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1 The Lyman-alpha forest

Quasars are extremely luminous cosmological sources powered by accretion onto supermassive black
holes. Their extraordinary luminosities make them visible out to redshifts z ∼ 6. Unlike stellar
populations, which emit most of their energy in a relatively small range of frequencies, quasars
emit over a very broad range of frequencies. Although they are quite interesting in their own right,
quasars are useful tools for cosmology, as they serve as luminous beacons at huge distances which
illuminate the nature of the intergalactic medium along the line of sight.

In particular, quasars typically have a very strong Lyman-alpha emission peak at a wavelength
λ = 1216 angstroms. There is then emission at higher frequencies (or shorter wavelengths) that
is, to a very rough first approximation, constant in intensity. The striking feature of the observed
spectra, however, is a series of absorption lines at wavelengths longer than 1216 angstroms. These
are interpreted to be due to Lyman-alpha absorption by neutral-hydrogen (HI) clouds at redshifts
smaller than the quasar; i.e., absorption by hydrogen gas along the line of sight. Between these
lines, the absorption is estimated to be τ <∼ 0.1 for redshifts z <∼ 4. This is a very important
observation, as it tells us that almost all the hydrogen in the intergalactic medium is ionized at
redshifts z <∼ 5. The argument, due to Gunn and Peterson, is pretty simple.

First, recall that the cross section for absorption of a photon by the Lyman-alpha resonance is
(e.g., Peebles, Section 23) σ = (3/4)Λλ2

αδD(ω − ωλ), where ω is the (angular) frequency, Λ =
6.25× 108 sec−1 is 2p → 1s decay rate, and λα = 2π/ωc = 1216 angstroms. Now consider a photon
that initially has a wavelength λ < 1216 angstroms. The Universe then expands and the wavelength
increases until it passes through the Lyman-alpha resonance. The optical depth for absorption as
it passes through the resonance is τ =

∫

nI(t)σ c dt, where the integral is taken only over the time
at which the photon passes through resonance, and nI(t) is the neutral-hydrogen density at that
time. The time interval is dt = da/ȧ, and ȧ = aH, where H ≃ ΩmH0(1 + z)3/2 is the expansion
rate at z >∼ 1. The Dirac delta function in the expression for the cross section makes the integral
easy, and the result is

τ =
3Λλ3

αnI

8πH0Ω
1/2
m

(1 + z)−3/2, (1)
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or
nI = 2.4 × 10−11 Ω1/2

m h(1 + z)3/2τ cm−3. (2)

It is estimated from the continuum flux observed between the discrete Lyman-alpha absorbers that

τ <∼ 0.1 at z <∼ 4, from which we infer nI <∼ 2 × 10−12 Ω
1/2
m h(1 + z)3/2 cm−3. Plugging in numbers,

this implies that the fraction of hydrogen atoms that are neutral at redshifts z ∼ 5 is only ∼ 10−7.
If we include the hydrogen in the Lyman-alpha absorbers, this number increases a bit, but is still
tiny compared with unity. Thus, at redshifts z <∼ 5 (and possibly earlier), the hydrogen in the
intergalactic medium is pretty close to neutral. In recent years, there have been several z >∼ 6
quasars discovered, and at z >∼ 6, the Gunn-Peterson trough (τ >∼ 1) is beginning to appear. Care
must be taken, however, that we do not immediately conclude that the Universe is neutral at
z >∼ 1. Since hydrogen is such a good absorber, an optical depth τ >∼ 1 implies only that the neutral
fraction is >∼ 10−6. The observations do seem to indicate that the increase in the neutral fraction
is dramatic, so although we cannot conclude directly that the ionization fraction is much smaller
at higher redshifts, the interpretation is that z ∼ 6 is an era of rapid change in the neutral fraction
at that the Universe at z >∼ 6 is neutral.

In retrospect, an ionized Universe at a redshift z ∼ 6 should not be too surprising. As you showed
in a previous homework, by a redshift of z ∼ 6, the characteristic dark-matter mass in collapsed
objects is ∼ 108 M⊙, roughly a dwarf-galaxy. Such objects can produce stars quite efficiently. The
important point is that once a star is formed, it is very efficient at ionizing its surroundings. Each
baryon releases roughly 10 MeV as it is converted to iron in a star. This number can be increased if
we take into account the gravitationally-driven radiation- and kinetic-energy input associated with
each supernova. If this energy is released as ionizing photons (Eγ >∼ 13.6 eV), then there will be
106 ionizing photons released per baryon that is processed in a star. Of course, this estimate is
degraded because (1) it is only OB stars which on the main sequence are hot enough to produce
ionizing photons; (2) only ∼ 0.1 of the mass in a star undergoes nuclear burning; (3) there is a
finite efficiency for gas in halos to wind up in stars; and (4) since ionized atoms can recombine,
(more detailed calculations suggest that) it actually takes ∼ 10 ionizing photons to ionize an IGM
hydrogen atom. Still, even if we ascribe a factor-of-ten reduction to the number of ionizations for
each of these degradation factors, we still arrive at more than enough ionizing photons from star
formation to ionize the Universe.

What ionizes the plasma? It is probably not collisional ionization, which is most efficient at temper-
atures T ∼ 106 K and at high densities. As hinted above, it is probably the cosmic UV background.
The precise origin of the UV background is still something that is debated. At redshifts z ∼ 1−2, a
significant fraction comes from quasars, but at higher redshifts, it is believed that a more significant
fraction comes from stars. Either way, there is something called the proximity effect that is used
to estimate the UV flux at high redshifts. The density of Lyman-alpha absorbers along the lines of
sight to various quasars is consistent with a homogeneous distribution of clouds. The only exception
is that near the quasar, the density of absorbers is seen to decrease. The interpretation is that the
huge UV flux near the quasar photoionizes any clouds that are nearby. If that’s the case, then we
can conclude that at the distance from the quasar at which the absorber density decreases by 1/2,
the cosmic UV-background intensity is equal to the UV intensity from the quasar. Near the ioniza-
tion threshold ν1, the mean cosmic ionizing flux is iν = i21(ν1/ν)×10−21 erg cm−2 sec−1 Hz−1 ster−1,
where the ν−1 spectrum approximates that from a quasar, and the dimensionless normalization is
somewhere around i21 ∼ 1 at redshift z ∼ 3. This corresponds to a logarithmic number density per
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logarithmic bandwidth nγ = νnν = 4π/(hc) = 6 × 10−5 i21(ν1/ν) cm−3. Incidentally, recall that
the baryon density is (for Ωbh

2 = 0.05) nb = 5.6 × 10−7 (1 + z)3 cm−3 = 3.6 × 10−5 cm−3 at z = 3;
i.e., the number of ionizing photons is fairly similar to the number of baryons to be ionized.

Recalling that the cross section for photoionization of hydrogen is σpi = 7.9×10−18 (ν1/ν)3 cm−2, the
ionization rate per hydrogen atom is λpi =

∫

∞

ν1
(4πiν/hν)σpidν = 4× 10−12 i21 sec−1, corresponding

to a mean life of ∼ 104 yr ≪ H−1. While UV photons dissociate hydrogen atoms, electrons are also
recombining with protons to form hydrogen atoms at a rate αnpne per unit volume, where np and ne

are the proton and free-electron densities, and α = 4 × 10−13 T−0.7
4 cm3 sec−1 is the recombination

coefficient and T4 = T/104 K where T is the plasma temperature. We set the mean hydrogen
ionization rate λpi 〈nI〉 per unit volume equal to the mean recombination rate α 〈nenp〉 = C 〈np〉2,
where C is a clumping factor (and 1/C is the filling fraction, the fraction of the total IGM filled
by the gas) to find a neutral fraction,

〈nI〉
〈np〉

=
αC 〈np〉

λpi

= 1 × 10−6 CΩIGMh2

i21T 0.7
4

(1 + z)3. (3)

Given the roughness of the approximations compared with the nastiness of the physical system,
one should not read too much into this equation. Rather, it does seem to indicate that, to order
of magnitude, the observed Gunn-Peterson limit to the neutral fraction is ballpark consistent with
ΩIGMh2 ∼ 0.05; i.e., with most of the baryons in this ionized IGM.

2 The absorbers

Damped Lyman-alpha systems—which show up as broad absorption troughs at the redshifted
Lyman-alpha transition, redward of the quasar Ly-alpha emission line in the quasar spectrum—
have neutral-hydrogen columns of Σ >∼ 1020 cm−2, comparable to the surface density of interstellar
gas in a typical spiral galaxy. Lyman-limit clouds have column densities Σ3 × 1017 cm−2. At these
column densities, ionizing photons are absorbed longer than 912 angstroms, so these systems show
up as a photoionization edge at the limit of the Lyman series of resonance lines. The most abundant
absorbers are the Lyman-alpha clouds, which show up as a forest of narrow absorption lines at the
redshifted Lyman-alpha frequency. These systems have column densities ∼ 1014 cm−2.

The equivalent width W of a line is defined by Wf0 =
∫

(f0 − f)dλ, where f is the observed
spectrum across the line, f0 is the interpolated continuum spectrum at those wavelengths, and λ
is the wavelength. If the optical depth at line center is τ <∼ 1 (either because the column density is
low enough and/or because Doppler broadening makes the line shallower), then

W =

∫

τ dλ = Σ

∫

σdλ =
3Λ

8π

λ4
α

c
Σ, (4)

in the rest frame of the absorber, which then gets increased by a factor 1 + z when observed. E.g.,
for Σ = 1013 cm−2, W = 0.05 angstroms in the rest frame, and W0 = 0.2 angstroms at redshift
z = 3.
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For higher surface density, such that τ >∼ 1, the exact expression is

W =

∫

dλ(1 − e−τ ) =

∫

dω
λ2

2πc

[

1 − exp

(

− 3λ2
αΛ2Σ

8π[(ω − ωα)2 + Λ2/4]

)]

, (5)

where we have used τ = σΣ and the frequency dependence for the resonant Lyman-alpha scattering
cross section. This expression evaluates to W = 7.3(Σ/1020 cm−2)1/2 angstroms. A column Σ =
1021 cm2 at z = 2 yields an observed EW of 70 angstroms. With a high-quality spectrum, the
high-frequency “damping wings” (σ ∝ ω−2) of the absorption trough can be fit.

The distribution of absorbers in column depth and redshift is approximated by dP = g(Σ, z)dΣdz,
where g ≃ AΣ−β (and Σ in units of cm−2). At z ∼ 3, β ≃ 1.5, and A ≃ 108.4 for 1013 <∼
Σ <∼ 1022 cm−2. The slope of g steepens a bit above Σ ∼ 1020 cm−2 and even moreso above
Σ >∼ 1022 cm−2. If we had a fixed comoving density and physical-size distribution for absorbers,
and an EdS universe, we would expect g ∝ (1 + z)3(dt/dz) ∝ (1 + z)1/2. The observations suggest
that Σ >∼ 1020 systems behave not unlike this, while the evolution of the forest absorbers is much
more rapid at low redshifts, implying that these more tenuous clouds are dissipating.

3 Damped Lyman-alpha systems

These things are most likely young Milky-Way–type galaxies. The total atomic-hydrogen column
in these objects is

NI =

∫

dz

∫

dΣ Σg(Σ, z) =

∫ 〈nI〉 c

H0Ω
1/2
m

dz

(1 + z)5/2
, (6)

where the cosmic mean density of atoms in these clouds is

〈nI〉
(1 + z)3

=
AΣ2−β

max

2 − β

H0Ω
1/2
m

c(1 + z)1/2
, (7)

assuming an upper cutoff Σmax (note that with β ≃ 1.5, most of the hydrogen is in the largest

absorbers). This density is ΩI ∼ 0.002(Σ0.54
max,22)Ω

1/2
m /h at z ∼ 3, which is comparable to the

density of luminous matter in galaxies today (note that column of protons through the Milky Way
disk is ∼ 1022 cm−2). The number of clouds with columns greater than Σ per unit redshift is
dN/dz = AΣ1−β/(β − 1) ≃ 0.3Σ−0.46

20 . If we assume a constant comoving density of L∗ galaxies,
n = ng(1 + z)3 with ng = 0.01h3 Mpc−3, and radii 10h−1 kpc, then

dN

dz
=

πr2
gngc

H0Ω
1/2
m

(1 + z)1/2 ∼ 0.02Ω−1/2
m , (8)

which is in reasonable agreement with the observations. Conclusion: these things are L∗-ish galaxies
or proto-galaxies.

4 Lyman-alpha forest clouds

These are things that have hydrogen columns Σ ∼ 1014 cm−2. Their z distribution is dN/dz =
B(1 + z)γ with B = 3.5 and γ = 2.75 for Σ >∼ 1014 cm−2 and 2 <∼ z <∼ 4. This large value of γ
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(cf., γ = 1/2 in EdS) shows that these clouds are dissipating over the observed redshift range. The
mean proper distance between the clouds is

L = c
dt

dz

dz

dN
∼ 0.6h−1Ω−1/2

m

(

1 + z

4

)−5.25

Mpc. (9)

With sufficiently high-resolution spectra, the line-of-sight velocity dispersion in each absorber can
be determined, and it is seen to be of order b ∼ 30 km sec−1 corresponding to a gas temperature
T ∼ 5 × 104 K, roughly what we would expect for photoionized gas clouds.

The density parameter for the neutral gas in Σ ∼ 1014 cm−2 gas clouds is roughly Ω(nI) ∼
10−7 Ω

1/2
m /h, comparable very roughly to the upper limit to the smoothly distributed neutral hy-

drogen, as we claimed before. However, these gas clouds are subjected to photoionizing radiation
(and are optically thin to such radiation), and so there is probably a lot more ionized gas than
the neutral gas we see. We will guess that the sizes of these clouds are l = 10 l10h

−1 kpc, where
l10 parameterizes our ignorance and is probably in the range 1 <∼ l10 <∼ 10. The lower bound is
inferred by looking for coincident absorbers along neighboring lines of sight. The upper limit will
be obtained below. In the homework, you will develop a better idea of the size of these clouds, and
you will also find that most of the absorption takes place in the densest regions, so the clouds may
be quite irregularly shaped, even though we assume them to be spherical.

We take as the canonical absorber Σ = 1014 cm−2 and a redshift z = 3. The characteristic neutral-
hydrogen density is nI ∼ Σ/l ∼ 3× 10−9 h/l10 cm−3, and the characteristic neutral-hydrogen mass
is MI ∼ Σl2mp ∼ 100 l210h

−2 M⊙; i.e., there is not that much neutral hydrogen here.

Let’s now find the filling factor for these clouds. The mean density of neutral hydrogen in these
clouds, averaged over all space, is 〈nI〉 = 〈Σ〉 (dN/dx), where 〈Σ〉 is the average column. But

dx = c dt, and dN/dx = (dN/dz)(dz/dx), and dt/dz = Ω
−1/2
m H−1

0 (1 + z)−5/2. Then, the filling
fraction is

1

C
=

〈nI〉
nI

= 10−5 (1 + z)5.25l10Ω
1/2
m = 0.02 l10Ω

1/2
m , (10)

the final equality being evaluated at z = 3. The number density of clouds is

nclouds =
〈nI〉
nI l3

=
1

Cl3
= 2 × 104 h3Ω

1/2
m

l210
Mpc−3, (11)

implying a characteristic cube size,

wcl = n
−1/3

clouds
= 40h−1Ω−1/6

m l
2/3
10 kpc (12)

at z = 3. We conclude that the clouds fill ∼ 2 − 10% of space, implying that their spacing is not
too much bigger than their sizes. Taking into account irregular shapes, it implies a cloudy IGM.
Such a filling fraction also implies a characteristic mass overdensity δg ∼ 10− 50. Therefore, if the
gas traces the mass (and this is a big “if”), then these Lyman-alpha forest clouds correspond to
nonlinear density perturbations, a bit past turnaround, but not yet virialized.

At 104 K, collisional ionization is ineffective, so the neutral fraction is

f ≡ nI

np
=

αnp

λpi

=
α

λpi

Σ

fl
, (13)

5



giving us a neutral fraction,

f ∼
(

αΣ

λpil

)1/2

∼ 2 × 10−5

T 0.35
4

(

h

i21l10

)1/2

. (14)

The gas density in the cloud is

np ∼ Σ

lf
∼ 2 × 10−4 T 0.35

4

(

i21h

l10

)1/2

cm−3, (15)

and the characteristic gas mass is

MII ∼
Σl2mp

f
∼ 107 T 0.35

4 i
1/2
21

(

l10
h

)1/2

M⊙. (16)

Note that this is comparable to the stellar mass of a big globular cluster. The contribution to the
cosmological density is

ΩII ∼ 0.005T 0.35
4

(

i21l10Ωm/h3
)1/2

, (17)

comparable to the mass in high-column-depth clouds.

What keeps these clouds at their observed size? One possibility is pressure confinement by hotter
IGM gas between the clouds (using the same physics as in the two-phase model for the ISM). This
would require that the hot gas have a pressure P/k ∼ Tnp ∼ 2T 1.35

4 (i21h/l10)
1/2 K cm−3. You will

figure out in the homework why this is unlikely. Another, more likely, possibility is that the cloud
is freely expanding. If it does so at velocity b (which is the velocity at which it would expand if it
were not confined by gravity or pressure), then it would expand in a Hubble time by a fractional

amount (δl/l) ∼ (bt/l) ∼ (3/l10Ω
1/2
m ) at z = 3. This argument would not work for clouds at lower

redshifts, when the expansion time is much longer. Such clouds may be gravitationally confined.
This would require a total mass M ∼ kT l/(Gmp) = 2 × 108 T4l10h

−1 M⊙, roughly ten times larger
than the gas mass, and roughly, therefore, what one might expect for the associated dark-matter
halo for these objects.

5 The warm-hot intergalactic medium (WHIM)

Note that the total amount of gas we infer in the Lyman-alpha forest is somewhat small compared
with the mean baryonic density. This discrepancy becomes more severe at lower redshifts, when
the Lyman-alpha forest disappears. This leads us to the “missing baryon” problem: i.e., where are
all the baryons? (Incidentally, the contribution of stellar mass to the critical density is roughly
an order of magnitude smaller than the CMB/BBN baryon density.) The most likely explanation
is the warm-hot intergalactic medium (WHIM). The characteristic dark-matter mass scale M∗ is
today something like 1013 M⊙, and the virial temperature for such halos is around T ∼ 105.5−6 K.
Gas at this temperature is ionized, and so does not appear in quasar absorption spectra. However,
gas at this temperature emits in the far-UV or soft x-ray, frequencies which are difficult to detect,
especially if the emission is diffuse. (Contrast this with x-ray emission from relatively dense T ∼ 107

K gas in galaxy clusters, dark-matter halos of M ∼ 1014−15 M⊙, which appears very easily in x-ray
telescopes.) The WHIM is thus very difficult to detect, and considerable efforts are now being
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made to detect it. Gas at these temperatures and densities is expected to have some highly ionized
oxygen, which has absorption features at x-ray frequencies (Lyman-like transitions) and some at
UV frequencies (fine-structure, I think). Just over the past few years, several groups have reported
detections of absorption due to intergalactic OVI and OVII, and this has been interpreted as
detection of the WHIM. However, these are very new results, with poor statistics, and it is difficult
to draw precise quantitative conclusions from the data. Detection of these lines is difficult because
they are weak and thus require large statistics. This requires that the background source be a very
bright cosmological x-ray source for which the telescope integrates a long time, and the sources
that are sufficiently bright are not too far.

6 The first stars

There is currently considerable interest in the first stars to form in the Universe and how they
reionized the Universe. The problem is, however, theoretically extremely complicated, and ob-
servationally very poorly constrained at this point. There are therefore a very large number of
interesting stories, but we cannot yet zero in on the “truth”. In Ay123, we spent a bit of time the
last week talking about stars formed from primordial gas, composed only of hydrogen and helium.
We found that such stars are likely to be very massive and very hot, and to emit a nearly blackbody
spectrum at temperatures T >∼ 104 K, producing many ionizing photons. These ionizing photons
are then thought to be quite efficient at reionizing the Universe. Next week, we will (hopefully) see
that primordial gas cannot cool on a timescale less than the Hubble time until the characteristic
dark-matter–halo mass is ∼ 106 M⊙. In a previous homework, you should have concluded that this
characteristic mass M∗ occurs at a redshift (very roughly) z ∼ 20. If so, then these first stars would
have formed and ionized the Universe. It is then believed (or argued), that formation of subsequent
stars would then be shut off. The reason is that ionized gas cannot cool as effectively as atomic
gas, and so one must wait until the characteristic mass scale is above ∼ 108−9 M⊙ for the gas to
cool quickly enough to form (what must be second-generation) stars.

The only observational handle we have currently on these epochs is the large-angle CMB polar-
ization signal detected by WMAP. In an earlier homework, you found that the sound horizon at
recombination subtends an angle θ ∼ 1◦, corresponding to a multipole moment ℓ ∼ 200, and that
this result is obtained also by noting that the baryon-photon sound speed is at these times ∼ c/

√
3.

You also showed in an earlier homework that if all the gas in the Universe is reionized at a redshift
of z ∼ 20, and remains ionized, then the optical depth for CMB photon to Thomson scatter from
reionized electrons is τ ∼ 0.2; i.e., that one in five (roughly) CMB photons re-scattered at z ∼ 20
(recalling that most of the scattering happens, as you showed, at the higher redshifts). When
these photons re-scatter at z ∼ 20, the electrons from which they scatter will see a temperature
quadrupole moment for the same reason that we do—i.e., from large-scale primordial density per-
turbations. And as you (should have) learned in Ay121, Thomson scattering induces a polarization
in the scattered radiation that is proportional to (and roughly equal to one-tenth of) the quadrupole
moment of the incident radiation. Therefore, the CMB photons scattered at z ∼ 20 should have a
polarization ∼ 10−5/10 ∼ 10−6, and since the fraction of photons scattered is τ ∼ 0.2, the observed
polarization should be ∼ 2× 10−7. Moreover, the coherence scale of this polarization should be the
coherence scale of the quadrupole moment at re-scattering, or the horizon at z ∼ 20. Recalling that
the angle subtended by the horizon at a redshift z is ∝ (1 + z)−1/2, we infer that the characteristic
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multipole moment of the re-scattered polarization should be ℓreion ∼ 200 (20/1100)1/2/
√

3 ∼ 15.
Detailed calculations put this at slightly smaller ℓ, and when we take into account the fact that
WMAP actually detects this large-angle polarization in cross-correlation with the temperature fluc-
tuation (which is largest at small ℓ), the observed signal is at even slightly smaller ℓ. The bottom
line, though, is that WMAP did in fact detect a large-angle CMB temperature-polarization cross
correlation, and from the amplitude of their detection, we infer a reionization optical depth τ ≃ 0.17
corresponding to a reionization redshift z ∼ 17. Keep in mind, though, that their analysis is very
tricky, the statistics marginal, and that the error bars are large. The data are still easily consistent
with a reionization redshift as low as z ∼ 10.

Ideas for probing the epochs 6 <∼ z <∼ 20 (redshifts beyond the current Lyman-alpha forest, but
below the expected first-star redshift) are abundant, although good ones are rare. Some ideas
include looking at earlier galaxies with an imaging space telescope (i.e., JWST). Other ideas include
studying IGM gas at these early epochs through absorption/emission features in the CMB due to
the 21-cm transition in IGM hydrogen. The required frequencies would have to be quite low:
1.4 (1 + z)−1 GHz ∼ 50 − 200 MHz. A number of projects (including the Square Kilometer Array)
would be poised to detect these absorption features. People discuss looking simply for correlations
(in both angular and redshift space) of the 21-cm features, and some people also talk of imaging,
e.g., Stromgren spheres from the first ionizing sources.

7 The power spectrum from the Lyman-alpha forest

You may hear a lot these days about determination of the matter power spectrum P (k) from the
Lyman-alpha forest. This is a technique that has been applied to the huge quasar sample from
the Sloan Digital Sky Survey (SDSS), although there were applications to smaller samples before
that. The idea traces back to Croft et al. (ApJ, 1998). A combination of numerical simulations
and semi-analytic reasoning leads us to believe that there is a relation between the low-density
δ ∼ 10 gas that constitutes the Lyman-alpha forest and the underlying mass distribution (some
of which you will investigate in the homework assignment). The observed Ly-alpha spectrum can
thus be converted to a line-of-sight density field, with a normalization that is arbitrary. The three-
dimensional power spectrum is then converted to a 3d power spectrum (as you worked out in a
homework assignment). (3) Simulations are then run with the observed P (k) with differing nor-
malizations until the normalization matches the Ly-alpha power spectrum. The simulations/theory
are constrained so that the mean Ly-alpha opacity matches the observations. The measurements
need not be extremely high resolution. Roughly speaking, ∼ 1 − 10h−1 Mpc scales correspond to
100−1000 km/sec, so measurements of the power spectrum can be done with spectral resolutions of
40 km/sec, well below state-of-the-art, and easily something achievable en masse with, e.g., SDSS.
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