
General Relativity Ph236b

Problem Set 5

Due: In class, February 20, 2007

Preview: Problem 1 should be a pretty straightforward exercise in manipulation of
Lagrangians, etc. Problem 2 represents a first step in the study of a parity-violating extension
of electromagnetism that has been studied recently in the literature. Problem 3 is particularly
interesting. It develops an alternative way to derive general relativity from the Einstein-
Hilbert action, treating the connection as a quantity to be varied independently of the metric.
This “Palatini formalism” has received considerable attention in the recent literature, as it
leads to different gravity theories than the usual variation (the “metric formalism”) for any
action other than the Einstein-Hilbert action. Problem 4 is my favorite problem here. It is a
fairly complicated problem, but should follow the derivation of the PPN parameter γ we did
in class, but now for Brans-Dicke theory, instead of 1/R gravity. Problem 5 is an exercise to
verify that the Schwarzchild metric is indeed the spherically-symmetric vacuum spacetime
that extremizes the Einstein-Hilbert action. Problem 6 is a cute exercise that has you work
out the gravitational field due to a point mass with a small extra dimension; it is relevant
for experimental tests of gravity at small distances.

1. (Carroll, problem 1.12) Electromagnetic energy-momentum tensor: Consider elec-
tromagnetism (with Jµ = 0) and scalar field theory, with LagrangianL = −(1/2)ηµν(∂µφ)(∂νφ)−
V (φ), both in flat spacetime.
a. Express the components of the energy-momentum tensors of each theory in three-

vector notation, using the divergence, gradient, curl, electric and magnetic fields,
and an overdot to denote time derivatives.

b. Using the equations of motion, verify (in any notation you like) that the energy-
momentum tensors are conserved.

2. (Carroll, problem 1.13) Chern-Simons electromagnetism: Consider adding to the
electromagnetic Lagrangian an additional term of the form L′ = ε̃µνρσF µνF ρσ.

a. Express L′ in terms of ~E and ~B.
b. Show that including L′ does not affect Maxwell’s equations. Can you think of a deep

reason for this?

3. (Carroll, problem 4.2) Palatini formalism: We showed how to derive Einstein’s equa-
tion by varying the Hilbert action with respect to the metric. They can also be derived
by treating the metric and connection as independent degrees of freedom and varying
separately with respect to them; this is known as the Palatini formalism. That is, we
consider the action,

S =

∫
d4x

√
−ggµνRµν(Γ),

where the Ricci tensor is thought of as constructed purely from the connection, without
reference to the metric. Variation with respect to the metric gives the usual Einstein



equations, but for a Ricci tensor constructed from a connection that has no a priori
relationship to the metric. Imagining from teh start that the connection is symmetric
(torsion free), show that variation of the action with respect to the connection coefficients
leads to the requirement that the connection be metric compatible, that is, the Christof-
fel connection. Remember that Stokes’ theorem, relating the integral of the covariant
divergence of a vector to an integral of the vector over the boundary, does not work for
a general covariant derivative. The best strategy is to write the connection coefficients
as a sum of the Christoffel symbols Γ̃λ

µν and a tensor Cλ
µν ,

Γλ
µν = Γ̃λ

µν + Cλ
µν ,

and then show that Cλ
µν must vanish. Although the Palatini formalism gives the same

physics as the usual technique (the “metric formalism”) for the Einstein-Hilbert action,
the two formalisms do not necessarily yield the same equations of motion or connection
for more complicated actions. Thus, when considering alternatives to GR, one must
specify whether one is dealing with the Palatini or the metric formalism, in addition to
the action.

4. PPN parameter for Brans-Dicke theory: In this problem you will calculate the
parameterized post-Newtonian (PPN) parameter γ in Brans-Dicke theory in terms of the
Brans-Dicke parameter ω, and you will also relate the Newtonian gravitational constant
to ω and the value of the Brans-Dicke scalar λ (in Carroll’s notation). To do so, consider
the weak-field limit of the spherically-symmetric static vacuum spacetime that surrounds
a spherical massive body (e.g., the Sun). Thus, write the spacetime metric as

ds2 = −A(r) dt2 + B(r) dr2 + r2 dΩ2,

with A(r) = 1 + a(r) and B(r) = 1 + b(r), where a(r) � 1 and b(r) � 1 (and are
both linear in the central mass M) in the weak-field limit. You will also need to write
the Brans-Dicke scalar as λ = λ0[1 + ε(r)], where λ0 is the value of the Brans-Dicke
scalar at large distances, and ε(r) � 1 (and will also be linear in M). You will then
obtain equations of motion for a(r), b(r), and ε(r) by plugging into the Brans-Dicke field
equations (for the metric and for the scalar field) retaining terms only to linear order in
a(r), b(r), and ε(r). The Newtonian limit is taken by identifying a(r) = 2GM/r (do you
know/remember why? if not, think about it), and the PPN parameter γ is defined from
b(r) = 2γGM/r.

5. The Schwarzchild spacetime and variational principle: Show explicitly that the
spherically symmetric static vacuum spacetime that minimizes the Einstein-Hilbert ac-
tion is the Schwarzchild metric. To do so, write the metric in the form,

ds2 = −A(r) dt2 + B(r) dr2 + r2 dΩ2,

and show explicitly that the Einstein-Hilbert action is invariant to any linear variations
to A(r) = (1 − 2M/r) and B(r) = (1 − 2M/r)−1.

6. (Problem 3.9 in Zwiebach’s “A first course in string theory”) Gravitational field of
a point mass in a compactified (4+1)-dimensional world: In this problem you



will show that if there is an extra dimension, curled up into a circle of radius a, then at
distanves r � a, the gravitational force due to a point mass decreases as 1/r2, but that at
distances r � a, the force law rises (as r → 0) as 1/r3. This departure, at small distance
scales, from the 1/r2 force law has now been sought in the laboratory (most notably
by Eric Adelberger and collaborators in Seattle) at distances smaller than 1mm. OK,
Here’s the problem: Consider a (4 + 1)-d spacetime with space coordinates (x, y, z, w)
not yet compactified. A point mass M is located at the origin (x, y, z, w) = (0, 0, 0, 0).

a. Find the gravitational potential V
(5)
g (r). Write your answer in terms of M , the five-

dimensional gravitational constant G5, and r = (x2 + y2 + z2 + w2)1/2. [Hint: Use

∇2V
(5)
g = 4πG5ρm and the divergence theorem.]

b. Now let w become a compact dimension, a circle with radius a, while keeping the

mass fixed. Write an exact expression for the gravitational potential V
(5)
g (x, y, z, 0).

This potential is a function of R ≡ (x2 +y2 + z2)1/2 and can be written as an infinite
sum.

c. Show that for R � a, the gravitational potential takes the form of a four-dimensional
gravitational potential, with Newton’s constant G4 given in terms of G5, as derived
in class. [Hint: Turn the infinite sum into an integral.]


