General Relativity Ph236c Problem Set 5 Due: In class, May 15, 2007

Suggested Reading: Sections 8 and 9 in astro-ph/0403392. Also, read through "Anisotropies in the cosmic microwave background: an analytic approach," by W. Hu and N. Sugiyama, Astrophys. J. 444, 489 (1995) [arXiv:astro-ph/9407093].

- 1. Exercise 13 in the suggested reading (astro-ph/0403392).
- 2. In the first quarter, we showed that the Einstein angle (the angular size of the Einstein ring) for lensing by a point mass is

$$\theta_E = \sqrt{\frac{4GMd_{LS}}{d_S d_L \theta}},$$

where M is the mass of the deflector, and d_S and d_L are the distances to the source and lens, respectively, and the lens-source distance is d_{LS} . In quarter 1, we considered only lensing in a background Minkowski spacetime. Show that in a FRW Universe, the Einstein ring radius is the same, except that the distances are now angular-diameter distances.

- 3. For this problem, you will find, download, compile, run, and play around with publicly available software to produce CMB temperature and polarization power spectra (the C_l 's). There are two packages available to produce these power spectra. They are called CAMB and CMBFAST. Although CMBFAST came first, I think that CAMB might be now more widely used.
 - a. Using google or anything else you can think of, find, download, and compile one of these programs.
 - b. Figure out how to run the program to produce temperature and polarization power spectra for both density perturbations and gravitational waves.
 - c. See if you can reproduce (more or less) curves that look like those in Figs. 7 and 8 in astro-ph/0403392—i.e., you should be able to produce temperature (C_{ℓ}^{TT}) power spectra for density perturbations and for gravitational waves; gradient polarization power spectra $(C_{\ell}^{\text{GG}} \text{ or } C_{\ell}^{\text{EE}})$ for density perturbations and for gravitational waves; and a curl polarization power spectrum $(C_{\ell}^{\text{CC}} \text{ or } C_{\ell}^{\text{BB}})$ for gravitational waves.
 - d. Search for a 2006 WMAP paper by Spergel et al. for the best values of the cosmological parameters from WMAP 3-year data, and then produce a density-perturbation temperature power spectrum for these best-fit models.
 - e. Now re-run CMBFAST or CAMB, changing slightly each of the following parameters, one by one, holding all other parameters fixed: (i) $\Omega_{\rm cdm}h^2$, the dark-matter density; (ii) $\Omega_b h^2$, the baryon density; (iii) h the Hubble parameter; (iv) $\Omega_{\rm total}$, the total density; (v) n_s , the scalar spectral index; and (vi) τ , the optical depth to the surface of last scatter. Try to understand why the temperature power spectrum changes

as it does as you change each of these parameters. The Hu-Sugiyama article listed above may help.