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The Interstellar Medium

Problem Set 3 Due in class Thursday 28 Jan, 2010

Readings: Chapter 7 of Tielens.

Homework Problems: Note: problems 3 and 4 are not nearly as long as they look: I wrote
a lot of words to lead you through the concepts, but the actual solutions are only a couple of
pages.

1. A recombination paradox [10 points]

A fully ionized gas which starts to radiate recombination radiation heats up. Explain this
paradoxical result.

2. Dust in HII regions [10 points]

Consider an HII region of density nH = 10cm−3 around an O star emitting 1048 ionizing
photons per second. It is of solar metallicity, and formed by ionization of neutral gas with a
standard WMN dust to gas ratio.

a) Calculate the dust optical depth across the radius of the ionized part of the HII region
at 5007Å(wavelength of the [OIII] cooling line) and at 1000Å(near the ionization edge).
Interpolate an R = 3.1 extinction curve from those given in Fig 5.7 (p 147) of Tielens,
and use the typical dust extinction to gas given in equation 5.96 (page 153, similar to
the eyeball estimate given in the first lecture). [With some care you may also be able to
use the right panel of Fig 5.15 as a check].

b) Explain why virtually all Lyman alpha photons are absorbed by dust in an HII region,
while a large fraction of the ionizing photons are able to penetrate to the edge of the
Strömgren sphere, despite the fact that the dust opacity is larger for ionizing photons
than for Lyman alpha.

3. Photoevaporation of dense clumps [40 points]

In a traditional HII region, one considers the fate of a huge region of uniform density gas sur-
rounding a hot star. In reality, the gas around stars is far from uniform, and there are many
small dense blobs of gas. Ionization of these by nearby stars heats and pressurizes the gas on
the outside of the blob, driving an outflow of ionized gas from the dense neutral blob. This
photoevaporation is an important mechanism of mass transfer between media, and has major
implications for star and planet formation. Many of the most popular Hubble photos are of
such flows, e.g. http://hubblesite.org/gallery/album/entire/pr2009025i/large web/
and the famous proplyds (flows from protoplanetary disks) in Orion http://hubblesite.
org/gallery/album/entire/pr1994024b/. 1 In this problem you will make a quantitative
model of a photoevaporative outflow, assuming it is isothermal, in photoionisation equilib-
rium, and in steady state (the correctness all of these simplifying assumptions need to be
checked in particular applications of course).

1Photoevaporation has also been proposed to limit accretion rates in quasars and X-ray binaries, and limit the
growth of massive stars.
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a) Consider one of the proplyds in Orion, which at a distance of 300 pc subtend about
0.3 arcsec radius. Estimate the dynamical (outflow) time in terms of the Mach number
M of the outflow, and show that the recombination time will be less than the outflow
time if the hydrogen number density n > 300M−1cm−3.

b) Starting at about the point where the gas becomes half-ionized by the incident ionizing
radiation, the increased pressure drives an outflowing photoionized wind. As discussed
in class, the temperature of this wind will be nearly constant (roughly 104K) due to
photoionization heating. Thus, unlike adiabatic winds (which asymptote to a constant
velocity roughly equal to the initial sound speed), a photoionized isothermal wind keeps
accelerating as it expands out. In steady state spherical symmetry, the equation of mass
conservation is

4πρvrr
2 = const (1)

and the equation of momentum conservation is

ρvr
dvr

dr
+

kT

m

dρ

dr
= 0 (2)

where m is the mean mass per particle (note that (kT/m)∇ρ = ∇p, and kT/m = c2
i ,

the square of the isothermal sound speed in the ionized gas). Defining the Mach number
M = v4/ci, show that these equations have the implicit solution
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]
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where the subscript c’s denote the (sonic) point where the outflow reaches Mach 1, which
as we already discussed must be at about the point where the flow becomes half-ionized
(details require considering ionization and flow simultaneously, beyond the scope of a
short homework problem. The required D-critical flow is discussed in Chapter 12 of
Tielens). Check that r = 1.11rc has ρ = 0.5ρc and r = 1.39rc has ρ = 0.1ρc and a
recombination rate only about one hundredth the rate at rc, so the accelerating flow
rapidly becomes very tenuous and highly ionized.

c) In the subsonic region just inside r = rc, the cool neutral gas (which we will denote
by subscript 0) must be close to pressure equilibrium with the ionization-heated gas
(denoted by subscript i) on the other side of the ionization front. Show that this requires
that ρ0/ρi ≈ c2

i /c2
0.
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d) For photoionization equilibrium, the number of recombinations per unit volume at each
point in the wind must balance the number of new photoionizations. The number of
photoionizations will be set by the incident ionizing radiation field (which in this problem
we will assume to be isotropic -e.g. from a surrounding cluster of stars like Orion where
S∞/(2π) ∼ 1011cm−2s−1sr−1 ionizing photons). Since as you showed in part b, the
density drops very rapidly on a scale less than rc, we can approximate the parts of the
flow where most of the photoelectric absorption occurs as plane parallel, and calculate
the solid-angle integrated flux of ionizing photons at radius r by

S(r) = (S∞/2π)
∫ π/2

0
exp[−τ(r)/ cos(θ)]2π sin θdθ (5)

2The exact result for a flow satisfying the Jouguet condition across the front is ρ0/ρi = 2c2
i /c2

0, but you don’t need
to do all the work required to get that factor of two.
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Show that for large τ , only small θ contributes to the integral, and

S(r) ' S∞
exp[−τ(r)]

τ(r)
. (6)

e) Show that the equation of photoionization equilibrium can be written as

S(r)
dτ(r)
dr

= −α(T )ne(r)2 (7)

where α(T ) is the recombination coefficient and ne ' nH since the gas is highly ionized
in the outflow.

f) Show, by your choice of approximate evaluation of integrals or exact numerical integra-
tion, that for the flow to be self-consistent, the density at the sonic point must be

nc = C

(
S∞

α(T )rc

)1/2

, (8)

where C is a number of order unity.
g) Show, using part 3f, that for the scale of the Orion Proplyds, the size scale you found in

part 3a, and the ionizing flux given in part 3d

nc ' 2× 104cm−3 (9)

and therefore, using part 3c, that the neutral gas cloud (at temperature of ∼ 100K)
must have density

n0 ' 4× 106cm−3 (10)

at the radius where it is being evaporated. Check using part 3a that it was OK to assume
photoionization equilibrium in deriving this result.

h) What would happen if the Proplyd gas cloud were much denser or less dense than the
critical value n0 you found in part 3g?

4. Toy Photoionization Model

This problem will lead you through the construction of a toy photoionization model, which
will allow you to explore several aspects of the physics of photoionized regions in a semi-
quantitative way. We consider a gas cloud illuminated by an ionizing flux with F (ε) dε =
erg cm−2s−1 passing through the cloud in photons of energy between ε and ε + dε. We take

F (ε) =
{

0 ε < χH

FH(ε/χH)−s χH < ε
(11)

Suppose that the gas cloud is optically thin both to the incident ionizing photons, and to all
photons emitted by atoms in the cloud (i.e., a one-zone model, ignoring all radiative transfer!).
The cloud is in steady state.

We populate our cloud with 3 types of atoms, “H,” “B,” and “C.”

“H” is a toy hydrogen which can be ionized (χH = 13.6 = k(1.58× 105K, but has no internal
energy levels (why might this be a good approximation?). Take the photoionization cross
section to be that for hydrogen

σH(ε) ' σ(ε/χH)−2.7 ε > χH (12)
σ ' 6× 10−18cm2 . (13)
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The recombination rate is (per unit volume)

αHnen(H+) , (14)

where αH = 3 × 10−13cm3s−1T−1/2
4 . Te = 104T4K is the temperature of the free electron

population (recall from lecture that electrons thermalize much faster than they recombine).

When an electron recombines, it loses ∼ kTe of energy, plus atomic binding energy. Let
us agree to count only energy in the free electron population, with the zero level set at the
n→∞ levels of hydrogen. Then the cooling rate per unit volume due to recombination and
bremsstrahlung is approximately

' αHnen(H+)kTe . (15)

a) Show that with the zero of energy defined as above, the rate of heating the free electron
bath by photoionization is

n(H0)
∫ ∞

χH

(ε− χH)σH(ε)
F (ε)

ε
dε , (16)

and evaluate this in terms of the parameters given above.

b) Write the equation expressing photoionization equilibrium in terms of quantities defined
above.

c) The second type of atom in our cloud, “B,” is a toy atom with two levels, joined by a for-
bidden radiative transition. The parameters are those of the important [OIII] λ5007, 4959
doublet: E12(B) = 2.5eV = k(2.9× 104K).
Since it is a forbidden line, the Einstein A coefficient (spontaneous radiative transition
rate) is small

A21(B) = 0.01s−1 . (17)

We take the statistical weights of both levels to be g1 = g2 = 1, and the collision strength

Ω12 ' 1 . (18)

The B atoms are excited to level 2 by collisions with electrons, at a rate

C12(B) = γnee
−E12(B)/kTe , γ ' 10−7cm3s−1T−1/2

4 . (19)

Collisions with electrons also de-excite them, at rate

C21(B) = γne (20)

Write the equation expressing equilibrium between the levels 1,2 in “B” atoms.

d) The third and last type of atom in our cloud, “C” is also a two-level atom, but this time
joined by a permitted (electric dipole) radiative transition. We’ll take the parameters to
be those of the important CIV λ 1549 transition: E12(C) = 8eV = k(9.3 × 104K), but
could equally be approximations to any of the other strong permitted lines in hydrogen,
or nitrogen, oxygen.

A21(C) = 108s−1 (21)
Ω12(C)

gj
= 1 , g1 = g2 = 1 (22)
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Like “B,” the levels of “C” are excited and de-excited by collisions with free electrons.
The rates are as given for “B,” but with E12(C) replacing E12(B).
Write the equation expressing equilibrium between the levels 1,2 in “C” atoms.

e) The final equation which determines the state of the cloud is the equation cooling =
heating for the bath of free electrons. Write down the rates of photoionization heating,
recombination cooling, and cooling by radiative de-excitation of “B” and “C” atoms.

f) You now have 4 equations describing the equilibrium state of the cloud.
Define the dimensionless variables

xH =
n(H+)
n(H)

=
ne

n(H)
, xB =

n2(B)
n(B)

, xC =
n2(C)
n(C)

(23)

and
νB =

n(B)
n(H)

, νC =
n(C)
n(H)

. (24)

The x’s give the fractions in excited states. The ν’s give the fractional abundances of
“B” and “C” relative to H.
Define the hydrogen total pressure (almost exactly the total pressure, since νB � 1,
νC � 1)

p = n(H)(1 + xH)kTe (why?) (25)

and the dimensionless ionization parameter

Ξ =

∫∞
χH

F (ε) dε

cp
=

FHχH

(s− 1)cp
. (26)

Rewrite your 4 equations in terms of these dimensionless variables, Ξ, the dimensional
p (or n(H)) and the physical constants of the problem.

g) Now solve these equations in turn: Show that the equation you found in (b) gives

xH =
[
1 +

αH

cσ

(2.7 + s)
(s− 1)

χH

kTe

1
Ξ

]−1/2

. (27)

h) Solve your equations of (c) and (d) to give

xB = expression in Te, xH , n(H), and physical constants (28)
xC = expression in Te, xH , n(H), and physical constants (29)

where one should substitute n(H) = p
(1+xH)kTe

, because one can’t specify the density
arbitrarily, but one can specify the pressure in astrophysical systems (why?).

i) If the expressions you obtained in (g) and (h) are substituted in the heating=cooling
thermal equilibrium equation, show that the resulting equation is a nonlinear equation
for Te, depending only upon physical input parameters (Ξ, p, νB, νC) and physical
constants. The solutions to this equation give the equilibrium temperatures of the cloud.
It is most useful to write this equation as C(Te)−H(Te) = 0 where C(Te) is the cooling

rate per baryon
(

= rate/vol
n(H)

)
and H(Te) is the heating rate per baryon

(
= rate/vol

n(H)

)
.
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Show that

C(Te) = αHx2
Hn(H)kTe + xBνBA21(B)E21(B) + xCνCA21(C)E21(C) (30)

and

H(Te) =
αHx2

HχHn(H)
(2.7 + s− 1)

(31)

j) Write a computer program to solve this equation (graphically or otherwise). Be sure
your output allows you to compare the relative importance of the various heating and
cooling terms.

k) Take s = 1.5, νB = 10−4, νC = 10−4 (appropriate for the heavy elements which they
model). For Ξ = 1, explore the equilibria in the range of pressures 104cm−3◦K < p/k <
1015cm−3 ◦K. Evaluate the relative importance of cooling by H, B, and C. Can you
explain why B dominates the cooling at low densities, while C dominates at high? Give
an expression in terms of physical constants for the approximate density (or pressure)
where the crossover in importance of B and C occurs.

l) Now take s = 1.5, νB = 10−4, νC = 10−4 again, but fix p/k = 105cm−3K, and explore
the equilibria in the range 10−5 < Ξ < 105. Plot T as a function of Ξ. Look carefully
at 103 ◦K < T < 107 ◦K. What heating=cooling balance is responsible for each equilib-
rium? Which equilibria are stable? (recall that an equilibrium is thermally stable only
if

d

dT
(C −H)‖fixed pressure > 0 —why?) . (32)

m) Explore additional regions of parameter space, including the limits νB, νC → 0. Are you
surprised at how important the trace elements are in thermostating the clouds?
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