Ph125c

Spring 2006

QUANTUM MECHANICS

Problem Set 3

Due in class Wednesday, 19 April 2006

This week's problems will contine with partial waves and also deal with resonant scattering and electron-atom scattering.

1. Consider a "shell potential,"

$$
V(r)=\alpha \delta\left(r-r_{0}\right)
$$

for r, the radial spherical coordinate in three dimensions.
a. Find the s-state wavefunction for $E>0$. Include an expression that determines the phase shift δ_{0}. With $\hbar k=\sqrt{2 m E}$, show that in the limit $k \rightarrow 0, \delta_{0} \rightarrow a k$, with constant a (the "scattering length"). Solve for a in terms of α and r_{0}.
b. How many bound states can exist for $\ell=0$ and how does their existence depend on α ?
c. What is the scattering length a when a bound state appears at $E=0$? What happens to a as the shell potential changes from repulsive $(\alpha>0)$ to attractive ($\alpha<0$), and when α is sufficiently negative to form a bound state? Sketch a as a function of α.
2. In this problem you will consider the deuteron and neutron-proton scattering more carefully. The deuteron, a spin-triplet and $\ell=0$ bound state of a neutron and a proton, has a binding energy of 2.26 MeV . It is also known that this is the only bound state of the neutron and proton (there are no excited bound states.) The neutron-proton scattering length (for the triplet) is $a_{t}=5.42 \mathrm{fm}$. Suppose we guess that the neutron-proton interaction is an attractive rectangular well of depth V_{0} and radius R (i.e., $V(r)=-V_{0}$ for $r<R$ and $V(r)=0$ for $r>R$.)
a. Find values for V_{0} and R that reproduce this binding energy and scattering length.
b. Calculate the effective range r_{0} you would expect from these parameters. How does this result compare with the experimental value of $r_{t}=1.73 \mathrm{fm}$?
c. What is the total cross section at low energies? and how does it compare with πR^{2}.
d. At what energies is it safe to approximate the total cross section just by the $\ell=0$ cross section?
e. What is the total cross section for this potential at high energies? and how does it compare with πR^{2} ?
3.
a. Derive equation (7.12.6) from Sakurai,

$$
\begin{aligned}
\frac{d \sigma}{d \Omega}(0 \rightarrow n) & \left.=\frac{1}{\left(\hbar k / m L^{3}\right)} \frac{2 \pi}{\hbar}\left|\left\langle\mathbf{k}^{\prime} n\right| V\right| \mathbf{k} 0\right\rangle\left.\right|^{2}\left(\frac{L}{2 \pi}\right)^{3}\left(\frac{k^{\prime} m}{\hbar^{2}}\right) \\
& \left.=\left(\frac{k^{\prime}}{k}\right) L^{6}\left|\frac{1}{4 \pi} \frac{2 m}{\hbar^{2}}\left\langle\mathbf{k}^{\prime}, n\right| V\right| \mathbf{k}, 0\right\rangle\left.\right|^{2}
\end{aligned}
$$

the differential cross section for inelastic electron-atom scattering. Here, \mathbf{k} is the wavevector of the incident particle (of mass m) and \mathbf{k}^{\prime} that for the scattered particle. The operator V describes the interaction potential between the incident electron and the atomic nucleus and electrons, and L is the size the (very large) box that is assumed to enclose the system.
b. (Sakurai 7.11) Show that the differential cross section for the elastic scattering of a fast electron by the ground state of the hydrogen atom is given by

$$
\frac{d \sigma}{d \Omega}=\left(\frac{4 m^{2} e^{4}}{\hbar^{4} q^{4}}\right)\left\{1-\frac{16}{\left[4+\left(q a_{0}\right)^{2}\right]^{2}}\right\}^{2}
$$

Ignore the effect of identity of the incident and atom electron.

