
General Relativity (Ph236a)

Problem Set 4

Due: October 24, 2006

Preview: Problem 1 is intended to help you understand more deeply the derivation and
meaning of the covariant derivative and the connection that we use in general relativity, by
considering an alternative that we do not use. Problem 2 is a pretty straightforward exercise
that illustrates what an affine parameter is. Problem 3 is a very straightforward exercise to
familiarize you with the Christoffel symbols and derivative operators in a simple setting. If
tedious algebra is not your thing, you can take this opportunity to familiarize yourself with
algebraic-manipulation software for GR. Problem 4 is an important and probably enjoyable
problem, as it actually deals (already!) with real physics. Problem 5 is intended to give you
some practice with metrics and curvature and to preview the metric we use in cosmology.
Problem 6 deals with the Rindler spacetime, which we discussed in class.

1. (Wald 3.1) Connection with non-zero torsion: When we introduced the covariant
derivative ∇µ in class (and in the books), we chose it so that it was torsion free. This
condition, as well as a few others, gave rise to the Christoffel symbols that are used to
relate the partial derivative ∂µ to the covariant derivative. In this problem, you will
consider a derivative operator that arises when the torsion-free condition is dropped.
a. Show that the exists a tensor T ρ

µν (the torsion tensor) such that for all functions f ,
we have ∇µ∇νf −∇ν∇µf = −T ρ

µν∇ρf .
b. Show that for any smooth vector fields Xµ and Y µ, we have

T ρ
µνX

µY ν = Xµ
∇µY ρ

− Y µ
∇µXρ

− [X,Y ]ρ.

c. Given a metric gµν , show that there exists a unique derivative operator ∇µ with
torsion T ρ

µν such that ∇ρgµν = 0. Write the connection for this derivative operator
in terms of the metric, its ordinary (i.e., ∂µ) derivatives, and the torsion T ρ

µν .

2. (Wald 3.5) Non-affine parameter for geodesic equation:
a. Show that any curve that satisifies

d2xµ

dα2
+ Γµ

ρσ

dxρ

dα

dxσ

dα
= f(α)

dxµ

dα
,

can be re-parameterized by another parameter λ(α) so that the usual geodesic equa-
tion,

d2xµ

dλ2
+ Γµ

ρσ

dxρ

dλ

dxσ

dλ
= 0,

is satisfied. A parameterization λ for the curve that allows the geodesic equation to
be written in this form is known as an affine parameter.

b. Let λ be an affine parameter of a geodesic. Show that all other affine parameters of
the geodesic take the form aλ + b, where a and b are constants.



3. Christoffel symbols for Euclidean space in spherical coordinates: The metric
for three-dimensional Euclidean space in spherical coordinates is ds2 = dr2 + r2(dθ2 +
sin2 θ dφ2).
a. Calculate the Christoffel components Γi

jk in this coordinate system. You can do this
in one of two ways: (i) By brute force with pencil and paper, or (ii) with one of the
algebraic-manipulation software for general relativity (see the class home page).

b. Find for these coordinates (i) the components of ∇if , where f is a function; (ii)
the divergence ∇iv

i of a vector field; (iii) the Laplacian ∇
i
∇i; and (iv) the volume

element dV .

4. (Carroll, problem 3.6+) Terrestrial clocks: Later on this quarter, we will see that a
good approximation to the metric outside the surface of the Earth is provided by

ds2 = −(1 + 2Φ)dt2 + (1 − 2Φ)dr2 + r2(dθ2 + sin2 θ dφ2),

where Φ = GM/r is the Newtonian gravitational potential Here, G is Newton’s constant
and M is the mass of the earth.
a. Show that for phenomena at or near the surface of the Earth, Φ is small. What this

means is that the departure of the spacetime metric from the Minkowski spacetime
are small. The exact spacetime differs from this one by Φ.

b. Imagine a clock on the surface of the Earth at distance R1 from the Earth’s center,
and another clock on a tall building at distance R2 from the Earth’s center. Calculate
the time elapsed on each clock as a function of the coordinate time t. Which clock
moves faster?

c. Solve for a geodesic corresponding to a circular orbit around the equator of the Earth
(θ = π/2). What is dφ/dt?

d. How much proper time elapses while the satellite at radius R1 (skimming along the
surface of the Earth, neglecting air resistance) completes in one orbit? Work only to
first order in Φ. Plug in the actual numbers for the radius and mass of the Earth to
get an answer in seconds. How does this number compare to the proper time elapsed
on the clock stationary on the surface? Are differences of this magnitude measurable
with modern (atomic) clocks?

5. Curvature for (2+1)-d Friedmann-Robertson-Walker metric: As we will see in
the winter quarter, the spacetime metric for an expanding three-dimensional (2 space
and 1 time) Universe can be written,

ds2 = −dt2 + a2(t)

[

dr2

1 − kr2
+ r2dθ2

]

,

= gµνdxµdxν ,

= −dt2 + a2(t)hijx
ixj ,

where k is a parameter that takes on the values 0 or ±1.
a. Calculate the spatial, the Ricci scalar (scalar curvature) for the spatial part hij of

the metric for the three values of k.



b. Calculate the spacetime curvature, the Ricci scalar (scalar curvature) for the full
metric gµν .

6. The Rindler spacetime: Consider the two-dimensional spacetime metric ds2 = −x2 dt2+
dx2, with coordinate ranges −∞ < t < ∞ and 0 < x < ∞. It looks like something spe-
cial happens at x = 0 in this spacetime, as the inverse metric is singular as x = 0. You
will see in the following that this is just a coordinate (rather than physical) singularity
of the spacetime.
a. Find the null geodesics [curves x(t) with gµν(dxµ/τ)(dxν/dτ) = 0] for this spacetime.
b. Calculate the Riemann tensor for this spacetime.
c. The results of part (b) should lead you to suspect that this spacetime is the same as

Minkowski spacetime. Find the coordinate transformation that demonstrates this.
d. Find a coordinate transformation that puts the metric in the form ds2 = ev−u du dv,

and show via explicit calculation that the curvature of this metric agrees with those
for parts (c) and (d).


