
General Relativity (Ph236a)

Problem Set 3

Due: October 17, 2006

Preview: Problem 1 is essential; it defines the Riemann normal coordinates, or the coordi-
nates for a locally inertial frame. Problems 2–5 are exercises intended to develop a facility
with vector fields and their dual one-form fields. Problem 6 is a straightforward exercise to
develop some facility with metrics; it also illustrates some features of spinning spacetimes
that will show up later when we deal with gravitomagnetism and with spinning black holes.

1. Riemann normal coordinates, or a locally inertial frame: Show that a coordinate
system can always be chosen so that at a given point p, the metric gµν is canonical and
∂ρgµν = 0.

2. (Wald 3.3) Commutator of vector fields:
a. Verify that the commutator,

[v, w](f) = v[w(f)] − w[v(f)],

where v and w are smooth vector fields, and f is a function, satisfies the linearity
and Leibnitz properties, and hence defines a vector field.

b. Let X, Y , and Z be vector fields on a manifold. Verify that their commutator
satisfies the Jacobi identity,

[[X,Y ], Z] + [[Y, Z], X] + [[Z,X], Y ] = 0.

c. Let Y1, ..., Yn be vector fields on an n-dimensional manifold such that at each point p
on the manifold, they form a basis of the tangent space Vp. Then, at each point, we
may expand each commutator [Yα, Yβ ] in this basis, thereby defining the functions
Cγ

αβ = −Cγ
βα by

[Yα, Yβ ] =
∑

γ

Cγ
αβYγ .

Use the Jacobi identity to derive an equation satisfied by Cγ
αβ .

3. (Wald 3.4) More on commutators:
a. Show that in any coordinate basis, the components of the commutator of two vector

fields v and w are given by

[v, w]µ =
∑

ν

(

vν ∂wµ

∂xν
− wν ∂vµ

∂xν

)

.

b. Let Y1, ..., Yn be as in problem 2(c). Let Y 1∗, ..., Y n∗ be the dual basis. Show that
the components (Y γ∗)µ of Y γ∗ in any coordinate basis satisfy

∂(Y γ∗)µ

∂xν
−

∂(Y γ∗)ν

∂xµ
=

∑

α,β

Cγ
αβ(Y α∗)µ(Y β∗)ν .



[Hint: Contract both sides with (Yσ)µ(Yρ)
ν . Also, be careful to distinguish between

indices that label the vector fields from indices that label their components.]

4. (MTW, Problem 9.6) Practice with dual bases: In a three-dimensional space with
spherical coordinates r, θ, and φ, it is often useful to use, instead of the coordinate basis
∂/∂r, ∂/∂θ, ∂/∂φ, the orthonormal basis,

er̂ =
∂

∂r
, eθ̂ =

1

r

∂

∂θ
, eφ̂ =

1

r sin θ

∂

∂φ
.

a. What is the one-form basis {ωr̂, ωθ̂, ωφ̂} dual to this tangent-vector basis?
b. On the sphere of unit radius, draw pictures of the bases {∂/∂r, ∂/∂θ, ∂/∂φ}, {er̂, eθ̂, eφ̂},

{dr, dθ, dφ} (the one-form basis dual to the coordinate tangent-vector basis), and

{ωr̂, ωθ̂, ωφ̂}.

5. (MTW, Problems 9.7-8) Commutators for Euclidean space in spherical coordi-
nates:
a. Evaluate the commutator of the two vector fields eθ̂ = (1/r)∂/∂θ and eφ̂ = (1/r sin θ)∂/∂φ.

Use this to evaluate the components of the tensor Ci
jk (of problems 2 and 3) for this

two-dimensional vector space.
b. In Cartesian coordinates of a 3-dimensional Euclidean space, define three “angular-

momentum operators” Li = εijkx
j∂k. Evaluate the components of the tensor Ci

jk for
these vector fields.

6. (Wald 2.8b+) Rotating coordinates: The line element of special relativity is

ds2 = −dt2 + dx2 + dy2 + dz2.

a. Find the line element in rotating coordinates, defined by

t′ =t,

x′ =(x2 + y2)1/2 cos(φ − ωt),

y′ =(x2 + y2)1/2 sin(φ − ωt),

z′ =z,

where tan φ = y/x.
b. Re-write the line element in terms of cylindrical coordinates r′ and φ′ defined by

x′ = r′ cos φ′ and y′ = r′ sin φ′.


