference in the frequencies of the two circular polarizations of the transition radiation, and these
can be detected and have been used to measure magnetic-field strengths in HI regions in the ISM.

Diffuse clouds studied in 21-cm absorption this way have been found to have B ≃ 6 µG implying
a magnetic pressure B2/8πkB ≃ 104 cm−3 K, several times larger than the gas pressure nT ≃
3000 cm−3 K. Thus, magnetic fields may be dynamically important in HI regions. Zeeman splitting
shows magnetic fields ∼ 10 µG in the Orion A GMC. The HI regions in shell-like structures (e.g.,
North Celestial Loop, the North Polar Spur Loop, and the shell around the Eridanus superbubble)
have ∼ 10 µG fields whose pressure appears to be preventing the clouds from further compression
by supernova shocks.

2.4 Polarization of starlight

Evidence that polarization of starlight was due to interstellar dust came from (a) the correlation
between the magnitude of the polarization and the reddening, and (b) the coherence in the polar-
ization between different stars in the same region of the sky. The polarization percentage peaks
near the B band (5500 Å) and follows the empirical Serkowski law,

p(λ) ≃ pmax exp
[

−K ln2(λ/λmax)
]

, (13)

with λmax ≃ 5500 Å and K ≃ 1.15. The peak polarization falls in the range 0 ≤ pmax <∼
0.03 (AV /mag).

Heuristically, the polarization arises if dust grains are elongated and somehow aligned. If so, then
the absorption of light polarized along the long axis may differ from that along the short axis. The
dust grains appear to be aligned by the interstellar magnetic field with their shortest axes parallel
to the magnetic field; the mechanism is not well understood and is a subject of active current
research. Since extinction increases toward the UV, while the polarization decreases, it suggests
that the grains responsible for the polarization have radii a ≃ 2(λmax/2π) ≃ 0.1µm. In the UV,
one moves to the geometric-optics limit, and both polarizations are absorbed similarly. Thus, the
V band extinction must be due largely to a ≃ 0.1 µm grains, and these grains must be nonspherical
and aligned with the magnetic field; and grains with a <∼ 0.05µm, which dominate the exinction at
λ <∼ 0.3µm are either spherical (which seems unlikely) or minimally aligned.
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3 Molecular clouds

In molecular clouds, magnetic fields can be measured further by Zeeman splitting in the OH Λ-
doubling lines (1.665, 1.667, 1.720 GHz) or in the CN 1− 0 rotational transition (113 GHz). Fields
strengths vary in molecular clouds from 0.1 to 3000 µG. There is a trend for larger B in regions
of larger density (with nH going from 10 to 107 cm−3), but there is a large scatter in the B
fields found at any fixed nH . The trend implies, roughly speaking, Alfven speeds, vA = B/

√
8πρ ∼

(nH/104 cm−3)0.15 km sec−1. Comparing with the three-dimensional turbulent-velocity distribution
σv implies vA/σv ≃ 0.75 (nH/104 cm−3)0.46. Thus, magnetic fields are dynamically important, and
the turbulence in molecular clouds is more correctly MHD turbulence. Magnetic fields can also be
mapped with polarization of background starlight or from polarization of 350 µm emission from
dust.

Dynamically-important magnetic fields in molecular clouds can also be inferred from the Chandrasekhar-
Fermi method. If the magnetic field were dynamically unimportant, then turbulet motions would
disperse the magnetic-field directions. If the dispersion in the magnetic-field direction is found
to be small, then the magnetic fields have enough “weight” that the are not pushed around by
turbulence.

4 Alignment of Interstellar Dust Grains

Any theory for the alignment of dust grains with magnetic fields that is observed must account for
(a) the alignment of the dust angular momentum with the magnetic field, and (b) the alignment
of a principle axis of the body of the grain with the angular momentum. This problem received
additional interest in the last decade or so with the CBI (Cosmic Background Imager; PI: Tony
Readhead) discovery of excess emission in the ∼ 30 GHz band. The explanation was dipole radiation
from spinning dust, and if this was the explanation, then it implied that that emission might be
polarized, a possible foreground for measurement of the CMB polarization.

4.0.1 Precession of the angular momentum about the magnetic field

The rotation periods are from milliseconds to less than a nanosecond (cf., the 30-GHz emission).
The dust grain will generally have a magnetic moment parallel to the angular velocity for two
reasons: (1) If the grain has an electric charge Q, which is usually distributed on the surface, the
rotation gives rise to an magnetic-dipole moment µ = Qa2ω/3. This gives rise to the precession of
the angular momentum in the presence of a magnetic field, with precession frequency,

ΩL =
5

8πρ
UB = 1.7 × 10−8

(

3 g cm−3

ρ

)(

U

Volt

)(

B

5µG

)

sec−1. (14)

This is a precession period P = 2π/ΩL ≃ 10 yr.

(2) But there is another, and usually stronger, effect, the Barnett effect, the spontaneous magnetiza-
tion of a material due to the alignment of the spins of unpaired electrons with the angular velocity.
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The energetics are such that the spin state parallel (rather than antiparallel) to the angular velocity
is preferentially occupied. The induced magnetic moment is µ = −χV ~ω/gµB , where g ≃ 2 is the
gyromagnetic ratio, and χ ≃ 10−4(20 µK/Tgr) is the magnetic susceptibility of interstellar dust
grains. The precession period is then

τBarnett =
2π

ΩB
=

2πIω

µB
=

4πgµBρa2

5~χB

≃ 0.8

(

a

0.1µm

) (

10−4

χ

)(

5µG

B

)

yr, (15)

a very short period. Therefore, the properties (e.g., long-to-short axis ratio) of the dust grains
should be averaged over the precession cone. Moreover, the timescales for change of the local
magnetic field in the ISM are generally long compared with this timescale, and so the alignment of
the grains will change with the magnetic field.

4.0.2 Alignment of the grain body with the angular momentum

The angular velocity is not generally required to be aligned with one of the principle moments of
inertia of the grain. However, dissipation will tend to align it. Consider for example an oblate
spheroid with moments of inertia I1 > I2 = I3. The rotational kinetic energy is

Erot =
J2

2I
+

J2(I1 − I2)

2I1I2

sin2 θ, (16)

where θ is the angle between the angular momentum and the direction of the principle moment
of inertia. This rotational energy is minimized when θ = 0; i.e., when the angular momentum is
aligned with the principle moment. If θ 6= 0 initially, then the grain tumbles and dissipation (i.e.,
heating of the grain) can allow the energy to decrease, while conserving angular momentum, until
the angular momentum is aligned. This would be true at zero temperature, but if the grain has a
finite temperature, then detailed balance tells us that the alignment cannot be perfect. As long as
the spin is suprathermal—i.e., J2/I ≫ kBT—the grain alignment will be excellent.

4.0.3 Alignment of angular momentum with the magnetic field

For a long time, the favored hypothesis was the Davis-Greenstein mechanism. If the angular
momentum is not aligned with the magnetic field, then as the dust grain rotates, it sees a time
varying magnetic field. If the material is paramagnetic (as required for the Barnett mechanism to
work), then the dust grain sees a rotating component of the magnetic field, and this gives rise to
a rotating component to the induced magnetization of the grain. This time-varying magnetization
dissipates (paramagnetic dissipation), converting that induced magnetic moment into heat, until
the angular momentum is aligned with the magnetic field. The timescale for this dissipation is

τDG =
2ρa2

5KB2
= 1.5 × 106 a2

−5

(

ρ

3 g cm−3

)[

10−13 sec

K(ω)

](

5µG

B

)2

yr, (17)

where K(ω) = Im[χ(ω)/ω] ≃ 10−13 (18K/Tgr) sec in terms of the complex susceptibility χ(ω).
Unfortunately, though, the mechanism doesn’t work. If the angular momentum is purely thermal,
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J2/2I ≃ kBT , then tandom collisions with gas atoms will tend to change the angular momentum

on the timescale τM ≃ 1.45 × 105
(

ρ/3 g cm−3
)

a−5(30 cm−3/nH)T
−1/2
2 yr required for the grain to

run into its own mass of gas. If the Davis-Greenstein mechanism were the whole story, and if the
rotation was thermal, then the alignment would be increasing with τM/τDG ∝ a−1. This would
imply alignment of a <∼ 0.01µm grains, but no alignment of a >∼ 0.1µm grains, opposite to what is
seen.

Since Purcell (1979), it has been thought that suprathermal rotation, J2/2I ≫ kBT , might solve the
problem. He speculated that suprathermal rotation might occur if radiative processes at the surface
of the grain, and/or ejection of molecular hydrogen, occurred anisotropically on the surface of the
grain. Suppose, for example, we launched all our rockets from one launch pad, but that launch pad
was skewed relative to the vertical. Then each time a rocket was launched, it would give the Earth
the same angular-momentum kick. Each kick might be small, but launch enough rockets and the
Earth would experience a significant torque. Unfortunately, though, further investigation suggests
that the emission properties that would do this should change on timescales short compared with
τDG. There is also a problem with thermal flipping, a process whereby the grain changes from one
flip state, at constant angular momentum. In this case, if there was anisotropic emission fixed in
body coordinates, then it would have a positive torque half the time and negative torque the other
half.

The currently popular scenario is radiative torques. If the starlight background is anisotropic, then
the inverse of some of the processes Purcell discussed could work, the only difference being that the
torque in body-fixed coordinates would change sign upon a change in the flip state. This scenario
is now empirically favored because it accounts for the observed decrease in polarized emission from
deep within the molecular cloud (where the anistropic starlight has been presumably absorbed),
and because it spins up the larger dust grains more effectively than the small ones.

5 Cosmic ray energy spectrum and composition

Most of the energy density in cosmic rays comes from ∼GeV protons, but there is a power-law
energy distribution, dΦ/dE ∝ E−γ of cosmic-ray protons extending to >∼ 1011 GeV. The spectral
index is γ ≃ −2.65 from 10 GeV to ∼ 107 GeV, and it then steepens (at the “knee”) to γ ≃ −3. The
cosmic rays at E <∼ 107 GeV are probably accelerated in supernova remnants. The highest-energy
cosmic rays are extragalactic in origin.

The vast majority of cosmic rays are protons, but there are all kinds of heavier elements, the next
most abundant being helium. The elements Li, Be, and B are overabundant relative to what is
produced in stars. The explanation is that heavier elements run into ISM protons and “spallate”
into lighter nuclei, including these non-stellar nuclei. These spallation cross sections are known, and
so we can infer from the abundance of these “secondary” nuclei relative to the primary ones that
primary cosmic rays propagate through a ∼ 6 g cm−2 of material before arriving. This is consistent,
assuming they travel at the speed of light, with a propagation lifetime ∼ 107 yr. Measurements
of the relative abundances of various radioactively unstable isotopes obtains age estimates perhaps
an order of magnitude larger, suggesting, perhaps, that the cosmic rays spend some fraction of the
time outside the disk, where the ISM density is lower.
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5.1 Acceleration of cosmic rays

The original suggestion of Fermi, now referred to as “second-order Fermi acceleration,” now takes
a back seat to “first-order Fermi” or equivalently, “diffusive shock” acceleration. We’ll consider the
latter. We do know empirically that charged particles are accelerated in astrophysical shocks; they
are ubiqituous anywhere there are magnetic fields. They are known to have highly non-thermal
power-law energy spectra. The basic idea, which we will go through, is correct, but detailed im-
plementation in genuine astrophysical situations is extremely complicated and highly uncertain.
One way to think of cosmic-ray acceleration is as follows: Magnetized astrophysical plasmas can
be thought of as macroscopic objects that move with some velocity dispersion that defines a “tem-
perature” T ∼ (1/2)Mv2, where M is the mass of a coherence region of plasma. Charged particles
are microscopic things with energies E that bounce off of these macroscopic objects. According to
equipartition, these scatterings should tend to equilibrate the two temperatures, and so the scatters
tend to take the huge energy associated with macroscopic plasma motions and transfer it to the
individual charged objects.

To be a bit more quantitative, let’s suppose that there is a shock propagating through a magnetized
plasma. Now suppose that there is a charged particle moving in the vicinity of the shock with a
velocity greater than the shock velocity. The particle can scatter from magnetic-field fluctuations
in both the post-shock and pre-shock regions; we are then to imagine a scenario where the particle
bounces back and forth between the pre- and post-shock regions, passing through the shock each
time it does so. In the frame of the shock, the pre- and post-shock fluids are both moving toward
the shock, and the velocity difference between the two is ∆v = (1 − 1/r)vs, where r = vs/v2 is the
shock compression ratio (and v2 is the velocity of the post-shock fluid) parametrizes the strength of
the shock. Each time the particle crosses the shock, it gets a momentum kick; the kinematics are
exactly the same as the elastic bouncing of a ping-pong ball from a moving paddle. The momentum
kick is ∆p = 2(∆v/3w)p, where w is the original particle velocity. Averaging over all angles of
incidence to the shock, this becomes 〈∆p〉 = 2(∆v/3w)p. If the particle has a mean time trefl

before being reflected back, then the (inverse) acceleration time is

t−1
acc(p) ≡ 〈(d/dt) ln p〉 = (1/p) 〈∆p〉 t−1

refl = (4/3)(∆v/w)t−1
refl . (18)

Each time the particle crosses the shock, it also has some probability to escape downstream from
the shock. The mean time for this to happen is tesc.

Let’s now consider the momentum distribution f(p) of particles near the shock. Conservation of
particle number tells us that

∂

∂p
(f ṗ) +

∂f

∂t
= − f

tesc
, (19)

where the left-hand side is the total time derivative, and the right-hand side accounts for the escape
of particles. In steady state, ∂f/∂t = 0, and so

d

dp

(

f
p

tacc

)

= − f

tesc
. (20)

If dtacc/dp = 0, then
p

f

df

dp
= −

(

1 +
tacc

tesc

)

, (21)
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which has solution f ∝ p−α with α = 1 + tacc/tesc.

The spectral index α is thus determined by the ratio tacc/tesc, and this can be determined as follows:
The distribution f(p) is constant across the shock. The flux of particles incident on the shock from
far upstream will (w/4)f(p), and the flux far downstream from the shock is v2f . The probability
that a particle crossing the shock will escape downstream instead of being reflected back across the
shock is therefore

escape probability =
t−1
esc

t−1
refl

=
v2f

wf/4
=

4v2

w
=

4vs

rw
. (22)

We thus have
tacc

tesc
=

(3w/4∆v)trefl

(rw/4v1)trefl = 3vs

r ∆v
=

3

r − 1
. (23)

The power-law index for cosmic rays is therefore α = (r + 2)/(r − 1), which evaluates to α = 2
for a strong shock with r = 4, not too far from the α = −2.65 observed. The discrepancy can be
accounted for by noting that higher-energy cosmic rays are more likely to escape the Galaxy.

5.2 Injection problem

Fermi acceleration requires some “seed” population of low-energy ions to undergo acceleration, and
the source of these particles remains a mystery. It has been speculated that the destruction of dust
grains near the shock may provide the required ions. There may be some evidence for this in the
data, as elements that are normally depleted into dust grains appear over-represented in cosmic
rays (e.g., Mg, Fe, Si).

5.3 Upper limit to cosmic-ray energy

A charged particle moving in a magnetic field has a gyration radius R = pc/eB = 3×10−7 (pc/GeV)(3µG/B) pc.
Cosmic rays are confined to the acceleration region only by magnetic fields. Thus, if the size of the
acceleration region is L, the maximum energy of a cosmic ray will be Emax = eBL.

Supernova remnants produce strong shocks and have long been hypothesized to be the acceler-
ators of Galactic cosmic rays. A supernova remnant with radius R has a compressed shell of
thickness L ≃ R/20. Using this for L, and taking a characteristic radius at which a super-
nova shock becomes radiative, we infer a maximum energy for SNR-accelerated cosmic rays of
Emax ≃ 107 GeV(R/30 pc)(B/10µG). The coincidence between this energy and that at which the
knee in the cosmic-ray energy spectrum occurs is taken as evidence that SNRs have something
to do with cosmic-ray acceleration. If this is the origin of cosmic rays, then order-of-magnitude
estimates suggest that the cosmic-ray luminosity from SNRs is not too far below the total SNR
energy output.

The same Fermi-acceleration processes that accelerate cosmic-ray protons and nuclei will also ac-
celerate electrons. The strong synchrotron emission seen in SNRs is due to radiation from these
cosmic-ray electrons, and fairly simple theoretical models show that the flux of synchrotron radia-
tion is consistent with the luminosity one expects if Galactic cosmic rays are accelerated in SNRs.
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Detailed calculations must take into account the fact that electrons are decelerated via emission
of synchrotron radiation far more effectively than protons. These synchrotron losses occur not
only in the SNR, but also in the propagation of cosmic-ray electrons once they leave the SNR and
diffuse through the Galaxy. In the absence of synchrotron losses, electrons and protons would have
similarly energy spectra and fluxes. Synchrotron losses steepen the electron energy spectrum and
reduce the overall local flux. Thus, for example, at E ≃TeV, the cosmic-ray electron intensity is
EdΦ/dE ≃ 1.2 cm−2 sec−1 sr−1, a factor 250 lower than the hadronic flux.

5.4 Cosmic-ray propagation

Once cosmic rays leave the SNR, they then propagate throughout the Galaxy. Since the gyration
radii of E <∼ 107 GeV cosmic rays are pretty small compared with the coherence lengths of ISM
magnetic fields, they move to a first approximation along magnetic field lines. They may ocas-
sionally move onto other magnetic field lines by scattering from MHD waves or from ISM nuclei.
Even in the absence of such scattering, the magnetic-field lines may be tangled. In short, its a very
complicated process, and very little reliable is known about the details. Theoretical models approx-
imate all these complications by assuming that the cosmic rays simply diffuse through the Galaxy
with some diffusion coefficient chosen to fit observational data. The flux of cosmic rays is locally
isotropic (i.e., we don’t see more coming from known SNRs), and so the diffusion approximation is
probably justified.

Cosmic-ray protons with E <∼ 0.3 GeV lose energy as they move through the ISM via ionization
losses. The hydrogen column density required to stop a CR proton at these energies is (very
roughly) NH ≃ 1026 (E/GeV)2 cm−2. Thus, a 100-MeV proton can penetrate even a dense cloud,
while a 1-MeV proton is excluded from even a diffuse HI cloud.

At energies E >∼ 0.3 GeV, cosmic-ray protons lose energy via pion production. These cosmic rays
can scatter from ISM protons to produce pions through CRp+ISMp → p+p+π. There are charged
pions and neutral pions produced. The neutral pions decay immediately to π0 → 2γ. Gamma rays
can also be produced by cosmic-ray electrons through bremmstrahlung (from scattering from ISM
protons) or inverse-Compton scattering starlight. Gamma rays in the 50 MeV to 3 GeV range
are produced primarily by cosmic rays with energies 1 to 10 GeV. The pion channel dominate the
gamma-ray spectrum for E > 150 MeV and bremsstrahlung dominates at lower energies. The
E > 150 MeV gamma-ray flux from an interstellar cloud is therefore proportional to the hydrogen
column density of that cloud, and so observations of gamma rays can be used to determine this
gas column density. The constant of proportionality can be calibrated by comparing with 21-cm
emission, and it can then be used to calibrate the ratio between the CO J = 1 − 0 luminosity and
gas mass.

5.5 26Al in the ISM

The 26Al isotope undergoes a weak-process decay to an excited state of 26Mg and a positron and
neutrino with an energy release of 1.16 MeV with a half life of 7.4 × 105 Myr. That excited state
of 26Mg then decays quickly to the ground state via emission of a 1.81 MeV gamma ray.
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This line has been mapped across the Galaxy by the INTEGRAL satellite, indicating a total mass
∼ 2.7M⊙ of 26Al in the Galaxy. The origin of this isotope of aluminum is uncertain. Some of it
may be produced by spallation of 28Si or 40Ar cosmic rays, but it is believed that the majority is
produced in massive stars and/or core-collapse supernovae. If so, then the 1.81-MeV line maps the
distribution of current star formation, since the decay timescale, ∼ 106 yr, is short/comparable to
the timescales for star formation.

5.6 Positrons in the ISM

Positrons are injected into the ISM by 26Al decays at a rate ∼ 4× 1042 sec−1 and also by decays of
some other unstable nuclei. High-energy positrons are also produced by cosmic-ray spallation. For
each neutral pion produced by a cosmic-ray interaction with an ISM proton, there are two charged
pions produced, and the positively charged ones decay to antimuons which then decay to positrons.
They may be produced in the jets from compact objects, and there are also reasons to believe that
energetic positrons may be injected into the ISM by pulsars.

Cosmic-ray positrons are slowed, like electrons, as they propagate through the ISM by synchrotron
radiation, inverse Compton scattering, and Coulomb scattering. They can then annihilate directly
with free electrons (e+ + e− → 2γ), through electrons in hydrogen atoms (e+ + H → H+ + 2γ), or
formation of positronium (with free electrons) followed by decay of positronium.

Positronium is a hydrogen-like bound state of an electron and positron. The bound-state energies
are lower than those of hydrogen by a factor of two because the reduced mass is lowered by 2.
Positronium forms by radiative recombination (like recombination), e+ + e− → Ps + hν, or by
charge exchange, e+ + H → Ps + H+, the latter requiring an activation energy of 6.8 eV.

The electron-positron spins can combine either into a triplet state (3S1, orthopositronium, with
spin S = 1) or singlet state (3S0, parapositronium, with spin S = 0) with a population ratio 3:1.
Orthopositronium decays to 3 photons with a lifetime τ = 1.4 × 10−7 sec; these photons have
a continuum energy spectrum extending up to 511 keV. Parapositronium decays to two 511-keV
photons with lifetime τ = 1.25×10−10 sec. The gamma-ray spectrum from positronium decay thus
has a continuum from 0 to 511 keV with a 511-keV line with 1/3 the total intensity superposed.
This spectrum has now been observed.

There has been considerable attention on positrons recently for two reasons: (1) PAMELA, an
Italian satellite experiment, measured the spectrum of high-energy (E >∼ 10s of GeV) cosmic-ray
positron spectrum, and they find an excess over the expectations of standard cosmic-ray propagation
models. Explanations for the discrepancy include (a) uncertainties in the propagation models; (b)
previously unconsidered astrophysical sources (e.g., nearby pulsars); (c) dark-matter annihilation,
this last explanation requiring several leaps of faith. (2) INTEGRAL measurements of the flux of
positronium-decay gamma rays from the Galactic center are also larger than expected—there seems
to be more positronium near the Galactic center than standard models for astrophysical positron
production predict. Again, this is probably a shortfall of the models.
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