
General Relativity, Ph236c, Spring 2007

Problem Set 6

Due: May 29, 2007

1. Consider a critical-density Universe in which massive neutrinos contribute Ων to the
density parameter. Show that on scales smaller than the neutrino Jeans length, pertur-
bations in the remaining cold component grow as δ ∝ tα, where α = (

√
25 − 24Ων −1)/6.

(Hint: The Ων of the critical density in neutrinos contributes to the expansion rate, but
this component remains smoothly distributed.)

2. In this problem you will explore numerically the growth of a spherical perturbation in
a cosmological-constant Universe. A spherically-symmetric perturbation collapses in a
flat cosmological-constant Universe (i.e., Ωm +ΩΛ = 1) of arbitrary Ωm. Derive an exact
density contrast at virialization (you will probably not be able to do this analytically),
and compare with the oft-quoted estimate, 1 + δ = 178Ω−0.7

m .

3. Consider linear growth of perturbations in a Universe with cold dark matter with density
Ωcdm = 0.25 and baryon density Ωb = 0.05. Consider only redshifts z À 1 so that the
dynamical effect of the cosmological constant is negligible. Write down the differential
equations for linear evolution of δcdm(~x, t) = δρcdm(~x, t)/ρ̄cdm, the fractional perturbation
to the CDM density, and for δb(~x, t) = δρb(~x, t)/ρ̄b, the fractional perturbation to the
baryon density. Now consider the evolution of a single Fourier mode of wavelength λ
and wavenumber k = 2π/λ, of the density field. Show that baryon perturbations are
stabilized by pressure at small scales, and find an expression for the Jeans wavelength ΛJ ,
the wavelength that separates stable and unstable modes. Evaluate the Jeans wavelength
just before and just after recombination, and determine the corresponding Jeans mass.

4. Calculate the neutrino damping length as a function of the neutrino mass mν (for values
of mν between 0.1 eV and 1 eV). Assume that all three neutrino species have the same
mass.

5. Calculate the relation between the one-dimensional power spectrum P1D(k) (as would be
measured in a “pencil-beam” survey) the usual three-dimensional power spectrum P (k).

6. Calculate (numerically) and plot the root-variance σ(M) as a function of mass M for the
ΛCDM power spectrum P (k) for Ωm = 0.3. Then, determine M∗ (defined by σ(M∗, t) =
δc as a function of redshift from z = 0 to z = 100. Use the proper linear-theory growth
factor (you can use the semi-analytic approximation given in class), and also the proper
δc (also using the approximation given in class).

7. Suppose that the 1-point distribution function, normalized to unit variance is P(ν)
(e.g., for Gaussian initial conditions, Pν = (2π)−1/2 exp(−ν2/2)). (a) Show that the
usual Press-Schecter equation for the number of gravitationally-bound halos with masses



between M and M + dM per comoving volume at redshift z generalizes to

dn

dM
dM =

fρb

M
P [ν(M, z)]

∂ν(M, z)

∂M
dM,

where ν = δc(z)/σM , δc(z) = 1.69/D(z) is the critical overdensity for gravitational
collapse, D(z) is the linear-theory growth factor, and σM is the variance of the mass
distribution for scales M . Also, f =

∫
∞

0
P(ν) dν. (b) Now suppose that once halos form

their mass is fixed, and suppose further that they disappear only when they merge into
larger halos. Show that with these assumptions, the distribution (normalized to unity)
of formation redshifts zf for halos of mass M observed at redshift z0 is

df

dzf

= P ′[ν(M, zf )]
∂ν(M, zf )

∂zf

{P [ν(M, z0)]}−1 .

(c) Evaluate this formation-redshift distribution for a Gaussian distribution of pertur-
bations and describe it qualitatively. For hints, see MNRAS 321, L7 (2001).


