
General Relativity (Ph236a)

Problem Set 5

Due: October 31, 2006

Preview: Problem 1 is a straightforward exercise to help develop your facility with tensors,
metric, geodesics, etc., a good and relevant math exercise. Likewise, Problem 2 is intended
to have you work through some steps involving gauge conditions in linear theory. Problem
3 is a really cute, and physically interesting, problem I lifted from Hartle’s book. Problem
4 is a neat problem that investigates a possible non-minimal coupling of electromagnetism
to gravity. Problem 5 has you work out the Newtonian limit of the stress-energy tensor; its
a straightforward but good exercise. Problem 6 will have you work through an alternative-
gravity theory. Problems 1–2 should be simpler than 3–6, but I would try to make 3–6 higher
priority if you have limited time.

1. (From Lee Lindblom) More practice with simple geometries and geodesics: Con-
sider the set of points that lie on the two-dimensional sphere, r2 = x2 + y2 + z2, where
r is a constant.
a. Argue that the projection operator Pµν = gµν − nµnν is the natural metric for this

sphere, where gµν is the metric of the three-dimensional Euclidean space, and nµ is
the unit normal to the sphere.

b. Show that coordinates can be chosen on the two-sphere so that the metric has the
form ds2 = r2(dθ2 + sin2 θ dφ2).

c. Write out the geodesic equations for the two-sphere geometry.
d. Verify that the solutions to these equations correspond to the “great circles” on the

sphere.

2. (Carroll, problem 7.4) Gauge conditions: Show that the Lorenz gauge condition
∂µh̄µν = 0 is equivalent to the harmonic gauge condition, defined by

xµ = 0,

where each coordinate xµ is thought of as a scalar function on spacetime. (Any function
satisfying f = 0 is known as an “harmonic function.”)

3. (Hartle’s problem 22.14) The Alcubierre spacetime: Consider the spacetime

ds2 = −dt2 + [dx − Vs(t)f(rs)dt]2 + dy2 + dz2,

is specified by a curve xs(t), and Vs(t) = dxs(t)/dt. The function f(rs) is any smooth
positive function that satisfies f(0) = 1 and decreases away from the origin to vanish
for rs > R for some R. Note that the spatial metric for any t =constant hypersurface is
dS2 = dx2 + dy2 + dz2; i.e., the geometry of each spatial slice is flat and rs is just the
Euclidean distance from the curve xs(t). Inspection of the metric shows that spacetime
is flat where f(rs) vanishes, but, as you will see below, it is curved where f(rs) 6= 0.



a. Show that the local light cones are tipped in such a way that a spaceship moving
along the curve xs(t) moves along a world line that is inside the local light cone, even
if Vs(t) > 1. What this means is that the spaceship can travel between two stations
separated by a distance D in a time (as viewed by a fixed external viewer) T < D.

b. Calculate the components nα of the normal to a surface of constant t.
c. Use the Einstein equation to show that
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This is the energy density measured by observers at rest with respect to the surfaces
of constant t. The fact that it is negative means that this spacetime, which allows
“superluminal” travel, cannot be supported by classical matter with a positive energy
density.

4. (From Lee Lindblom) Non-minimal gravitational coupling to electromagnetism:
a. It has been suggested that quantum gravity might induce a curvature coupling to

electromagnetism of the following form:

∇ν [(1 + αR)F µν ] = 4πJµ, ∇αFβγ + ∇βFγα + ∇γFαβ = 0,

where α is a constant and R = Rµ
µ is the scalar curvature of spacetime. These

equations reduce to the familiar Maxwell equations in flat spacetime (since R = 0
there). The fact that the second of these equations is unmodified means that we can
still write Fµν in terms of a vector potential Fµν = ∇µAν − ∇νAµ, and the theory
is still gauge invariant. Show that this version of the Maxwell equations, like the
more conventional version, implies charge conservation. [Hint: First show that the
antisymmetry of Fµν implies ∇µ∇ν [(1 + αR)F µν ] = (1 + αR)∇µ∇νF

µν , then use
that antisymmetry to show that this expression entails commutation of covariant
derivatives, and show that the curvature terms produced by that commutation give
a vanishing result.]

b. Quantum gravity is believed to introduce curvature couplings into the laws of physics,
with coupling constants that involve the Planck length lPl, the only combination of
G, h̄, and c with units of length. Write an expression for lPl in terms of these three
fundamental constants and evaluate it in cgs units. By dimensional considerations,
estimate the coupling constant α that quantum gravity might induce.

c. Perform a 3+1 split of these modified Maxwell equations in the local Lorentz frame of
some observer; i.e., rewrite them in terms of the electric and magnetic fields ~E and ~B
and the charge and current densities ρ and ~j that the observer measures. Discuss the
physical manifestations of the curvature coupling that these 3+1 equations predict.
Pay attention to the fact that R vanishes in a vacuum and that at the surface
of some solid body, ∇R will have a delta-function behavior. You might want to
consider, for example, Gauss’ law, which usually expresses the total charge inside a
body as a surface integral of the electric field emerging from the body. Estimate the
dimensionless magnitude of these physical effects for experiments on Earth or in the
solar system.



5. (MTW, problem 16.1) Newtonian limit for fluids:
a. Consider a nearly Newtonian perfect fluid with stress-energy tensor,

T µν = (ρ + p)uµuν + pgµν ,

with p ¿ ρ, which moves with ordinary velocity vi = dxi/dt ¿ 1 in a Newtonian
spacetime,

ds2 = −(1 + 2Φ)dt2 + (1 − 2Φ)(dx2 + dy2 + dz2).

Show that the equations ∇µT µν reduce to the familiar equations for a Newtonian
fluid moving in a gravitational field:

∂tρ + ~∇ · (ρ~v) = 0,

ρ[∂t~v + (~v · ~∇)~v] = −~∇p − ρ~∇Φ.

6. (From Lee Lindblom) Nordstrom’s theory of gravity: Consider spacetime geometries
having the form gµν = φ2ηµν , where ηµν is the flat metric of special relativity.
a. Show that the field equations R = 24πT , where T = gµνTµν is equivalent to the

equation ηµν∂µ∂νφ = −4πφηµνTµν .
b. Determine whether the Newtonian limit of this theory agrees with Newton’s theory

of gravity. That is, take the weak-field slow-motion limit of these equations and show
whether they reduce to Newton’s equations for the gravitational field. Also, deter-
mine whether the slow-motion geodesic equation reduces to the Newtonian equation
for the motion of a particle in an external gravitational field.


