Ph125c

Spring 2006

QUANTUM MECHANICS

Problem Set 3

Due in class Wednesday, 19 April 2006

This week's problems will contine with partial waves and also deal with resonant scattering and electron-atom scattering.

1. Consider a "shell potential,"

$$V(r) = \alpha \delta(r - r_0),$$

for r, the radial spherical coordinate in three dimensions.

- a. Find the s-state wavefunction for E > 0. Include an expression that determines the phase shift δ_0 . With $\hbar k = \sqrt{2mE}$, show that in the limit $k \to 0$, $\delta_0 \to ak$, with constant a (the "scattering length"). Solve for a in terms of α and r_0 .
- b. How many bound states can exist for $\ell = 0$ and how does their existence depend on α ?
- c. What is the scattering length a when a bound state appears at E = 0? What happens to a as the shell potential changes from repulsive ($\alpha > 0$) to attractive ($\alpha < 0$), and when α is sufficiently negative to form a bound state? Sketch a as a function of α .
- 2. In this problem you will consider the deuteron and neutron-proton scattering more carefully. The deuteron, a spin-triplet and $\ell = 0$ bound state of a neutron and a proton, has a binding energy of 2.26 MeV. It is also known that this is the only bound state of the neutron and proton (there are no excited bound states.) The neutron-proton scattering length (for the triplet) is $a_t = 5.42$ fm. Suppose we guess that the neutron-proton interaction is an attractive rectangular well of depth V_0 and radius R (i.e., $V(r) = -V_0$ for r < R and V(r) = 0 for r > R.)
 - a. Find values for V_0 and R that reproduce this binding energy and scattering length.
 - b. Calculate the effective range r_0 you would expect from these parameters. How does this result compare with the experimental value of $r_t = 1.73$ fm?
 - c. What is the total cross section at low energies? and how does it compare with πR^2 .
 - d. At what energies is it safe to approximate the total cross section just by the $\ell = 0$ cross section?

- e. What is the total cross section for this potential at high energies? and how does it compare with πR^2 ?
- 3.
- a. Derive equation (7.12.6) from Sakurai,

$$\begin{aligned} \frac{d\sigma}{d\Omega}(0 \to n) &= \frac{1}{(\hbar k/mL^3)} \frac{2\pi}{\hbar} |\langle \mathbf{k}' n | V | \mathbf{k} 0 \rangle|^2 \left(\frac{L}{2\pi}\right)^3 \left(\frac{k'm}{\hbar^2}\right) \\ &= \left(\frac{k'}{k}\right) L^6 \left|\frac{1}{4\pi} \frac{2m}{\hbar^2} \langle \mathbf{k}', n | V | \mathbf{k}, 0 \rangle\right|^2, \end{aligned}$$

the differential cross section for inelastic electron-atom scattering. Here, \mathbf{k} is the wavevector of the incident particle (of mass m) and \mathbf{k}' that for the scattered particle. The operator V describes the interaction potential between the incident electron and the atomic nucleus and electrons, and L is the size the (very large) box that is assumed to enclose the system.

b. (Sakurai 7.11) Show that the differential cross section for the elastic scattering of a fast electron by the ground state of the hydrogen atom is given by

$$\frac{d\sigma}{d\Omega} = \left(\frac{4m^2e^4}{\hbar^4q^4}\right) \left\{1 - \frac{16}{\left[4 + (qa_0)^2\right]^2}\right\}^2.$$

Ignore the effect of identity of the incident and atom electron.