
Interstellar Medium (Ay126),
Spring 2011

Problem Set 2

Due: Wednesday, 19 January 2011

1. Cooling of the phases of the ISM

(a) Adopting the characteristics of the different phases in Tielens Table
1.1, estimate the cooling rate per atom in the HIM, WNM, and CNM
from Figure 2.10. Typical electron (ionization) fractions to use are
given in section 3.11.

(b) Adopting the total masses of gas in these different phases given in
Table 1.1 (for the total mass of the HIM, not given in column 5, by
taking the total mass of the two WNM phases, and scaling by the
ratio of the local surface densities given in the last column), estimate
the total luminosities and the uncertainties in your estimates, for the
HIM, WNM and CNM. You should get something like 3×1040, 1041,
and 3 × 1041 erg/sec, respectively.

(c) Estimate the total thermal energy content in each of the HIM, WNM
and CNM phases.

(d) Using your results from parts (b) and (c), estimate the cooling times
of these phases (i.e. how long it would take them to cool if their
sources of energy input were turned off). Use this to show that the
ISM must be in a dynamical equilibrium.

2. Heating of cool phases of the ISM. In these calculations, answers are
needed only to a factor of two or so. Dont bother doing detailed fits and
numerical integrations on the computer. Do integrate-by-eye estimates.

(a) Estimate the heating rate per H-atom due to CI ionization in an HI
region due to the the average interstellar radiation field for a neu-
tral carbon fraction f(CI). Adopt a mean CI photo-ionization cross-
section of 10−17 cm2 and a gas-phase carbon abundance of 10−4, and
estimate the mean CI-ionizing (> 11.26 eV or λ < 1100 Å) photon
intensity and mean photoionizing photon energy from Figure 1.9 of
Tielens. Compare your result to equation 3.8 of Tielens.

(b) Estimate the photo-electric heating rate per hydrogen atom due to
the ionization of neutral PAHs in the average interstellar radiation
field. Adopt an ionization potential of 6 eV, a mean photo-ionization
cross-section of 10−17 cm2 per carbon atom, a fraction of the carbon
locked up in PAHs of 0.05, and an elemental carbon abundance of
3.5×10−4, and estimate the mean ionizing (> 6 eV) photon intensity
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and mean photoionizing photon energy from Figure 1.9 of Tielens.
Compare your result to equation (3.17) of Tielens (recall that G0 is
the ratio of the mean UV interstellar flux to the value adopted by
Habing, defined on page 13 of Tielens. You may insert a current
estimate of G0 = 1.7, consistent with Fig 1.9).

(c) Estimate the cosmic-ray heating rate. Adopt the interstellar proton
cosmic-ray flux after correction for Solar-wind modulation from Fig
1.11 of Tielens. The rate of ionization energy loss cosmic rays protons
of speed v, kinetic energy mpv

2/2 experience as their electric fields
move through hydrogen of density n is (in Gaussian units),

dE

dt
=

4πe4n

mpv
× lnX. (1)

The logarithmic factor, of order a few, depends on the ionization po-
tential and cosmic-ray energy (see e.g. Leighton Principles of Mod-

ern Physics for a derivation). The equation is approximately valid
both for nonrelativistic and relativistic (v → c) cosmic rays, and you
should integrate (roughly) over the cosmic-ray spectrum. Compare
your result to equation (3.31) of Tielens.

3. Sample cooling detail of the cool phases of the ISM. The rate coeffi-
cient for collisional de-excitation of the ground-state 2P3/2 →

2 2P1/2 fine-
structure transition1 of CII by collisions with neutral hydrogen atoms is 6×
10−10 cm3 sec−1, nearly independent of temperature. The Einstein A co-
efficient for spontaneous radiative de- excitation is Aul = 2.3×10−6 sec−1,
and the photon emitted in the transition has wavelength 157.7 µm.

(a) Use the principle of detailed balance to find the rate coefficient for
collisional excitation as a function of temperature in degrees Kelvin.
[Hint: dont forget to consider the degeneracy of the levels].

(b) Neglecting stimulated radiative excitation and de-excitation, and con-
sidering just these two levels in the carbon atom, derive an expression
for nu/nl as a function of the density of neutral hydrogen atoms nH

and temperature T . Sketch nu/nl as a function of nH for T = 300 K,
100 K and 30 K, and show that there is a critical density ncr such
that for nH ≫ ncr, the CII levels approach LTE (local thermody-
namic equilibrium: relative population of states given by the Boltz-
mann factor), while for nH ≪ ncr, the upper level is severely depleted
relative to the LTE population. Give ncr in cm−3.

(c) Asuming that the gas cloud is optically thin, compute the rate of
cooling per unit volume by the [CII] 157.7 µm line as a function
of nH and T . By number, the interstellar abundance of carbon is

11the notation for spectroscopic terms is 2S+1LJ , so our transition is between states which

both have S = 1/2 and L = 1, while J = 3/2 for the upper state and J = 1/2 for the lower

state.
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3× 10−4 that of hydrogen. Assume that all carbon is singly ionized,
and in one of the two ground state levels.

(d) Give the limiting forms of your general expression in (c) for n ≫ ncr

and n ≪ ncr, and explain physically why they have the forms that
they do.

(e) In the outer parts of a dense photodissociation region in the Orion
nebula, nH = 2×105 cm−3, T = 103 K, and the rate of photoelectric
heating is 3×10−17 erg cm−3 sec−1. If these parts of the cloud are in
thermal equilibrium (heating rate equals cooling rate, so temperature
is not changing in time), what percentage of their total radiated
luminosity is in the [CII] 157.7 µm line?

4. Effects of non-zero optical depth.

(a) Consider the same [CII] 157.7 µm transition as in the previous prob-
lem. In parts (c), (d), and (e) above, we assumed that all the line
photons escaped. Show that if the cloud has a hydrogen column
density2 NH > Nc, the optical depth at the center of the line will
exceed unity, and the photons will no longer escape freely. Compute
Nc assuming: nH ≪ ncr, the line width is dominated by turbulent
motions of velocity width ∆v in km/sec, and that all the carbon is
singly ionized. Give the limiting forms of your result for the cases i)
nH ≪ ncr and ii) nH ≫ ncr when also kT ≫ hνul. In case (i), give
a numerical value in cm−2 for Nc.

(b) Use your result from (a) to compute the neutral-hydrogen column
density at which the 21cm hyperfine-structure line of hydrogen will
become optically thick (τν > 1) at line center. Again assume that
the line width ∆v (in km/sec) is determined by turbulence. For this
transition, Aul = 2.85×10−15 sec−1. Explain which of case (i) or case
(ii) in (a) applies. Typical spin temperatures (see Bowers & Deeming
pp. 364–365) for hydrogen clouds in the galaxy are Ts ∼ 102

−103 K.
[Hint: the answer is Nc = 1.8 × 1018 T∆v cm−2, where ∆v is in
km/sec and T in K.]

(c) What value does the intensity at line center have when the optical
depth τν at line center through the cloud is τν ≫ 1.

2Column density is the integrated number of atoms along a line of sight, say the z-axis:

NH = RnHdz, and has units of cm−2.

3


