
General Relativity (Ph236a)

Problem Set 2

Due: October 10, 2006

Preview: Problem 1 asks you to calculate components of the stress-energy tensor for a few
configurations. Its a good one to do, as it is intended to put some meat on the concept
of T µν . Problem 2 is a cute exercise involving another special-relativistic “paradox.” I’d
rank it lower priority, but it is nice in that it is actually seen in a number of astrophysical
settings. Problems 3 and 4 are cute exercises in special-relativistic dynamics of accelerated
observers. The numerical answers are also kind of neat for science fiction fans, but they are
not conceptually as important as the last two problems. Problem 5 is important, as it will
be relevant for our discussion of spinning-frame experiments later in the year. Problem 6 is
also important for the same reason; it deals with the relativistic motion of a gyroscope.

1. Components of Stress-Energy Tensor: Calculate the components of the stress-
energy tensors (in an inertial frame O) in the following systems: (a) A group of particles
all moving with the same velocity v = βex, as seen in O. Let the rest-mass density of
these particles be ρ0, as measured in their comoving frame. Assume a sufficiently high
density of particles to enable treating them as a continuum. (b) A ring of N similar
particles of mass m rotating counter-clockwise in the x− y plane about the origin of O,
at a radius a from this point, with an angular velocity ω. The ring is a torus of circular
cross-section of radius δa ¿ a, within which the particles are uniformly distributed with
a high-enough density for the continuum approximation to apply. Do not include the
stress-energy of whatever forces keep them in orbit. (Part of the calculation will relate
ρo of part (a) to N , a, ω, and δa.) (c) Two such rings of particles, one rotating clockwise
and the other counter-clockwise, at the same radius a. The particles do not collide or
interact in any way.

2. (Carroll, problem 1.4) “Superluminal” motion: Projection effects can trick you into
thinking that an astrophysical object is moving “superluminally.” Consider a quasar that
ejects gas with speed v at an angle θ with respect to the line of sight of the observer.
Projected onto the sky, the gas appears to travel perpendicular to the line of sight with
angular speed vapp/D, where D is the distance to the quasar and vapp is the apparent
speed. Derive an expression for vapp in terms of v and θ. Show that, for appropriate
values of v and θ, vapp can be greater than 1.

3. (MTW, 6.1-2) Interstellar travel:
a. Compute the time required to travel in rocket ship to the Galactic center assuming

a uniform acceleration of 1000 cm2/sec, the acceleration of gravity at the Earth’s
surface.

b. What fraction of the initial mass of the rocket can be payload for the journey?
Assume a futuristic rocket that converts rest mass into radiation and ejects it with
100% efficiency opposite to the direction of motion.



4. (MTW 6.3) Twin paradox:
a. Show that the timelike world line connecting two timelike-separated events A and B

with the longest proper time is the unaccelerated one.
b. Suppose that two twins travel from A to B. The first twin, Jane, likes to take it

easy; she prefers to travel along an intertial trajectory between A and B. She also
lives a good long life; it takes her 100 years to do so. The second twin, Alice, likes to
get out and see things, but she can’t tolerate an acceleration more than one Earth
gravity, 1000 cm2/sec. Assuming she also starts at A, what is the shortest proper
time that can elapse in her frame if she returns to re-join Jane at B?

5. (MTW 6.8) Observer with rotating tetrad: An observer moving alolng an arbitrarily
accelerated world line chooses not to Fermi-Walker his orthonormal tetrad. Instead, he
allows it to rotate. The antisymmetric rotation tensor Ωµν that enters the transport law,

deµ
α′

dτ
= −Ωµνeα′ µ,

splits into a Fermi-Walker part plus a spatial rotation, Ωµν = Ωµν

(FW ) + Ωµν

(SR), where

Ωµν

(FW ) = aµuν − aνuµ and Ωµν

(SR) = uαωβεαβµν , and ωµ is a four-vector orthongal to the

four-velocity: ωµuµ = 0.
a. The observer chooses his time basis vector to be eµ

0′ = uµ. Show that this choice is
permitted by the transport law implied by the above choice for Ωµν .

b. Show that Ωµν

(SR) produces a rotation in the plane perpendicular to uµ and ωµ—i.e.,

that Ωµν

(SR)uν = 0 and Ωµν

(SR)ων = 0.

c. Suppose that the accelerated observer Fermi-Walker transports a second orthonormal
tetrad eµ

α′′ . Show that the space vectors of his first tetrad rotate relative to those of
his second tetrad with angular velocity equal to ω. [Hint: At a moment when the
tetrads coincide, show that (in three-dimensional notation, referring to the 3-space
orthogonal to the observer’s world line):

d(~ej′ − ~ej′′)

dτ
= ~ω × ~ej′ .

d. The observer uses the prescription discussed in class [this is MTW’s Eq. (6.16)] to
set up local coordinates based on his rotating tetrad as for his Fermi-Walker tetrad.
Pick an event Q on the observer’s world line, set τ = 0 there, and choose the original
inertial frame of prescription (6.16) so (1) it comoves with the accelerated observer
at Q, (2) its origin is at Q, and (3) its axes coincide with the accelerated axes at Q.
Show that these conditions translate into zµ = 0 and eµ

α′(0) = eα.
e. Show that near Q, the prescription [MTW’s Eq. (6.16)] for setting up rotating ac-

celerated coordinates reduces to:

x0 = ξ0′ + akξ
k′

ξ0′ + O([ξα′

]3);

xj = ξj′ +
1

2
aj(ξ0′)2 + εjklωkξl′ξ0′ + O([ξα′

]3).



f. A freely moving particle passes through the event Q with ordinary 3-velocity ~v mea-
sured in the inertial frame. By transforming its straight world line xj = vjx0 to the
accelerated, rotating coordinates, show that its coordinate velocity and acceleration
there are:

(dξj′/dξ0′)at Q = vj ;

(d2ξj′/d(ξ0′)2)at Q = −aj − 2εjklωkvl + 2vjakvk.

Here the first term is the inertial acceleration (the acceleration of the center of mass),
the second term is the Coriolis acceleration, and the third term is a relativistic
correction to inertial acceleration.

6. (MTW 6.9) Thomas precession: Consider a spinning body (gyroscope, electron,...)
that accelerates because forces act at its center of mass. Such forces produce no torques;
so they leave the body’s intrinsic angular-momentum vector Sµ unchanged, except for
the unique rotation in the velocity-acceleration plane required to keep Sµ orthogonal to
the four-velocity uµ (note that the spin four-vector Sµ is required to have Sµuµ = 0 so
that its components in the frame defined by uµ = (1, 0, 0, 0) are the components of the

usual spin three-vector ~S). The body Fermi-Walker transports its angular momentum
(no rotation in planes other than those defined by uµ and the acceleration aµ):

dSµ/dτ = (uµaν − uνaν)Sν .

This transport law applies to a spinning electron that moves in a circular orbit of radius
r around an atomic nucleus. As seen in the laboratory frame, the electron moves in the
x-y plane with constant angular velocity ω. At time t = 0, the electron is at x = r,
y = 0, and its spin (as treated classically) has components,

S0 = 0, Sx =
h̄√
2
, Sy = 0, Sz = h̄.

a. Calculate the subsequent behavior of the spin Sµ(t) as a function of laboratory time
t.

b. Write an expression for Sx + iSy as a function of time t. Show that it describes
precession in a retrograde direction, and determine the angular velocity ωThomas of
this precession.


