
General Relativity Ph236b

Problem Set 6

Due: In class, February 27, 2007

Preview: Problem 1 asks you to fill in some steps in the definition of the surface
gravity; it should be straightforward. Problem 2 deals with the Kerr spacetime; its a good
physics problem. Problem 3 is an interesting mathematical result involving extreme Reissner-
Nordstrom black holes. Problem 4 has you calculate the surface gravity of the horizon in de
Sitter space. Problem 5 should be a very simple algebraic exercise. Problem 6 has you think
more deeply about conformal diagrams; this is pretty sophisticated stuff, so you should be
proud if you can figure it out.

1. Surface gravity for a Killing horizon: Consider a Killing vector χµ with Killing
horizon Σ. Along Σ, χµ satisfies the geodesic equation χµ∇µχν = −κχµ. Using Killing’s
equations ∇(µχν( = 0 and the fact that χ[µ∇νχσ] = 0 (as you showed in Problem 1(a) in
Problem Set 9 of the first quarter, if χµ is orthogonal to Σ), show that

κ2 = −
1

2
(∇µχν)(∇µχν),

[Equation (6.9) in Carroll’s book].

2. Proper distances in the nearly-maximally-rotating black hole: In our discus-
sion of the Kerr black hole in week 1 of this quarter, we considered several different
radii: (i) the horizon radius r+, (ii) the limiting-circular-photon-orbit radius rph, (iii)
the marginally-bound-orbit radius rmb, the marginally-stable-circular-orbit (or inner-
most stable circular orbit; ISCO) rms. In the limit that the spin parameter a → M , all
of these radii approach the value M . It thus appears that the positions of all these points
become co-located. However, since grr → 0 in this limit, a small coordinate separation
may represent a large proper separation. Thus, consider a Kerr black hole with spin
parameter a = M(1 − ε), with ε ¿ 1, and calculate, in this limit, the proper separation
between these different radii in terms of M and ε.

3. (Carroll, problem 6.1) Extreme Reissner-Nordstrom black holes: Show that the
coupled Einstein-Maxwell equations can be simultaneously solved by the metric,

ds2 = −H−2(~x)dt2 + H2(~x)[dx2 + dy2 + dz2],

where H = 1 + (M/|~x|), and the electrostatic potential,

A0 = H−1 − 1,

if H(~x) obeys Laplace’s equation, ∇2H = 0.



4. (Carroll, problem 6.4) Surface gravity of the de-Sitter-space horizon: Consider de
Sitter space in static coordinates:

ds2 = −

(

1 −
Λ

3
r2

)

dt2 +

(

1 −
Λ

3
r2

)

−1

dr2 + r2dΩ2.

This space has a Killing vector ∂t that is timelike near r = 0 and null on a Killing horizon.
Locate the radial position rK of the Killing horizon. What is the surface gravity κ of
the Killing horizon?

5. de Sitter space: Find the coordinate transformation that takes the de Sitter space
metric

ds2 = −(dt′)2 + α2 cosh2(t′/α)[dχ2 + sin2 χdΩ2],

to the more familiar form,

ds2 = −dt2 + e2Ht(dr2 + r2dΩ2);

be sure to state how H is related to α. Show from this coordinate transformation that
the latter metric does not cover the complete manifold [cf., Problem 6(b) of Problem Set
2 this quarter].

6. Conformal diagrams for black holes with a cosmological constant: Two-dimensional
slices of a static metric can be written in the form,

ds2 = −F (r)dt2 +
dr2

F (r)
.

a. The Schwarzchild-de-Sitter spacetime has

F = 1 −
2M

r
−

Λ

3
r2,

(as you showed in Problem 6 of Problem Set 8 in the first quarter). Take Λ > 0 and
draw the conformal diagram for this spacetime for (i) 3M < Λ−1/2, (ii) 3M = Λ−1/2,
and (iii) 3M > Λ−1/2.

b. Draw the conformal diagram for the Schwarzchild-anti-de-Sitter spacetime, given by
F above with Λ < 0.

c. If you’re really ambitious, you can also try drawing the conformal diagram for the
Reissner-Nordstrom-de-Sitter spacetime, which has

F = 1 −
2M

r
−

Q2

r2
−

Λ

3
r2.

Note: This may be a hard problem. If you have trouble, you may want to look at
“Effects of a nonvanishing cosmological constant on the spherically symmetric vacuum
manifold,” K. Lake and R. C. Roeder, Phys. Rev. D 15, 3513 (1977).


