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These notes are intended to provide a schematic explanation for the description of a scalar field
φ(t, ~x) in thermal equilibrium at temperature T in terms of a quantum field theory in imaginary
time with periodic (in imaginary time) boundary conditions. You can find more details in textbooks
on quantum field theory and/or statistical mechanics. The place I’m looking at right now is Finite-

Temperature Field Theory by Joseph Kapusta (Cambridge University Press, Cambridge, 1989).

Suppose that at time t = 0 the quantum-mechanical states of the scalar field is |φa〉. After a time t,

it will evolve to e−iĤt|φa〉, where Ĥ is the Hamiltonian for the system. The probability to find the

system in some state |φb〉 after time t is thus 〈φb|e
−iĤt|φa〉. According to Feynman’s path-integral

approach to quantum mechanics, this amplitude can be written as

〈φb|e
−iĤt|φa〉 =

∫ φ(t,~x)=φb(~x)

φ(t=0,~x)=φa(~x)
[dφ] e

i
~

R t
0

dt′
R

d3xL. (1)

Here, L is the classical Lagrangian for the system, and the [dφ] denotes a path integral over all pos-
sible field configurations φ(t, ~x) that mediate between the initial (φa) and final (φb) configurations.

Let’s now consider the system at finite temperature T . All of thermodynamic quantities in the
system can be derived from the partition function,

Z = Tre−Ĥ/kT =

∫
dφa〈φa|e

−iĤt|φa〉, (2)

where k is the Boltzmann constant. The trace of e−Ĥ/kT is just a sum (the integral
∫

dφa) over

the states (i.e., |φa〉) of the expectation value of e−Ĥ/kT . Comparing with Eq. (1) suggests that we
can write the partition function as a path integral. To do so requires several steps: (1) We replace
the time t by an imaginary time τ = it. (2) We identify the temperature T with the (imaginary)
time τ that has evolved through T = ~/(kτ). (3) We set the initial and final states that appear in
Eq. (1) to be the same. (4) We carry out the integral over states φa in Eq. (2) by summing over
all possible initial and final states (which are now identified) in Eq. (1). The result is

Z =

∫
periodic

[dφ]e
R

1/kT
0

dτ
R

d3xL. (3)

The “periodic” here means that the integration is over all field configurations in which φ(0, ~x) =
φ(τ = ~/kT, ~x); i.e., over all field configurations that return to their initial value after imaginary
time τ = ~/kT .
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This is why a scalar field that lives in a spacetime that can be written in terms of an imaginary
time with periodic boundary conditions is equivalent to a scalar field at finite temperature.

2


