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1 Classical cosmological tests

In the following, we will assume that the Universe consists of nonrelativistic matter and possibly
a cosmological constant. Before proceeding, let us justify our neglect of radiation. A variety of
measurements (including, for example, simply weighing galaxies and then measuring their space
density) indicate a nonrelativistic-matter density ρm ≃ 0.3ρc ≃ 1.5 × 10−6 GeV/cm3 (for h ≃ 0.7).
We observe a cosmic microwave background, a blackbody spectrum of photons, with a temperature
of T0 ≃ 2.7 K. From the Stefan-Boltzmann equation, this corresponds to an energy density ργ ≃
3×10−10 GeV/cm3. We also have good reason to believe that there is a cosmic neutrino background
with an energy density roughly 2/3 that of the photon density. Thus, radiation (neutrinos plus
photons) has an energy density only ∼ 3× 10−4 of the matter density today. Since ρrad ∝ (1 + z)4

while ρm ∝ (1+z)3, radiation will be negligible compared with matter as long as we are at redshifts
less than zeq = (ρm/ρrad)0 ≃ 3000. At earlier times, the Universe was radiation dominated.

2 Angular-diameter distance

Heuristically, if the size of an object is known, its distance can be inferred by determining how big it
appears to be—i.e., the angle it subtends when we view it. In cosmology, the angular-size distance
takes into account the effects of expansion and geometry to relate the observed angular size of an
object of known proper size to its distance. This is done as follows: The coordinate distance from
light emitted at time te to t0 is

χ =

∫ t0

te

dt

a
=

∫ a0

ae

da

aȧ
=

1

H0

∫ a0

ae

da

a2E(z)
=

1

a0H0

∫ ze

0

dz

E(z)
, (1)

where the function E(z) describes the time evolution of the expansion rate, H(z) = H0E(z). From
the form of the metric, we know that at time te, the circumference of a great circle of coordinate
radius χ is 2πa(te)Sχ, where Sχ = (sinhχ, χ, sin χ) for open, flat, and closed universes, respectively.
Therefore, if we see today an object of proper size D, then the angle it subtends on the sky is
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θ = D/[a(te)Sχ] ≡ D/dA, where dA(ze) = a(te)Sχ. Thus,

dA(z) =
a0

1 + z
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




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sinh
[
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∫ z
0

dz
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]

1
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dz
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
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

, (2)

for (from top to bottom) open, flat, and closed universes. For example, in an Einstein-de Sitter
universe,

dA(z) =
2H−1

0

1 + z

[

1 − 1√
1 + z

]

, (3)

which, for z ≪ 1 becomes dA ≃ H−1
0 z, indicating that we recover the expected behavior at small

distances. You can also show that this linear relation is recovered for any Ωm or ΩΛ. It can also be
shown that to quadratic order in z, H0da(z) ≃ z− (1/2)(3+q0)z

2 + · · ·, where q0 is the deceleration
parameter. For future use, it will be convenient to define a scaled distance, y(z) ≡ H0(1 + z)dA(z).
Expressions for y(z) involve more complicated integrals for Ωm 6= 1 and for ΩΛ 6= 0. For ΩΛ = 0
and z ≫ Ω−1

m , y(z) ≃ 2/Ωm. In practice, it is difficult to find objects (like galaxies) of fixed known
size D, making the determination of the angular-diameter distance difficult.

3 Luminosity distance

If we know the intrinsic luminosity L of a source, then we can determine its distance by measuring
the energy flux F we observe from this source. The luminosity distance of a cosmological source is
defined by d2

L ≡ L/(4πF ). The flux F we observe at time t0 from a source at a distance χ is

F =
L

4πa2(t0)S2
χ(1 + z)2

. (4)

This result is arrived at in the following way: If the detector area is dA, the fraction of the 2-
sphere, centered on the source, that is covered by the detector is dA/[4πa2(t0)S

2
χ]. Then there is

an additional factor of 1+z that is due to the redshift of photon energy, and there is another factor
1 + z due to the redshift of the emission rate (if the source emits in its rest frame a signal with
a period P , it is observed with period (a0/ae)P . Therefore, dL = dA(1 + z)2. Note again that to
quadratic order, H0dL(z) = z + (1/2)(1 − q0)z

2 + · · ·. If there is a “standard candle”, a class of
objects of fixed known luminosity, then the parameters H0 and q0 can be determined by measuring
the observed flux as a function of redshift. Thus, q0 = Ωm/2−ΩΛ has been obtained by measuring
the quadratic correction to the Hubble law with distant (Type Ia) supernovae leading to the value
q0 ≃ −0.55 mentioned before.

4 Proper displacement

For a number of applications, it is important to know the proper-distance interval dl covered in a
redshift interval dz. This is obtained by noting that a light ray covers a distance

dl = dt =
da

ȧ
=

dz

1 + z

a

ȧ
, (5)
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from which it follows that
dl

dz
=

H−1
0

(1 + z)E(z)
. (6)

5 The resolution of Olber’s paradox

In a homogeneous, static, and infinite Universe, every line of sight eventually ends up on a galaxy,
and if so, then the night sky should be bright. We can now understand why in an expanding Universe
the night sky is dark. Consider a population of objects of cross section σ (e.g., ∼ π(10 kpc)2 for
spiral galaxies) with a constant number per comoving volume and current number density n0. That
means that the proper number density as a function of redshift is n(z) = n0(1+z)3. The probability
that a given line of sight intersects such an object between z and z + dz is

dP

dz
= σn(z)

dl

dz
= σn0H

−1
0

(1 + z)2

E(z)
. (7)

At z ≫ Ω−1
m , E(z) → Ω

1/2
m (1+z)3/2, and the optical depth for intersecting a galaxy out to a redshift

z is

τ(z) =

∫ z

dP =
2

3

σn0cH
−1
0

Ω
1/2
m

(1 + z)3/2. (8)

Ordinary galaxies have a local number density ng ∼ 0.02h3 Mpc−3, and radii rg ∼ 10h−1 kpc,

from which we obtain τ ∼ 0.01 (1 + z)3/2Ω
−1/2
m . Therefore, out to z = 1, about 0.04Ω

−1/2
m of the

sky is covered by galaxies, and full coverage (τ = 1) is reached only at z ∼ 20Ω
1/3
m . Thus, Olber’s

paradox is explained if galaxies don’t form or light up fully until z ∼few.

6 Number counts

We can also calculate the number of objects seen in a given redshift interval dz in a solid angle
δΩ on the sky, under the assumption that the comoving number density of such objects remains
constant. The area subtended by an angle δΩ at a redshift z is δA = a2S2

χδΩ. Then, (dl/dz)dz is
the proper linear depth from z to z + dz, so the differential volume in the redshift interval dz and
solid angle δΩ is

δV =
H−1

0 δz

(1 + z)E(z)

(a0Sχ)2δΩ

(1 + z)2
. (9)

Using n(z) = n0(1 + z)3, we find that the number of galaxies in dz per steradian on the sky is

dN
dz

= n0H
−3
0 Fn(z), (10)

where

Fn(z) =
[H0a0Sχ(z)]2

E(z)
. (11)

Since Sχ and E(z) depend on the matter content and the geometry, measuring the number counts
as a function of redshift can in principle be used to determine cosmological parameters. In practice,
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though, the abundances of the target populations (e.g., galaxies or clusters of galaxies) undergo
evolution in complicated ways, and this evolution is difficult to disentangle from the cosmological
effects.

7 “Superluminal” proper motions

The black holes that power active galactic nuclei can often emit jets with relativistic velocities.
Suppose that such a source emits a jet with velocity v at an angle θ from the line of sight. Then,
after a time δt, the jet will have propagated a distance vδt cos θ toward us and a transverse distance
vδt sin θ. Suppose now that the observer-source distance is Dos. The observer will see the signal at
a transverse distance δl⊥ = vδt sin θ after a time

∆tobs(δt) = δt +
[

(Dos − vδt cos θ)2 + (vδt sin θ)2
]1/2

= δt +
[

D2
os + (vδt)2 − 2Dosvδt cos θ

]1/2
(12)

≃ Dos + δt(1 − v cos θ), (13)

Therefore, the apparent transverse velocity is

δl⊥
δt

=
v sin θ

1 − v cos θ
, (14)

which is maximized, for a given v, at cos θ = v. So, (δl⊥/δt)max = γv, which is faster than the speed
of light for v > c/

√
2. If the source is at redshift z, then the observed time interval is δto = (1+z)δt,

and

δθ =
δl⊥

a(z)Sχ(z)
=

δl⊥(1 + z)

a0Sχ(z)
. (15)

Therefore, the observed angular proper motion is

µ =
dθ

dt
=

1

a0Sχ(z)

v sin θ

1 − v cos θ
, (16)

and
µmax(z) =

γv

a0Sχ(z)
. (17)

Since Ωm and ΩΛ fix H0a0Sχ(z), the maximum proper motion is determined by H0γv. Just for
reference, observations indicate hγ ≃ 10. The idea is then to measure v, θ, and µ (assumed to be
less than µmax) to constrain Ωm and ΩΛ.

8 Thermodynamics in the Expanding Universe

As discovered by Penzias and Wilson in 1965, and determined much more precisely in the early
1990s by the Far Infrared Absolute Spectrometer (FIRAS) on NASA’s Cosmic Background Ex-
plorer (COBE) satellite, the Universe is filled with a gas of microwave photons with a blackbody
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spectrum and a temperature T0 = 2.7 K, or T = 2.4 × 10−13 GeV in units in which the Boltz-
mann constant kB = 1. In other words, in every direction we look, we see a specific intensity
(ergs/cm2/sec/steradian/Hz),

Iν =
2hν3/c2

ehν/kT0 − 1
, (18)

as a function of frequency ν. It is important to keep in mind that although this is the energy
distribution that a gas of massless particles has in thermal equilibrium, the photons in this gas are
most certainly not in thermal equilibrium. Thermal equilibrium implies that the energy-momentum
distribution of the particles in the thermal bath is maintained by frequent collisions. These photons
have extremely long mean-free paths through the Universe, comparable to the size of the observable
Universe, and thus are not in thermal equilibrium, even though they have the energy distribution
characteristic of thermal equilibrium. We refer to this gas of photons as the cosmic microwave
background (CMB).

Interestingly enough, since the frequency of each photon scales as 1 + z with redshift z—ν(z) =
(1 + z)ν0—the frequency spectrum of the CMB always maintains a blackbody distribution, albeit
one with a temperature T (z) = T0(1+z)—i.e., the earlier Universe was hotter. Although they have
not yet been observed, we will also see that the Universe also constains a gas of neutrinos (all three
mass eigenstates) at a temperature Tν = 1.96 K. We also measure, through a variety of techniques
that we will discuss in a bit, a baryon (i.e., neutrons and protons) density (in units of critial),
Ωb = ρb/ρc ≃ 0.019h−2. (And keep in mind that ρc = 10−5 h2 GeV cm−3 = 1.9h2 × 10−29 g cm−3.)

Needless to say, although the Universe is quite cool and diffuse today, it must have been hotter and
denser at earlier times. For example, at a redshift z = 109, the density of the Universe approached
that of water, and the temperature somewhere around an MeV. It is thus reasonable to surmise
that at some sufficiently early time, the contents of the Universe must have been described by a
gas of elementary particles in thermal equilibrium, rather than a distribution of far-flung galaxies
that interact only gravitationally. We therefore must recall some thermodynamics to describe the
early Universe.

9 Review of relevant statistical mechanics and thermodynamics

In the following, we will use particle-physics units (h̄ = c = 1 = kB = 1). Then a dilute gas of
weakly interacting particles has a number density,

n =
g

(2π)3

∫

f(~p) d3p, (19)

an energy density,

ρ =
g

(2π)3

∫

f(~p)E(~p) d3p, (20)

and pressure,

P =
g

(2π)3

∫

f(~p)
|~p|2
3E

d3p, (21)

where

f(~p) =

[

exp

(

E − µ

T

)

± 1

]−1

, (22)
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is the distribution function for a gas of particles in thermal equilibrium, and the plus (minus) is
for Fermi-Dirac (Bose-Einstein) statistics, and g is the degeneracy factor. The chemical potentials
µi for particle species i that undergo the reactions i + j ↔ k + l is µi + µj = µk + µl in chemical
equilibrium. The energy E of a particle of mass m and momentum p is E(p) = (p2 + m2)1/2. At
very high temperatures (T ≫ m and T ≫ µ),

ρ =

{

(π2/30)gT 4 bosons
(7/8)(π2/30)gT 4 fermions

, (23)

n =

{

[ζ(3)/π2]gT 3 bosons
(3/4)[ζ(3)/π2 ]gT 3 fermions

, (24)

where ζ(3) ≃ 1.2 is the Riemann zeta function, and

P =
1

3
ρ. (25)

For degenerate fermions (µ ≫ T ) in the relativistic limit (this limit is important for white dwarfs
(near the high-mass end) and neutrons stars, but not so much for cosmology),

ρ =
gµ4

8π2
, n =

gµ3

6π2
, P =

gµ4

24π2
, (26)

and in the nonrelativistic limit (m ≫ T ),

n = g

(

mT

2π

)2/3

e−(m−µ)/T , ρ = mn, P = nT ≪ ρ. (27)

For T ≫ m and T ≫ µ, the mean particle energy is

〈E〉 ≡ ρ

n
=

{

[π4/30ζ(3)]T ≃ 2.701T bosons
7π4

180ζ(3)T ≃ 3.151T fermions
(28)

Degenerate relativistic fermions have mean particle energy 〈E〉 ≡ ρ/n = (3/4)µ. For a nonrela-
tivistic gas, 〈E〉 = m + (3/2)T ≃ m.

10 Particle-antiparticle balance

The possibilty for, e.g., brehmsstrahlung reactions (e− + p ↔ e− + p + γ), implies that the photon
has zero chemical potential, µγ = 0 in chemical equilibrium. If so, then since a charged particle
X+ and its antiparticle X− can annihilate to photons, X+X− ↔ γγ, we must have µ+ = −µ−. If
so, then the formula for n above yields for fermions a particle-antiparticle asymmetry (in terms of
the chemical potential µ+,

n+ − n− =

{

(gT 3/6π2)
[

π2(µ/T ) + (µ/T )3
]

T ≫ m,

2g(mT/2π)3/2 sinh(µ+/T )e−m/T T ≪ m,
(29)

The total energy density and pressure are the sum of the contributions from each particle species
in the thermal bath. If there is no particle-antiparticle asymmetry (or no significant particle-
antiparticle asymmetry), then the density and pressure contributed by nonrelativistic particles is
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exponentially suppressed. In this case, the pressure and energy density are dominated by the
relativistic particles, and we arrive at a radiation energy density,

ρR = (π2/30)g∗T
4, PR = ρR/3, (30)

where

g∗ ≡
∑

i=bosons

gi(Ti/T )4 +
7

8

∑

i=fermions

gi(Ti/T )4, (31)

is the effective number of relativistic degrees of freedom (and the sum is taken only over relativistic
species, mi ≪ T ). For example, today, g∗ receives contributions from the two degrees of freedom
of the photon plus 3 × 2 neutrino degrees of freedom with Tν = (4/11)1/3Tγ , so g∗(T ≪ MeV) =
2 + (7/8)6(4/11)4/3 ≃ 3.36. For temperatures MeV≪ T ≪ 100 MeV, Tν = Tγ (as we will see), and
the electron is relativistic (me ≪ T ), so g∗ = 2 + 6(7/8) + 4(7/8) = 10.75. At higher temperatures,
quarks contribute, as do muons, τ leptons, and at even higher temperatures, the electroweak gauge
bosons W± and Z0 and Higgs boson(s). For the standard electroweak model (with one Higgs
doublet), g∗ = 106.75 at T ≫ 100 GeV.

During radiation domination (z >∼ 22, 000Ωmh2 (t <∼ 105 yr), ρ ≃ ρR, p ≃ ρ/3, and the scale factor

a(t) ∝ t1/2. At these times, H = (8πGρR/3)1/2 = 1.66 g
1/2
∗ T 2/mPl, where mPl = G−1/2 = 1.2×1019

GeV is the Planck mass. Under the approximation that g∗ ≃constant, the age of the Universe

during radiation domination is t ≃ (2H)−1 ≃ 0.301 g
−1/2
∗ mPl/T

2 ≃ (T/MeV)−2 sec. Therefore, the
Universe was roughly one second old when the temperature was an MeV, and it scales roughly as
T−2.

11 Entropy

When the expansion timescale of the Universe is long compared with the timescales for reactions
that maintain thermal equilibrium, then the cosmological gas can be considered to be in thermal
equilibrium, but undergoing adiabatic changes with the slow expansion. Under these conditions,
the entropy per comoving volume will be constant. Returning to the second law of thermodynamics,
we have

TdS = d(ρV ) + PdV = d[(ρ + P )V ] − V dP. (32)

We then note that if µ = 0 [so that the T dependence of f appears only in the combination E/T ,
then it can be shown (from the expression for P in terms of f(E)) that dP = (ρ + P )(dT/T ), so

dS =
1

T
d[(ρ + P )V ] − (ρ + P )V

dT

T 2
= d

[

(ρ + P )V

T
+ constant

]

. (33)

Therefore, the entropy per comoving volume is S = a3(ρ+P )/T . But if the expansion is adiabatic,
then dS = 0, and so the entropy density s ≡ S/V = (ρ+p)/T ∝ a−3 as long as local thermodynamic
equilibrium is maintained. What this means is that if the energy density is dominated by radiation,
then s ∝ a−3, where s = (2π2/45)g∗sT

3, and

g∗s ≡
∑

i=bosons

gi(Ti/T )3 + (7/8)
∑

i=fermions

gi(Ti/T )3, (34)
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and as before, the sum is taken only over relativistic species, mi ≪ T . Note that g∗s is almost
always equal to g∗, and differs only if some species becomes thermally decoupled from the rest of
the plasma. It is important to note that since s ∝ a−3, the temperature T is T ∝ a−1 only as long
as g∗s remains constant. When the temperature T drops below the mass mi of some particle in the
thermal bath, then the temperature T drops a little more slowly with the expansion than 1/a as
g∗s decreases. Thus, for example, when the temperature drops below me, electrons and positrons
annihilate to produce additional photons. It is often misstated that electron-positron “heats”
the photons. This is not true. What happens is that when electrons and positrons annihilate,
they transfer their entropy to the photons, and this simply slows the temperature drop relative
to 1/a. Note that s = 1.80 g∗snγ , and today, the photon number density is nγ0 ≃ 411 cm−3, and
s0 = 7.04nγ ≃ 3000 cm−3.

Since sa3 is constant, we can use s to mark comoving volumes, and also the relation between
scale factor a and temperature T : i.e., g∗sT

3a3 =constant. Thus, for example, if baryon number
is conserved, then nB/s ≡ (nb − nb̄)/s is the same at all times. It is common to hear people
speak of the baryon-to-photon ratio η ≡ (nB/nγ0)0 = 1.8 g∗s(nB/s), but this is not constant (if g∗s
changes). In particular, the photon number, Nγ = a3nγ increases by 11/4 at e+e− annihilation near
T ∼ 0.5 MeV, since g∗s = 2 + 4(7/8) before and g∗s = 2 afterwards. This is also why the neutrino
temperature is (4/11)1/3 relative to that of the photons. Neutrinos decouple at a temperature
T ∼ MeV , before e+e− recombination. Thus, while the (decoupled) neutrino temperature is falling

as Tν ∝ a−1, the photon temperature is dropping as Tγ ∝ g
−1/3
∗s a−1.

Note finally that since the momentum p of a massive particle decreases as p ∝ a−1, while its kinetic
energy is E = p2/2m a massive decoupled species maintains a thermal energy distribution, but
with a temperature T ∝ a−2. And, of course, its density decreases as a−3. If a massive species
decouples when it is relativistic (mD ≪ T ), it does not maintain a thermal energy distribution when
the temperature drops to T <∼ m. Thus, for example, neutrinos decouple when their temperature
is T ∼ MeV, and their temperature today is Tν0 ∼ 2 × 10−4 eV. If they have a mass mν >∼ Tν0,
then they are moving nonrelativistically today, and their energy distribution is not a Fermi-Dirac
distribution.
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