
General Relativity (Ph236a)

Problem Set 8

Due: November 21, 2006

Preview: Problem 1 fills in some differential geometry that we don’t have time to get to
in class. Its interesting, but more mathematical than physical. Problems 2, 3, and 4 are
exercises to help develop facility in dealing with Killing vectors; they are mathematical,
but there is considerable connection with important physics. Problems 5 and 6 deal with
interesting non-Schwarzchild spherically-symmetric spacetimes.

1. Lie derivatives: The Lie derivative is another derivative operator that acts in a curved
manifold on an arbitrary tensor field. We will not discuss it in class, as it is somewhat
outside the main line of the development of GR, but it does come in handy in formal
developments and in other applications of GR. See Appendix C.2 in Wald or Appendix
B in Carroll for formal definitions; Weinberg’s Ch. 10.9 shows how the Lie derivative
generates changes to tensors under coordinate (gauge) transformations. The Lie bracket

for two vector fields U and V is defined to be the vector field [U,V] with components,

[U,V]α = Uβ∂βV α
− V β∂βUα;

i.e., this is the commutator that you’ve studied in problem sets before.
a. Show that [U,V] is a derivative operator on V along U; i.e., show that for any scalar

function f ,

[U, fV] = f [U,V] + V(U · ∇f).

The Lie derivative of V with respect to U is denoted by

[U,V] ≡ LUV,

and the action of the Lie derivative on a scalar function is

U · ∇f ≡ LUf.

You have thus verified that the Lie derivative satisfies (when acting on vectors and
scalars) the Leibniz rule,

LU(fV) = fLUV + VLUf.

You may recall that the covariant derivative of a function is equal to the partial
derivative, and also from your earlier homework on the commutator, that the commu-
tator does not depend on the connection. The Lie derivative is therefore independent
of the connection.

b. Calculate the components of the Lie derivative of a one-form field ω̃ from the knowl-
edge that, for any vector field V, ω̃(V is a scalar (like f above), and from the
definition that LUω̃ is a one-form field:

LU[ω̃(V)] = (LUω̃)(V) + ω̃(LUV).



c. Show that the Lie derivative satisfies

LULV − LVLU = L[U,V].

d. A vector field V is said to be “Lie transported” (or “dragged”) along a vector field
V if LVU = 0. Discuss the differences between (i) parallel transport of a vector, (ii)
Fermi-Walker transport, and (iii) Lie transport.

2. (from Lee Lindblom) Killing vector fields:
a. Let ξa∂a be an arbitrary vector field in an arbitrary curved spacetime. Show that

it is possible to construct a coordinate system in which ξa is one of the coordinate
basis vectors. That is, show that there are coordinates so that ξa∂a = ∂/∂xK , where
xK is one of these coordinates.

b. Show that in this coordinate system,

∇aξb + ∇bξa = ξc∂cgab = ∂gab/∂xK .

Thus, in this coordinate system, ξa satisfies Killing’s equation if and only if the
metric components are independent of the coordinate xK .

c. Assume that xia and ζa are both Killing vector fields. Then show that their com-
mutator [ξ, ζ]a is also a Killing vector field, and that αξa + βζa is a Killing vector
when α and β are constants.

3. (from Lee) Killing transport:
a. Show that ∇a∇bξc = ξdR

d
abc for any Killing vector xia.

b. If ξa is a Killing vector field, and Fab = ∇aξb, show that ξa and Fab are transported
along an arbitrary curve with tangent vector va according to the equations:

va
∇aξb = Fabv

a, va
∇aFbc = Rd

abcξdv
a.

Show that there are a system of ordinary differential equations for ξa and Fab along
the curve.

c. Determine the number of linearly independent initial conditions for these Killing
transport equations at a given spacetime point. Show that there can be no more
than n(n + 1)/2 independent Killing vector fields in any space of dimension n.

4. (from Lee) Killing vectors in flat spacetime:
a. Find conditions on the constant tensor Fab so that ξa = Fabx

b is a Killing vector field
in Minkowski space where xa represent Cartesian coordinates.

b. Show that the Killing vectors constructed in (a) correspond exactly to the rotations
and the Lorentz boosts.

c. Find four additional Killing vectors in Minkowski space no included in (a). Ar-
gue that these, together with those found in (a), are all the Killing vectors of flat
spacetime.

5. (Hartle, problem 22.15) Wormholes require negative energy density: Consider the
spacetime described by the metric,

ds2 = −dt2 + dr2 + (b2 + r2)(dθ2 + sin2 θ dφ2).



Here, the coordinate −∞ < r < ∞. This metric describes a spacetime that consists
of two asymptotically flat spacetimes (at r → ∞ and r → −∞) connected by a throat
at r = 0 of radius 2πb; if its not clear, see Fig. 7.5 in Hartle’s book. Calculate the
components of Tαβ that would be needed for this geometry to be a solution of the
Einstein equation. Show that the energy density (as measured by a stationary observer)
required is negative. Thus, until someone figures out a way to create negative-energy-
density matter, we’re not gonna be traveling through any such worhmholes.

6. (Carroll, problem 5.4) Spherically symmetric solutions with a cosmological con-
stant: As we will see when we study cosmology (see also Carroll’s Section 4.5), there
is now pretty good evidence, from observations that the cosmic expansion is accelerat-
ing, for a cosmological constant Λ. What this means is that the Einstein equation gets
modified to Gµν + Λgµν = Tµν (note that the sign of the Lambda term is determined by
our choice of signature for the metric.) As we will see later, the cosmological constant
Λ is sufficiently small so that it probably has no effects of sufficient magnitude to be
observable in solar-system tests or pulsar-timing measurements, but it can be a big deal
on cosmological scales.
a. Solve for the most general spherically symmetric metric, in coordinates (t, r) that

reduce to the ordinary Schwarzchild coordinates when Λ = 0.
b. Write down the equation of motion for radial geodesics in terms of an effective

potential, as in equation (5.66) in Carroll’s book. Sketch the effective potential for
massive particles.


