General Relativity (Ph236a)

Problem Set 2

Due: October 10, 2006

Preview: Problem 1 asks you to calculate components of the stress-energy tensor for a few configurations. Its a good one to do, as it is intended to put some meat on the concept of $T^{\mu \nu}$. Problem 2 is a cute exercise involving another special-relativistic "paradox." I'd rank it lower priority, but it is nice in that it is actually seen in a number of astrophysical settings. Problems 3 and 4 are cute exercises in special-relativistic dynamics of accelerated observers. The numerical answers are also kind of neat for science fiction fans, but they are not conceptually as important as the last two problems. Problem 5 is important, as it will be relevant for our discussion of spinning-frame experiments later in the year. Problem 6 is also important for the same reason; it deals with the relativistic motion of a gyroscope.

1. Components of Stress-Energy Tensor: Calculate the components of the stressenergy tensors (in an inertial frame \mathcal{O}) in the following systems: (a) A group of particles all moving with the same velocity $\mathbf{v}=\beta \mathbf{e}_{x}$, as seen in \mathcal{O}. Let the rest-mass density of these particles be ρ_{0}, as measured in their comoving frame. Assume a sufficiently high density of particles to enable treating them as a continuum. (b) A ring of N similar particles of mass m rotating counter-clockwise in the $x-y$ plane about the origin of \mathcal{O}, at a radius a from this point, with an angular velocity ω. The ring is a torus of circular cross-section of radius $\delta a \ll a$, within which the particles are uniformly distributed with a high-enough density for the continuum approximation to apply. Do not include the stress-energy of whatever forces keep them in orbit. (Part of the calculation will relate ρ_{o} of part (a) to N, a, ω, and δa.) (c) Two such rings of particles, one rotating clockwise and the other counter-clockwise, at the same radius a. The particles do not collide or interact in any way.
2. (Carroll, problem 1.4) "Superluminal" motion: Projection effects can trick you into thinking that an astrophysical object is moving "superluminally." Consider a quasar that ejects gas with speed v at an angle θ with respect to the line of sight of the observer. Projected onto the sky, the gas appears to travel perpendicular to the line of sight with angular speed $v_{\text {app }} / D$, where D is the distance to the quasar and $v_{\text {app }}$ is the apparent speed. Derive an expression for $v_{\text {app }}$ in terms of v and θ. Show that, for appropriate values of v and $\theta, v_{\text {app }}$ can be greater than 1 .
3. (MTW, 6.1-2) Interstellar travel:
a. Compute the time required to travel in rocket ship to the Galactic center assuming a uniform acceleration of $1000 \mathrm{~cm}^{2} / \mathrm{sec}$, the acceleration of gravity at the Earth's surface.
b. What fraction of the initial mass of the rocket can be payload for the journey? Assume a futuristic rocket that converts rest mass into radiation and ejects it with 100% efficiency opposite to the direction of motion.
4. (MTW 6.3) Twin paradox:
a. Show that the timelike world line connecting two timelike-separated events \mathcal{A} and \mathcal{B} with the longest proper time is the unaccelerated one.
b. Suppose that two twins travel from \mathcal{A} to \mathcal{B}. The first twin, Jane, likes to take it easy; she prefers to travel along an intertial trajectory between \mathcal{A} and \mathcal{B}. She also lives a good long life; it takes her 100 years to do so. The second twin, Alice, likes to get out and see things, but she can't tolerate an acceleration more than one Earth gravity, $1000 \mathrm{~cm}^{2} / \mathrm{sec}$. Assuming she also starts at \mathcal{A}, what is the shortest proper time that can elapse in her frame if she returns to re-join Jane at \mathcal{B} ?
5. (MTW 6.8) Observer with rotating tetrad: An observer moving alolng an arbitrarily accelerated world line chooses not to Fermi-Walker his orthonormal tetrad. Instead, he allows it to rotate. The antisymmetric rotation tensor $\Omega^{\mu \nu}$ that enters the transport law,

$$
\frac{d e_{\alpha^{\prime}}^{\mu}}{d \tau}=-\Omega^{\mu \nu} e_{\alpha^{\prime} \mu}
$$

splits into a Fermi-Walker part plus a spatial rotation, $\Omega^{\mu \nu}=\Omega_{(F W)}^{\mu \nu}+\Omega_{(S R)}^{\mu \nu}$, where $\Omega_{(F W)}^{\mu \nu}=a^{\mu} u^{\nu}-a^{\nu} u^{\mu}$ and $\Omega_{(S R)}^{\mu \nu}=u_{\alpha} \omega_{\beta} \epsilon^{\alpha \beta \mu \nu}$, and ω^{μ} is a four-vector orthongal to the four-velocity: $\omega^{\mu} u_{\mu}=0$.
a. The observer chooses his time basis vector to be $e_{0^{\prime}}^{\mu}=u^{\mu}$. Show that this choice is permitted by the transport law implied by the above choice for $\Omega^{\mu \nu}$.
b. Show that $\Omega_{(S R)}^{\mu \nu}$ produces a rotation in the plane perpendicular to u^{μ} and ω^{μ}-i.e., that $\Omega_{(S R)}^{\mu \nu} u_{\nu}=0$ and $\Omega_{(S R)}^{\mu \nu} \omega_{\nu}=0$.
c. Suppose that the accelerated observer Fermi-Walker transports a second orthonormal tetrad $e_{\alpha^{\prime \prime}}^{\mu}$. Show that the space vectors of his first tetrad rotate relative to those of his second tetrad with angular velocity equal to ω. [Hint: At a moment when the tetrads coincide, show that (in three-dimensional notation, referring to the 3 -space orthogonal to the observer's world line):

$$
\frac{d\left(\vec{e}_{j^{\prime}}-\vec{e}_{j^{\prime \prime}}\right)}{d \tau}=\vec{\omega} \times \vec{e}_{j^{\prime}}
$$

d. The observer uses the prescription discussed in class [this is MTW's Eq. (6.16)] to set up local coordinates based on his rotating tetrad as for his Fermi-Walker tetrad. Pick an event \mathcal{Q} on the observer's world line, set $\tau=0$ there, and choose the original inertial frame of prescription (6.16) so (1) it comoves with the accelerated observer at $\mathcal{Q},(2)$ its origin is at \mathcal{Q}, and (3) its axes coincide with the accelerated axes at \mathcal{Q}. Show that these conditions translate into $z^{\mu}=0$ and $e_{\alpha^{\prime}}^{\mu}(0)=e_{\alpha}$.
e. Show that near \mathcal{Q}, the prescription [MTW's Eq. (6.16)] for setting up rotating accelerated coordinates reduces to:

$$
\begin{gathered}
x^{0}=\xi^{0^{\prime}}+a_{k} \xi^{k^{\prime}} \xi^{0^{\prime}}+O\left(\left[\xi^{\alpha^{\prime}}\right]^{3}\right) \\
x^{j}=\xi^{j^{\prime}}+\frac{1}{2} a^{j}\left(\xi^{0^{\prime}}\right)^{2}+\epsilon^{j k l} \omega^{k} \xi^{l^{\prime}} \xi^{0^{\prime}}+O\left(\left[\xi^{\alpha^{\prime}}\right]^{3}\right)
\end{gathered}
$$

f. A freely moving particle passes through the event \mathcal{Q} with ordinary 3 -velocity \vec{v} measured in the inertial frame. By transforming its straight world line $x^{j}=v^{j} x^{0}$ to the accelerated, rotating coordinates, show that its coordinate velocity and acceleration there are:

$$
\begin{gathered}
\left(d \xi^{j^{\prime}} / d \xi^{0^{\prime}}\right)_{\text {at } \mathcal{Q}}=v^{j} ; \\
\left(d^{2} \xi^{j^{\prime}} / d\left(\xi^{0^{\prime}}\right)^{2}\right)_{\text {at } \mathcal{Q}}=-a^{j}-2 \epsilon^{j k l} \omega^{k} v^{l}+2 v^{j} a^{k} v^{k}
\end{gathered}
$$

Here the first term is the inertial acceleration (the acceleration of the center of mass), the second term is the Coriolis acceleration, and the third term is a relativistic correction to inertial acceleration.
6. (MTW 6.9) Thomas precession: Consider a spinning body (gyroscope, electron,...) that accelerates because forces act at its center of mass. Such forces produce no torques; so they leave the body's intrinsic angular-momentum vector S^{μ} unchanged, except for the unique rotation in the velocity-acceleration plane required to keep S^{μ} orthogonal to the four-velocity u^{μ} (note that the spin four-vector S^{μ} is required to have $S^{\mu} u_{\mu}=0$ so that its components in the frame defined by $u^{\mu}=(1,0,0,0)$ are the components of the usual spin three-vector \vec{S}). The body Fermi-Walker transports its angular momentum (no rotation in planes other than those defined by u^{μ} and the acceleration a^{μ}):

$$
d S^{\mu} / d \tau=\left(u^{\mu} a^{\nu}-u^{\nu} a^{\nu}\right) S_{\nu}
$$

This transport law applies to a spinning electron that moves in a circular orbit of radius r around an atomic nucleus. As seen in the laboratory frame, the electron moves in the $x-y$ plane with constant angular velocity ω. At time $t=0$, the electron is at $x=r$, $y=0$, and its spin (as treated classically) has components,

$$
S^{0}=0, \quad S^{x}=\frac{\hbar}{\sqrt{2}}, \quad S^{y}=0, \quad S^{z}=\hbar
$$

a. Calculate the subsequent behavior of the spin $S^{\mu}(t)$ as a function of laboratory time t.
b. Write an expression for $S^{x}+i S^{y}$ as a function of time t. Show that it describes precession in a retrograde direction, and determine the angular velocity $\omega_{\text {Thomas }}$ of this precession.

