General Relativity (Ph236a)

Problem Set 3

Due: October 17, 2006

Preview: Problem 1 is essential; it defines the Riemann normal coordinates, or the coordinates for a locally inertial frame. Problems $2-5$ are exercises intended to develop a facility with vector fields and their dual one-form fields. Problem 6 is a straightforward exercise to develop some facility with metrics; it also illustrates some features of spinning spacetimes that will show up later when we deal with gravitomagnetism and with spinning black holes.

1. Riemann normal coordinates, or a locally inertial frame: Show that a coordinate system can always be chosen so that at a given point p, the metric $g_{\mu \nu}$ is canonical and $\partial_{\rho} g_{\mu \nu}=0$.
2. (Wald 3.3) Commutator of vector fields:
a. Verify that the commutator,

$$
[v, w](f)=v[w(f)]-w[v(f)]
$$

where v and w are smooth vector fields, and f is a function, satisfies the linearity and Leibnitz properties, and hence defines a vector field.
b. Let X, Y, and Z be vector fields on a manifold. Verify that their commutator satisfies the Jacobi identity,

$$
[[X, Y], Z]+[[Y, Z], X]+[[Z, X], Y]=0
$$

c. Let Y_{1}, \ldots, Y_{n} be vector fields on an n-dimensional manifold such that at each point p on the manifold, they form a basis of the tangent space V_{p}. Then, at each point, we may expand each commutator $\left[Y_{\alpha}, Y_{\beta}\right]$ in this basis, thereby defining the functions $C_{\alpha \beta}^{\gamma}=-C_{\beta \alpha}^{\gamma}$ by

$$
\left[Y_{\alpha}, Y_{\beta}\right]=\sum_{\gamma} C_{\alpha \beta}^{\gamma} Y_{\gamma}
$$

Use the Jacobi identity to derive an equation satisfied by $C^{\gamma}{ }_{\alpha \beta}$.
3. (Wald 3.4) More on commutators:
a. Show that in any coordinate basis, the components of the commutator of two vector fields v and w are given by

$$
[v, w]^{\mu}=\sum_{\nu}\left(v^{\nu} \frac{\partial w^{\mu}}{\partial x^{\nu}}-w^{\nu} \frac{\partial v^{\mu}}{\partial x^{\nu}}\right) .
$$

b. Let Y_{1}, \ldots, Y_{n} be as in problem 2(c). Let $Y^{1 *}, \ldots, Y^{n *}$ be the dual basis. Show that the components $\left(Y^{\gamma^{*}}\right)_{\mu}$ of $Y^{\gamma^{*}}$ in any coordinate basis satisfy

$$
\frac{\partial\left(Y^{\gamma^{*}}\right)_{\mu}}{\partial x^{\nu}}-\frac{\partial\left(Y^{\gamma^{*}}\right)_{\nu}}{\partial x^{\mu}}=\sum_{\alpha, \beta} C_{\alpha \beta}^{\gamma}\left(Y^{\alpha *}\right)_{\mu}\left(Y^{\beta *}\right)_{\nu}
$$

[Hint: Contract both sides with $\left(Y_{\sigma}\right)^{\mu}\left(Y_{\rho}\right)^{\nu}$. Also, be careful to distinguish between indices that label the vector fields from indices that label their components.]
4. (MTW, Problem 9.6) Practice with dual bases: In a three-dimensional space with spherical coordinates r, θ, and ϕ, it is often useful to use, instead of the coordinate basis $\partial / \partial r, \partial / \partial \theta, \partial / \partial \phi$, the orthonormal basis,

$$
e_{\hat{r}}=\frac{\partial}{\partial r}, \quad e_{\hat{\theta}}=\frac{1}{r} \frac{\partial}{\partial \theta}, \quad e_{\hat{\phi}}=\frac{1}{r \sin \theta} \frac{\partial}{\partial \phi} .
$$

a. What is the one-form basis $\left\{\omega^{\hat{r}}, \omega^{\hat{\theta}}, \omega^{\hat{\phi}}\right\}$ dual to this tangent-vector basis?
b. On the sphere of unit radius, draw pictures of the bases $\{\partial / \partial r, \partial / \partial \theta, \partial / \partial \phi\},\left\{e_{\hat{r}}, e_{\hat{\theta}}, e_{\hat{\phi}}\right\}$, $\{d r, d \theta, d \phi\}$ (the one-form basis dual to the coordinate tangent-vector basis), and $\left\{\omega^{\hat{r}}, \omega^{\hat{\theta}}, \omega^{\hat{\phi}}\right\}$.
5. (MTW, Problems 9.7-8) Commutators for Euclidean space in spherical coordinates:
a. Evaluate the commutator of the two vector fields $e_{\hat{\theta}}=(1 / r) \partial / \partial \theta$ and $e_{\hat{\phi}}=(1 / r \sin \theta) \partial / \partial \phi$. Use this to evaluate the components of the tensor $C_{j k}^{i}$ (of problems 2 and 3) for this two-dimensional vector space.
b. In Cartesian coordinates of a 3-dimensional Euclidean space, define three "angularmomentum operators" $L_{i}=\epsilon_{i j k} x^{j} \partial_{k}$. Evaluate the components of the tensor $C^{i}{ }_{j k}$ for these vector fields.
6. (Wald 2.8b+) Rotating coordinates: The line element of special relativity is

$$
d s^{2}=-d t^{2}+d x^{2}+d y^{2}+d z^{2} .
$$

a. Find the line element in rotating coordinates, defined by

$$
\begin{aligned}
t^{\prime} & =t, \\
x^{\prime} & =\left(x^{2}+y^{2}\right)^{1 / 2} \cos (\phi-\omega t), \\
y^{\prime} & =\left(x^{2}+y^{2}\right)^{1 / 2} \sin (\phi-\omega t), \\
z^{\prime} & =z,
\end{aligned}
$$

where $\tan \phi=y / x$.
b. Re-write the line element in terms of cylindrical coordinates r^{\prime} and ϕ^{\prime} defined by $x^{\prime}=r^{\prime} \cos \phi^{\prime}$ and $y^{\prime}=r^{\prime} \sin \phi^{\prime}$.

