General Relativity Ph236c
 Problem Set 3

Due: In class, April 24, 2007

Suggested Reading: Carroll, 8.8; Kolb and Turner, Ch. 8; Dodelson, Ch. 6; Liddle and Lyth, Cosmological Inflation and Large-Scale Structure, Ch. 3; Peebles, Ch. 17.

Preview: This should be an interesting problem set; in it, you will work out several possibilities, many relevant to current research, for inflation, dark energy, and dark matter. The problems themselves are technically pretty simple, but together they cover quite a bit of territory. Problem 1 is a straightforward exercise in which you will show that a rolling scalar field (i.e., a scalar field in a kinetic-energy-dominated phase) acts like matter with pressure $p=\rho$. Problem 2 is a pretty involved problem in which you will work out pretty fully the phenomenological consequences of a particular model for inflation. Problem 3 works through a particularly intriguing quintessence model (i.e., a scalar-field model for negative-pressure dark energy in the Universe today) in which the dark-energy density tracks that of the dominant component (e.g., radiation or matter) of the cosmological energy density. Problem 4 is an order-of-magnitude calculation that shows that magnetic monopoles produced at a GUT phase transition should overwhelm the density of the Universe today (if there were no inflation); this reproduces a calculation that John Preskill was the first to do around 1980. Problem 5 shows that oscillations in an anharmonic scalar-field potential can give rise to exotic equations of state. Problem 6 has you calculate the flux of gamma rays produced by annihilation of WIMPs in the Galactic halo.

1. A $w=1$ equation of state from a rolling scalar field. Consider a massless scalar field; i.e., a scalar field $\phi(\vec{x}, t)$ whose potential-energy density is $V(\phi)=0$. Now suppose that this scalar field is initially rolling, so $\dot{\phi} \neq 0$, and that the kinetic-energy density associated with this rolling dominates the energy density of the Universe. Show from the stress-energy tensor $p=\rho$ for this type of matter. Show that this implies that $\rho \propto a^{-6}$, where a is the scale factor, in two ways: (1) by recalling how the energy density of matter with an equation of state $p=w \rho$ scales with a; and (2) by solving the equation of motion for ϕ in an expanding Universe. (This should be a very simple problem.)
2. (From LL 3.7) Phenomenology of $\lambda \phi^{4}$ inflation. Consider $V(\phi)=\lambda \phi^{4}$, where λ is the self-coupling. Assume that the field rolls toward $\phi=0$ from the positive side. Calculate the value of ϕ where each of the slow-roll conditions (i.e., $\epsilon \ll 1$ and $\eta \ll 1$) first break down. Do they break down at the same place? Assuming that inflation ends when $\epsilon=1$, calculate the number of e-foldings of inflation that occur for an initial value ϕ_{i}. Demonstrate that the slow-roll solutions with $\phi=\phi_{i}$ and $a=a_{i}$ at $t=t_{i}$ are

$$
\phi=\phi_{i}\left[-\sqrt{\frac{32 \lambda M_{\mathrm{Pl}}^{2}}{6}}\left(t-t_{i}\right)\right],
$$

$$
a=a_{i} \exp \left(\frac{\phi_{i}^{2}}{8 M_{\mathrm{Pl}}^{2}}\left\{1-\exp \left[-\sqrt{\frac{64 \lambda M_{\mathrm{Pl}}^{2}}{3}}\left(t-t_{i}\right)\right]\right\}\right) .
$$

Use the solution for ϕ to calculate the time that inflation ends. Demonstrate that the number of e-foldings calculated using the solution for a is the same as that which you calculated above. Expand the solution for a at small $t-t_{i}$ to demonstrate that the inflation is approximately exponential in the initial stage. Calculate the time constant $\kappa[$ from $a \sim \exp (\kappa t)]$ and demonstrate that it equals the (slow-roll) Hubble parameter during inflation.
3. Tracker field. Consider a scalar field that rolls down a potential-energy density $V(\phi)=$ $V_{0} e^{-\phi / \phi_{0}}$. Now suppose that the energy density of the Universe is dominated by ordinary non-relativistic matter (so $a \propto t^{2 / 3}$), and that the energy density of the rolling scalar field is negligible compared with the non-relativistic matter. Show that there is a solution to the scalar-field equation of motion such that the energy density $\rho_{\phi}=(1 / 2) \dot{\phi}^{2}+V(\phi)$ of the scalar field scales as $\rho_{\phi} \propto a^{-3}$, the same as the ordinary matter. Does the same thing happen if the energy density of the Universe is dominated by relativistic matter? This is the basis for the "tracker-field" solutions that have been discussed in the literature recently.
4. The monopole problem. Calculate the relic density of magnetic monopoles, assuming that there is one GUT-mass $\left(\sim 10^{15} \mathrm{GeV}\right)$ monopole produced per Hubble volume at the GUT phase transition ($T \sim 10^{15} \mathrm{GeV}$). You should get an unreasonably large number. There is a bound $\Omega_{\text {monopole }} \lesssim 10^{-6}$ (the Parker bound) to the relic density of magnetic monopoles in the Universe today. Calculate the number of e-folds of inflation after the GUT transition required to solve the monopole problem.
5. Anharmonic scalar-field oscillations. In class we argued that if we have a real scalar field ϕ with a quadratic potential $V(\phi)=(1 / 2) m^{2} H^{2}$, and if $m \gtrsim H$ (implying that the oscillation frequency is large than the expansion rate), then coherent oscillations of the scalar field imply that the pressure $p=0$ when averaged over an oscillation cycle and thus that the energy density $\rho \propto a^{-3}$. Now consider oscillations in a potential $V(\phi)=c|\phi|^{n}$, where c is a constant. Show that coherent oscillations in such a potential give rise to an energy density that decays as $\rho \propto a^{-\alpha}$, and determine α. Of course, you should recover $\alpha=3$ for $n=2$. What value of n is required to produce $\alpha=4$ (i.e., radiation)? Can you think of a physical argument that justifies your result? Likewise, is there a value of n that produces $\alpha=0$? Can you explain this result in physical terms?
6. WIMPs in the Galactic halo. This problem has nothing to do with inflation, but goes back to weakly-interacting massive particle (WIMP) dark matter. Suppose the Galactic halo has a density distribution,

$$
\rho(r)=\rho_{0} \frac{r_{0}^{2}+a^{2}}{r^{2}+a^{2}},
$$

where $\rho_{0}=\rho\left(r_{0}\right)$ is the local halo density, $r_{0} \simeq 8.5 \mathrm{kpc}$ is our distance from the Galactic center, and $a \simeq 4 \mathrm{kpc}$ is the core radius. Suppose also that the halo is made out of

WIMPs χ with masses $m_{\chi}=10 \mathrm{~s}-1000 \mathrm{~s} \mathrm{GeV}$ which have a cross section for annihilation to two photons $\sigma_{\chi \chi \rightarrow \gamma \gamma}$. (a) If ψ is the angle some given line of sight makes with the Galactic center (i.e., $\psi=0$ is toward the Galactic center and $\psi=\pi$ is away from the Galactic center), calculate the flux of gamma rays observed along the line of sight ψ. (b) What is the energy of these photons. (c) The WIMP χ may annihilate to photons via a diagram such as that below, where the particles in the loops are quarks q and squarks \tilde{q}, and the squark mass is comparable to the WIMP mass. Give an order-of-magnitude estimate of this annihilation cross section and estimate the flux of photons from WIMP annihilation.

