
General Relativity Ph236b

Problem Set 4

Due: In class, February 6, 2007

Preview: This should be a fun problem set. Problem 1 calculates the energy distri-
bution of the cosmic gas of neutrinos left over from the big bang. Problem 2 investigates
several applications of BBN as a cosmological probe. Problem 3 considers a cosmological
model with anisotropic expansion. Problem 4 explores several applications of the freezeout
calculation. Problem 5 asks you to think about why the Planck mass gives the energy scale
at which quantum-gravity effects should become important. And Problem 6 works out chem-
ical freezeout for the CMB and provides the scientific background for part of the motivation
for this year’s Nobel prize. Problem 2 should be given high priority and then problems 4
and 1. But problem 4 is one of my all-time favorites, and problem 6 (which is a bit more
involved) is also quite interesting and might be fun.

1. Cosmological relic neutrinos: Suppose neutrinos have a mass of 1 eV. Then when
their interactions freeze out in the early Universe at a temperature T 'MeV, they are
relativistic, but today they are nonrelativistic. Find the energy distribution f(K) (where
K is the kinetic energy) of these cosmological neutrinos today.

2. Big-bang nucleosynthesis as a cosmological probe: As discussed in class, BBN
can be used as a probe of possible deviations from the standard cosmological model and
the standard model of particle interactions. The purpose of this problem is for you to
work through some of these constraints.
a. Explain how the primordial 4He abundance would change if the neutron lifetime were

longer or shorter.
b. Suppose some particle theorists speculate that Fermi’s constant GF might actually

be a function of time. What does BBN constrain the value of Fermi’s constant to be
at the time of nucleosynthesis?

c. It is plausible that there is a neutrino-antineutrino asymmetry in the Universe, and
therefore that the cosmological neutrino mass density today is greater than it is in
the canonical picture. What is the upper limit to the current neutrino density Ων

provided by BBN (assume the neutrinos are massless).
d. Extra credit: BBN also provides a constraint to the amplitude of the stochastic

gravitational-wave background. Explain how this works, and the gravitational-wave
frequency range to which it applies (Hint: Find a recent paper by the TA.)

3. Anisotropic expansion: Consider a Universe that undergoes anisotropic expansion.
Such a Universe has a metric

ds2 = dt2 − a2

x(t) dx2 + a2

y(t) dy2 + a2

z(t) dz2,

where ai(t) are scale factors of the three principal axes of the Universe.



a. Show that the Einstein equations for this metric lead to an analog of the Friedmann
equation:
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where ρ is the ordinary energy density (radiation and nonrelativistic matter), and
the shear “energy density” is defined to be
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Here V = axayaz is the “volume scale factor,” ā = V 1/3 is the mean-scale factor, and
the Hi ≡ (ȧi/ai) are the expansion rates of the three principal axes.

b. Next, show that the other Einstein equations (for i 6= j) become

d

dt
ln |Hi − Hj | = −3H = −3

d

dt
(ln ā),

and that this implies that ρs ∝ ā−6. In other words, the effects of anisotropic
expansion are mimicked by a new form of matter with energy density which decreases
as ā−6.

c. If ρs is too large, it will affect the results of BBN. Find the upper limit to ρs today

provided by BBN.
d. Estimate how this BBN constraint to ρs might compare with the CMB constraint

that ∆T/T < 10−5. Also, estimate how the BBN constraint might compare with
ordinary measurements of the Hubble constant.

4. Freezeout:

a. Calculate the photon mean-free path and compare it with the Hubble distance H−1

at a redshift z = 1500, just before recombination.
b. After recombination, there will be a few residual electrons, due to freezeout of the

recombination reaction e− + p → H . Calculate approximately the residual free-
electron fraction. Make your assumptions about the capture cross section clear, and
perhaps show how your result scales with that cross section.

c. In class we showed that a baryon-symmetric Universe would have a relic baryon
density 109 times smaller than the observed density, from which we infer that there
must be a cosmological baryon asymmetry characterized by a baryon-to-photon ratio
today of η = 5× 10−10. Calclate approximately the expected number of antibaryons
in the entire observable Universe today, given this value for the baryon-to-photon
asymmetry. Assume that the Universe remains perfectly homogeneous throughout
its history. You may make reasonable approximations to get the answer correct to
an order of magnitude or so.

5. The Planck mass: In class I claimed that at a temperature T ' 1019 GeV, classical
general relativity will break down, and quantum-gravity will become important. Justify
this with at least one simple (but correct) physical argument.



6. Chemical freezeout for photons and Nobel prizes for Mather and Smoot: In
class we showed that the rate Γel for photons to scatter elastically from electrons becomes
less than the expansion rate H at a redshift of z ' 1100; in other words, Γel(z) = H(z)
at z = zel ' 1100. At this redshift, photons are said to become kinetically decoupled
from the plasma. Your job in this problem is to show that the rate for photon-number–
changing interactions, such as the bremsstrahlung (or “free-free”) reaction e− + p ↔
e− + p + γ, drops below the expansion rate at a much earlier time. To do so, estimate

the rate for the bremsstrahlung reaction. You can either find the cross section in a
book, or approximate it with a Feynmann diagram, if you are so inclined. Assume the
electrons, protons, and photons involved all have energies comparable to the thermal
temperature T . You should be able to show that the rate Γ for these reactions is bigger
than the expansion rate H at early times, and then becomes comparable at a redshift
z = zµ ' 105 − 106. After that, the rate for photon-number–changing interactions
becomes smaller than H , and the photon number freezes out. What this means is that if
someone (e.g., a long-lived decaying particle) were to inject photons into the primordial
plasma at redshifts zµ > z > zel, those photons would come into kinetic equilibrium, but
not chemical equilibrium. As a result, the frequency spectrum of the cosmic microwave
background would be that of a Bose-Einstein gas with nonzero chemical potential µ.
Measurements from the FIRAS experiment on NASA’s COBE satellite constrain µ <∼
10−4; this measurement (and one other) was recognized by the 2006 Nobel prize for
physics.


