
General Relativity (Ph236a)

Problem Set 1

Due: October 3, 2006

Preview: Problem 1 is highly recommended. The first part should help you understand/review
the idea of a metric in a familiar setting; the second part will make Christoffel symbols seem
more digestable when we get to them in a few weeks. Problem 2 is something you should be
able to do if you understand special relativity well. Problems 3 and 4 are important, as they
will help you understand more complicated spacetime diagrams that we will get to later in
the class. Problems 5 and 6 are cute exercises in special-relativistic kinematics, but should
probably be given lower priority than the others if you have limited time.

1. Euclidean space in cylindrical and spherical coordinates: Consider ordinary
three-dimensional Euclidean space. The simplest coordinates are Cartesian coordinates,
xi, for i = 1, 2, 3. However, one could also choose to use any other coordinate system,
yi(xj), for example, cylindrical or spherical coordinates. In Cartesian coordinates, the
distance ds between xi and xi + dxi is given by

ds2 = dx2 + dy2 + dz2.

a. Show that in the new coordinate system, yi, this is given by

ds2 = gij dyi dyj ,

and find gij . Do this only for spherical coordinates; if you’re a glutton for punishment,
work it out for cylindrical coordinates as well.

b. Now consider force-free Newtonian motion in this space. You know that trajectories
are straight lines. Show that in yi coordinates, the Lagrangian is

L =
1

2
mgij ẏ

iẏj ,

where the dot denotes derivative with respect to time. Next, solve the Euler-Lagrange
equations to show that the equations of motion are (i.e., ẍi = 0)

ÿi + Γi
jkẏ

j ẏk = 0,

where

Γi
jk =

1

2
gil(∂kgjl + ∂jgkl − ∂lgjk),

and gij is the inverse metric, gijg
jk = δk

i . Do not bother to calculate the components
of Γi

jk.

2. (Wald 1.1) Car and Garage Paradox: The lack of a notion of absolute simultaneity
in special realtivity leads to many supposed paradoxes. One of the most famous of these



involves a car and a garage of equal proper length. The driver speeds toward the garage
and a doorman at the garage is instructed to slam the door shut as soons as the back
end of the car enters the garage. According to the doorman, “the car Lorentz contracted
and easily fitted into the garage when I slammed the door.” According to the driver,
“the garage Lorentz contracted and was too small for the car when I entered the garage.”
Draw a spacetime diagram showing the above events and explain what really happens.
Is the doorman’s statement correct? Is the driver’s statement correct? For definiteness,
assume that the car crashes through the back wall of the garage without stopping or
slowing down.

3. Proof of invariance of a timelike interval: Consider two events P and Q in space-
time, with a timelike separation vector ~A. Examine these events in two different reference
frames S and S̄ that move with speed v relative to each other. Choose the origins of the
two frames’ spacetime coordinates to coincide and to be at the event P and orient the
spatial axes of the two frames so their relative motion is in the x direction and Q lies in
the x-y plane. The following diagram depicts this in a spacetime diagram drawn from
the viewpoint of frame S (note that the unlabeled axis is the y axis):

a. Convince yourself that wherever may be the event P and Q, the origins and axes
of the two frames can be adjusted as described above. The following experiment
is a foundation for providing the invariance of the interval between P and Q. The
experiment is sketched below in two purely spatial diagrams (time not shown) from
the frames’ two different viewpoints:



A photon is emitted from P and travels along a straight line in the x-y plane until it hits
a mirror that reflects it; the photon then travels again in a straight line in the x-y plane,
arriving at the event Q. The position of the reflecting mirror is adjusted so the photon
reaches the spatial location of Q precisely at the time of Q. The state of motion of the
mirror is not important; the key thing is that, as seen in frame S, the photon’s direction of
motion makes an angle α with the x axis that is the same before and after reflection (angle
of incidence equals angle of reflection), as shown in the diagram. In the following, do not use
the Lorentz-transformation equations. Assume that they have not yet been derived; we are
working our way toward them, and our first step is to derive the invariance of the interval
from the Principle of Relativity (i.e., there is no preferred inertial frame).

b. Use the Principle of Relativity to show that the heights of the reflection point are the
same in the two frames, yrefl = ȳrefl, and that the angles of incidence and reflection
are equal in the frame S̄, ᾱ = ᾱ′, just as they are equal in frame S.

c. Use the Principle of Relativity, the constancy of the speed of light, and simple ge-
ometric considerations to show that the interval between P and Q is the same as
computed in the two reference frames:

−(∆t)2 + (∆x)2 + (∆y)2 + (∆z)2 = −(∆t̄)2 + (∆x̄)2 + (∆ȳ)2 + (∆z̄)2.

4. For the two reference frames of the preceding problem, draw a spacetime diagram for
the x̄-t̄ plane from the viewpoint of frame S̄ (not S). On this diagram, draw the x and
t axes of frame S. Use this diagram to prove the following results:
a. Events that are simultaneous as seen in frame S are not simultaneous as seen in S̄.

Which events occur first and which later?
b. An ideal clock at rest in frame S appears, as seen from S̄, to tick abnormally slowly;

and conversely, an ideal clock at rest in frame S̄ appears, as seen from S to tick
abnormally slowly. Use the geometry of the diagram to show that the slow-down
factor is

√
1 − v2.

c. An ideal rod at rest in frame S appears, as seen from S̄, to be contacted by a factor√
1 − v2; and conversely, an ideal rod at rest in frame S̄ appears, as seen from S, to

be contracted by that same factor.



5. Addition of velocities I: If two frames move with 3-velocities ~v1 and ~v2 with respect
to some inertial frame, show that their relative 3-velocity has the magnitude,

~v · ~v =
|~v1 − ~v2|2 − |~v1 × ~v2|2

|1 − ~v1 · ~v2|2
.

6. Addition of velocities II: A cart rolls on a long table with 3-speed v. A smaller cart
rolls on the first in the same direction with 3-speed v relative to the second cart. A third
cart rolls on the second cart in the same direction with 3-speed v relative to the second
cart, and so on up to n carts. What is the 3-speed vn of the nth cart in the rest frame of
the table? Compute the limit of vn as n → ∞. (Hint: consider the “rapidity parameter”
θ = tanh−1 v.)


