
General Relativity (Ph236a)

Problem Set 6

Due: November 7, 2006

Preview: Problem 1 is a great problem; it is an excellent exercise in the first post-Newtonian
correction of general relativity, and it works out the Lense-Thirring effect and sheds light on
Mach’s principle in general relativity. Problem 2 uses essentially the same physics as problem
1; its a cute problem, but I would make it lower priority if you have limited time. Problem
3 is a cool problem, showing that photon trajectories in linear theory can be determined
from Fermat’s principle—still, maybe lower priority if you have limited time. Problem 4 is
a real problem in astrophysics; those of you interested in astrophysics should make this one
high priority. Similarly for problem 5. Problem 6 gets into the nitty gritty of gravitational
lensing and can be considered lower priority.

1. (Carroll 7.2; Wald 4.3) Lense-Thirring effect: Consider a thin spherical shell of matter
with mass M and radius R, slowly rotating (i.e., maximum rotation velocity v = ΩR ¿ c)
with an angular velocity Ω.
a. Show that the gravito-magnetic field ~G vanishes and calculate the gravitomagnetic

field ~H in terms of M , R, and Ω.
b. The nonzero gravitomagnetic field caused by the shell leads to dragging of inertial

frames, known as the Lense-Thirring effect. Calculate the rotation (relative the in-
ertial frame defined by the background Minkowski metric) of a freely-falling observer
sitting at the center of the shell. In other words, calculate the precession of the
spatial components of a parallel-transported vector located at the center.

2. Gravitomagnetism in the Solar System: Suppose a spherical body of uniform den-
sity ρ and radius R rotates rigidly about the x3 axis with constant angular velocity Ω. (a)
Write down the components T 0ν of the stress tensor to lowest order in ΩR in a Lorentz
frame at rest with respect to the center of mass of the body, assuming constant ρ, Ω, and
R. (b) Calculate h̄00 and h̄0j outside the body to lower nonvanishing order in r−1 (where
r is the radius). Express the result in terms of the body’s angular momentum, and write
the metric tensor in this approximation in spherical coordinates. (c) Since the metric is
independent of time t and azimuthal angle φ, the components of the energy-momentum
p0 and pφ will be constant along the trajectory of orbiting particles. Consider a particle
of nonzero rest mass in a circular orbit of radius r in the equatorial plane. Calculate (to
lowest order) the difference between the orbital period of a particle in a co-rotating orbit
and that of a particle in a counter-rotating orbit. (Here the period is the coordinate time
taken for one orbit ∆φ = 2π. (d) How much shorter or longer would the Earth’s year
be if the Earth revolved about the Sun in the opposite direction? (M¯ = 2 × 1030 kg,
R¯ = 7 × 108 m, Ω = 3 × 10−6 sec−1, and r = 1.5 × 1011 m).

3. (Carroll, problem 7.3) Fermat’s principle and photon trajectories: Fermat’s princi-
ple states that a light ray moves along a path of least time. For a medium with refractive



index n(~x), this is equivalent to extremizing the time,

t =

∫
n(~x) [δij dxi dxj ]1/2,

along the path. Show that Fermat’s principle, with the refractive index given by n =
1 − 2Φ, leads to the correct equation of motion for a photon in a spacetime perturbed
by a Newtonian potential.

4. Gravitational microlensing in the Milky Way halo: Dynamical measurements
indicate that the disk and bulge of the Milky Way are immersed in a dark halo (assumed
to be—and likely close to—spherically symmetric) with a mass-density distribution,

ρ(r) = ρ0

r2

0
+ a2

r2 + a2
,

where r is the distance from the Galactic center, ρ0 = ρ(r0) ' 0.4 GeV/cm3 is the local
halo density, r0 ' 8.5 kpc is our distance from the Galactic center, and a ' 4 kpc is the
core radius. (Note that 1 kpc= 1000 pc, and pc=3 × 1018 cm.) Now suppose that this
dark halo was composed of neutron stars, each of mass 1.4 M¯, where M¯ = 2×1033 erg
is the mass of the Sun. Suppose further that we look at a star in the Large Magellanic
Cloud, a dwarf galaxy located at a distance 50 kpc from us, and we’ll assume here that it
is close to the Southern Galactic pole. If a halo neutron star passes near the line of sight
to one of the stars in the Large Magellanic Cloud, then that star will be gravitationally
lensed.
a. Estimate the Einstein radius (in arcsec) of the lens; you should find that this is very

small compared with the resolution (∼arcsec) of ground-based optical telescopes.
If so, then the two images that appear when the source is strongly lensed will be
unresolved.

b. Estimate the physical Einstein radius and compare it with the Schwarzchild radius.
Does this result justify our use of the weak-field limit?

c. The “optical depth” for microlensing is the probability that the line of sight to a
given star in the LMC falls within the Einstein ring of one the dark-halo neutron
stars. Estimate this optical depth. The inverse of this optical depth is the number
of stars in the LMC you would need to monitor if, on average, one star is strongly
lensed at any given time.

d. Calculate the magnification of the two images during lensing, and plot it as a function
of the impact parameter.

e. Of course, the lenses in the Galactic halo are moving, and so a source will not remain
within the Einstein radius for more than a fixed amount of time. Estimate the time
that a source spends within in the Einstein radius during a typical microlensing
event.

f. Calculate and plot the brightness of a background star, as a function of time, as
it passes behind the lens, for a minimum impact parameter b. Assume the relative
angular velocity of lens and source is constant.

5. Gravitational lensing of quasars: Quasars are extraordinarily bright cosmological
sources fueled by accretion onto supermassive black holes at the centers of very distant



galaxies. They are sometimes seen in multiple images, a result of gravitational lensing
by lenses along the line of sight. These lenses are usually elliptical galaxies.
a. Suppose the orbital speeds vc(r) of stars on circular orbits in the elliptical galaxy

remains constant as a function of distance r from the elliptical-galaxy center. Show
that this imples a mass-density profile ρ(r) ∝ r−2. (A typical rotation speed is
vc ' 300 km/sec.)

b. Calculate the deflection angle for lensing by this elliptical galaxy as a function of the
circular speed vc.

b. Estimate (order of magnitude) the characteristic separation (be sure your result
makes sense) of the sources, and then estimate (again, order of magnitude) the
characteristic time delay between different sources. Assume the quasars are at a
distance of a Gpc (= 109 pc).

6. Source rotation by gravitational lensing: In class we wrote down a magnification
tensor A for gravitational lensing. This tensor described the mapping from the image
plane to the source plane (or vice versa), and it consisted of a convergence κ and two
components, γ1 and γ2, of the shear. How would this tensor need to be modified if lensing
rotated a source by an angle α? Is it possible for lensing to introduce a rotation?


