The Interstellar Medium

Problem Set 5

Due in class Wednesday February 9, 2011

Readings: Chapter 5 of Tielens.

Homework Problems:

Interstellar Dust

- 1. Extinction by dust in our galaxy is very patchy. Here, we will consider a cloud with a size of 5 pc, a hydrogen density of 50 H-atoms cm⁻³ and a dust-to-gas mass fraction of 10^{-2} . We will assume spherical dust grains with a radius of 0.1 μ m and a specifc density of 3 g cm⁻³. What is the visual extinction through this cloud if these grains absorb with unit efficiency? If clouds are randomly distributed and the mean visual extinction is 1.8 mag kpc⁻¹ in the plane of the Milky Way, on average, how many clouds are there per kpc ?
- 2. Because of radiation pressure, a dust grain at a distance r_o from a star with luminosity L_* will be accelerated to a terminal velocity,

 $v(term) = (3L_*Q_{rp}/8cr_0a\rho_s)^{1/2}$

with a the grain size, ρ_s the specific density of the grain material, and Q_{rp} the radiation pressure efficiency.

(a) Derive this expression, starting from

 $F_{rp} = C_{rp}F/c$

with C_{rp} the radiation pressure efficiency. (Hint: F = mvdv/dr).

(b) Calculate the terminal velocity for a grain radius of 0.1μ m, a specific density of 3 g cm⁻³, a radiation pressure efficiency of 1, and a luminosity of $10^4 L_{\odot}$.

- 3. Calculate the temperature of a silicate grain in the diffuse interstellar medium, adopting the Planck mean efficiencies given in equation (5.35), a UV absorption efficiency of unity, and an integrated interstellar photon radiation field, $4\pi N_{ISRF} = 108$ photons cm⁻² s⁻¹ and a mean photon energy of 10 eV.
- 4. Compare and contrast the processes that heat and cool interstellar dust to those of interstellar gas. Do you expect dust to be hotter or cooler than gas in HII regions ? And in neutral atomic regions ? And in molecular clouds ? Explain your answer.
- 5. Compare and contrast the processes that contribute to the charging of interstellar dust and the conditions when they dominate.