General Relativity Ph236b

Problem Set 6
Due: In class, February 27, 2007

Preview: Problem 1 asks you to fill in some steps in the definition of the surface gravity; it should be straightforward. Problem 2 deals with the Kerr spacetime; its a good physics problem. Problem 3 is an interesting mathematical result involving extreme ReissnerNordstrom black holes. Problem 4 has you calculate the surface gravity of the horizon in de Sitter space. Problem 5 should be a very simple algebraic exercise. Problem 6 has you think more deeply about conformal diagrams; this is pretty sophisticated stuff, so you should be proud if you can figure it out.

1. Surface gravity for a Killing horizon: Consider a Killing vector χ^{μ} with Killing horizon Σ. Along Σ, χ^{μ} satisfies the geodesic equation $\chi^{\mu} \nabla_{\mu} \chi^{\nu}=-\kappa \chi^{\mu}$. Using Killing's equations $\nabla_{(\mu} \chi_{\nu(}=0$ and the fact that $\chi_{[\mu} \nabla_{\nu} \chi_{\sigma]}=0$ (as you showed in Problem 1(a) in Problem Set 9 of the first quarter, if χ^{μ} is orthogonal to Σ), show that

$$
\kappa^{2}=-\frac{1}{2}\left(\nabla_{\mu} \chi^{\nu}\right)\left(\nabla^{\mu} \chi_{\nu}\right),
$$

[Equation (6.9) in Carroll's book].
2. Proper distances in the nearly-maximally-rotating black hole: In our discussion of the Kerr black hole in week 1 of this quarter, we considered several different radii: (i) the horizon radius r_{+}, (ii) the limiting-circular-photon-orbit radius r_{ph}, (iii) the marginally-bound-orbit radius r_{mb}, the marginally-stable-circular-orbit (or innermost stable circular orbit; ISCO) r_{ms}. In the limit that the spin parameter $a \rightarrow M$, all of these radii approach the value M. It thus appears that the positions of all these points become co-located. However, since $g^{r r} \rightarrow 0$ in this limit, a small coordinate separation may represent a large proper separation. Thus, consider a Kerr black hole with spin parameter $a=M(1-\epsilon)$, with $\epsilon \ll 1$, and calculate, in this limit, the proper separation between these different radii in terms of M and ϵ.
3. (Carroll, problem 6.1) Extreme Reissner-Nordstrom black holes: Show that the coupled Einstein-Maxwell equations can be simultaneously solved by the metric,

$$
d s^{2}=-H^{-2}(\vec{x}) d t^{2}+H^{2}(\vec{x})\left[d x^{2}+d y^{2}+d z^{2}\right]
$$

where $H=1+(M /|\vec{x}|)$, and the electrostatic potential,

$$
A_{0}=H^{-1}-1,
$$

if $H(\vec{x})$ obeys Laplace's equation, $\nabla^{2} H=0$.
4. (Carroll, problem 6.4) Surface gravity of the de-Sitter-space horizon: Consider de Sitter space in static coordinates:

$$
d s^{2}=-\left(1-\frac{\Lambda}{3} r^{2}\right) d t^{2}+\left(1-\frac{\Lambda}{3} r^{2}\right)^{-1} d r^{2}+r^{2} d \Omega^{2}
$$

This space has a Killing vector ∂_{t} that is timelike near $r=0$ and null on a Killing horizon. Locate the radial position r_{K} of the Killing horizon. What is the surface gravity κ of the Killing horizon?
5. de Sitter space: Find the coordinate transformation that takes the de Sitter space metric

$$
d s^{2}=-\left(d t^{\prime}\right)^{2}+\alpha^{2} \cosh ^{2}\left(t^{\prime} / \alpha\right)\left[d \chi^{2}+\sin ^{2} \chi d \Omega^{2}\right],
$$

to the more familiar form,

$$
d s^{2}=-d t^{2}+e^{2 H t}\left(d r^{2}+r^{2} d \Omega^{2}\right)
$$

be sure to state how H is related to α. Show from this coordinate transformation that the latter metric does not cover the complete manifold [cf., Problem 6(b) of Problem Set 2 this quarter].
6. Conformal diagrams for black holes with a cosmological constant: Two-dimensional slices of a static metric can be written in the form,

$$
d s^{2}=-F(r) d t^{2}+\frac{d r^{2}}{F(r)}
$$

a. The Schwarzchild-de-Sitter spacetime has

$$
F=1-\frac{2 M}{r}-\frac{\Lambda}{3} r^{2}
$$

(as you showed in Problem 6 of Problem Set 8 in the first quarter). Take $\Lambda>0$ and draw the conformal diagram for this spacetime for (i) $3 M<\Lambda^{-1 / 2}$, (ii) $3 M=\Lambda^{-1 / 2}$, and (iii) $3 M>\Lambda^{-1 / 2}$.
b. Draw the conformal diagram for the Schwarzchild-anti-de-Sitter spacetime, given by F above with $\Lambda<0$.
c. If you're really ambitious, you can also try drawing the conformal diagram for the Reissner-Nordstrom-de-Sitter spacetime, which has

$$
F=1-\frac{2 M}{r}-\frac{Q^{2}}{r^{2}}-\frac{\Lambda}{3} r^{2} .
$$

Note: This may be a hard problem. If you have trouble, you may want to look at "Effects of a nonvanishing cosmological constant on the spherically symmetric vacuum manifold," K. Lake and R. C. Roeder, Phys. Rev. D 15, 3513 (1977).

