
General Relativity Ph236c

Problem Set 4

Due: In class, May 1, 2007

Suggested Reading: Dodelson 6.4–6.6; Liddle and Lyth, Cosmological Inflation and

Large-Scale Structure, Ch. 7; Carroll, 8.8; Kolb and Turner, Ch. 8; Peebles, Ch. 17.

1. Direct detection of inflationary gravitational waves. Using the formulas derived
in class, calculate the rms gravitational-wave (GW) amplitude in the inflationary GW
background in the LIGO/LISA frequency band (ask a friend or one of the many resident
LIGO/LISA scientists or relativists here if you can’t find the relevant frequencies rapidly
in the literature). An order-of-magnitude calculation should be enough.

2. Perturbations for λφ4 inflation. In a previous problem set, you considered inflation
with a potential V (φ) = λφ4. You considered the homogeneous evolution of the scalar
field, and the value of the scalar field at the end of inflation, and the number of e-
foldings from some initial value φi. (a) Calculate the value of φ 60 e-folds before the
end of inflation. This is presumably when the current observable horizon scale exits the
horizon during inflation. Determine the values of the scalar and tensor spectral indices,
ns and nt at this time. Estimate the curvature perturbation R at this time in terms of
λ. What value of λ is required to get the right R? What does this value of λ imply for
the gravitational-wave amplitude hk at the scale of the horizon today? To the best of
your knowledge, is this model consistent with observations?

3. Constancy of superhorizon curvature. Using the relevant Einstein, continuity, and
Euler-Lagrange equations, show that the curvature perturbation R remains constant
when a given Fourier mode is well outside the horizon. Dodelson’s book may be particu-
larly useful for this problem. In fact, he more or less works it out, although in a different
notation. If you can’t at first work the problem out for yourself (it’s not easy), then it
may still be a good exercise to go through Dodelson’s derivation and translate it into
the notation and gauge choices we have used in class.

4. Conformally coupled scalar field. The Lagrangian density, for a noninteracting
massive scalar field φ(x), that we have been using is

L =
1

2

√
−g

{

−gµν(∂µφ)(∂νφ) − m2φ2
}

.

Such a scalar field is said to be minimally coupled, implying no coupling to gravity beyond
replacing the Minkowski metric ηµν with a more general metric gµν . More generally, the
Lagrangian can be written,

L =
1

2

√
−g

{

−gµν(∂µφ)(∂νφ) − [m2φ2 + ξRφ2]
}

,



where R(x) is the Ricci scalar, and ξ is a numerical factor.
a. Show that if ξ = 1

4
[(n−2)/(n−1)] for n spacetime dimensions (e.g., ξ = 1/6 for 3+1

spacetime dimensions), then the scalar-field action (and hence the field equations) is
invariant under a conformal transformation,

gµν → g̃µν = Ω2(x)gµν(x),

where Ω(x) is a conformal factor. In this case, the scalar field is said to be conformally

coupled.
b. Argue that there is no quantum production of scalar-field perturbations during in-

flation if the field is conformally coupled.

5. No magnetic fields from inflation. We saw in class that quantum effects during
inflation give rise to classical superhorizon perturbations in a massless scalar field. The
electromagnetic field is also a massless scalar field. Show, however, that there are no
excitations of the electromagnetic field during inflation (it has to do with conformal
invariance of the electromagnetic Lagrangian). Why do we demand conformal invariance
of the electromagnetic Lagrangian? And why do you still get electromagnetic Hawking
radiation from a black hole?

6. Gauge degrees of freedom in linear theory. We showed in quarter 1 that in linear
perturbation theory (about a Minkowski spacetime), the trace-reversed metric pertur-
bation h̄αβ satisifies an equation,

∂γ∂
γ h̄αβ = −16πGTαβ ,

(where Tαβ is the stress-energy tensor) that looks a lot like Maxwell’s equation (∂γ∂
γAµ =

−4πjµ). In a vacuum, the the α0 component of this linearized equation becomes,

∂γ∂
γ h̄α0 = 0,

which admits wavelike solutions. Show that these wavelike solutions are pure gauge
modes; i.e., they do not correspond to physically propagating waves. Then show that
the wavelike solutions to the vacuum Maxwell equations cannot be gauged away.


