General Relativity (Ph236a) Problem Set 3 Due: October 17, 2006

Preview: Problem 1 is essential; it defines the Riemann normal coordinates, or the coordinates for a locally inertial frame. Problems 2–5 are exercises intended to develop a facility with vector fields and their dual one-form fields. Problem 6 is a straightforward exercise to develop some facility with metrics; it also illustrates some features of spinning spacetimes that will show up later when we deal with gravitomagnetism and with spinning black holes.

- 1. Riemann normal coordinates, or a locally inertial frame: Show that a coordinate system can always be chosen so that at a given point p, the metric $g_{\mu\nu}$ is canonical and $\partial_{\rho}g_{\mu\nu} = 0$.
- 2. (Wald 3.3) Commutator of vector fields:
 - a. Verify that the commutator,

$$[v, w](f) = v[w(f)] - w[v(f)],$$

where v and w are smooth vector fields, and f is a function, satisfies the linearity and Leibnitz properties, and hence defines a vector field.

b. Let X, Y, and Z be vector fields on a manifold. Verify that their commutator satisfies the Jacobi identity,

$$[[X, Y], Z] + [[Y, Z], X] + [[Z, X], Y] = 0.$$

c. Let $Y_1, ..., Y_n$ be vector fields on an *n*-dimensional manifold such that at each point *p* on the manifold, they form a basis of the tangent space V_p . Then, at each point, we may expand each commutator $[Y_{\alpha}, Y_{\beta}]$ in this basis, thereby defining the functions $C^{\gamma}_{\alpha\beta} = -C^{\gamma}_{\beta\alpha}$ by

$$[Y_{\alpha}, Y_{\beta}] = \sum_{\gamma} C^{\gamma}_{\alpha\beta} Y_{\gamma}.$$

Use the Jacobi identity to derive an equation satisfied by $C^{\gamma}_{\alpha\beta}$.

3. (Wald 3.4) More on commutators:

a. Show that in any coordinate basis, the components of the commutator of two vector fields v and w are given by

$$[v,w]^{\mu} = \sum_{\nu} \left(v^{\nu} \frac{\partial w^{\mu}}{\partial x^{\nu}} - w^{\nu} \frac{\partial v^{\mu}}{\partial x^{\nu}} \right).$$

b. Let $Y_1, ..., Y_n$ be as in problem 2(c). Let $Y^{1*}, ..., Y^{n*}$ be the dual basis. Show that the components $(Y^{\gamma*})_{\mu}$ of $Y^{\gamma*}$ in any coordinate basis satisfy

$$\frac{\partial (Y^{\gamma*})_{\mu}}{\partial x^{\nu}} - \frac{\partial (Y^{\gamma*})_{\nu}}{\partial x^{\mu}} = \sum_{\alpha,\beta} C^{\gamma}_{\alpha\beta} (Y^{\alpha*})_{\mu} (Y^{\beta*})_{\nu}.$$

[Hint: Contract both sides with $(Y_{\sigma})^{\mu}(Y_{\rho})^{\nu}$. Also, be careful to distinguish between indices that label the vector fields from indices that label their components.]

4. (MTW, Problem 9.6) **Practice with dual bases:** In a three-dimensional space with spherical coordinates r, θ , and ϕ , it is often useful to use, instead of the coordinate basis $\partial/\partial r$, $\partial/\partial \theta$, $\partial/\partial \phi$, the orthonormal basis,

$$e_{\hat{r}} = \frac{\partial}{\partial r}, \qquad e_{\hat{\theta}} = \frac{1}{r} \frac{\partial}{\partial \theta}, \qquad e_{\hat{\phi}} = \frac{1}{r \sin \theta} \frac{\partial}{\partial \phi}.$$

- a. What is the one-form basis $\{\omega^{\hat{r}}, \omega^{\hat{\theta}}, \omega^{\hat{\phi}}\}$ dual to this tangent-vector basis?
- b. On the sphere of unit radius, draw pictures of the bases $\{\partial/\partial r, \partial/\partial \theta, \partial/\partial \phi\}, \{e_{\hat{r}}, e_{\hat{\theta}}, e_{\hat{\phi}}\}, \{dr, d\theta, d\phi\}$ (the one-form basis dual to the coordinate tangent-vector basis), and $\{\omega^{\hat{r}}, \omega^{\hat{\theta}}, \omega^{\hat{\phi}}\}.$
- 5. (MTW, Problems 9.7-8) Commutators for Euclidean space in spherical coordinates:
 - a. Evaluate the commutator of the two vector fields $e_{\hat{\theta}} = (1/r)\partial/\partial\theta$ and $e_{\hat{\phi}} = (1/r\sin\theta)\partial/\partial\phi$. Use this to evaluate the components of the tensor C^{i}_{jk} (of problems 2 and 3) for this two-dimensional vector space.
 - b. In Cartesian coordinates of a 3-dimensional Euclidean space, define three "angularmomentum operators" $L_i = \epsilon_{ijk} x^j \partial_k$. Evaluate the components of the tensor C^i_{jk} for these vector fields.
- 6. (Wald 2.8b+) Rotating coordinates: The line element of special relativity is

$$ds^2 = -dt^2 + dx^2 + dy^2 + dz^2.$$

a. Find the line element in rotating coordinates, defined by

$$t' = t,$$

$$x' = (x^2 + y^2)^{1/2} \cos(\phi - \omega t),$$

$$y' = (x^2 + y^2)^{1/2} \sin(\phi - \omega t),$$

$$z' = z,$$

where $\tan \phi = y/x$.

b. Re-write the line element in terms of cylindrical coordinates r' and ϕ' defined by $x' = r' \cos \phi'$ and $y' = r' \sin \phi'$.