
Welcome to Radiative Astrophysics (171.613)!



Radiative Astrophysics
Instructor: David Neufeld (he/him/his – feel free to call me David)

Email:         neufeld@jhu.edu

Class meetings:  MW 1:30 – 2:45 pm except 9/5 (Labor Day)
Lecture notes will be posted on Canvas

Textbook:  Radiative Processes in Astrophysics by Rybicki and Lightman

Available at the University bookstore or online (free, I think)
https://onlinelibrary.wiley.com/doi/book/10.1002/9783527618170

Course Requirements:

Homework: Problem sets will be handed out every week or two
Final exam: take home

Academic integrity:

The strength of the university depends on academic and personal integrity. In this course, you must 
be honest and truthful. Ethical violations include cheating on exams, plagiarism, reuse of 
assignments, improper use of the Internet and electronic devices, unauthorized collaboration, 
alteration of graded assignments, forgery and falsification, lying, facilitating academic dishonesty, 
and unfair competition.

IF YOU EVER HAVE ANY QUESTION ABOUT ANYTHING RELATED TO ACADEMIC INTEGRITY, ASK ME

https://onlinelibrary.wiley.com/doi/book/10.1002/9783527618170


Learning goals

Almost everything we know about the astrophysical Universe comes 
from observing electromagnetic radiation.  

(Exceptions: some spacecraft investigations of the solar system; 
gravitational wave astrophysics)

The goals of this course are to

1) Learn about those physical processes that involve emission, 
absorption, and scattering of electromagnetic radiation

2) Appreciate how radiative processes both affect the nature of 
astrophysical objects and provide us with information about the 
astrophysical Universe



Multiwavelength views of the Galactic plane



Overall course structure

Part 1:  Macroscopic description of radiation and of its propagation
(R&L, Chapter 1)

Part 2: Review and Extension of EM - the interaction of radiation with a point 
charge

(R&L, Chapters 2 - 4)

Part 3: Radiative Processes in Astrophysical Gas: Ionized Media
Bremsstrahlung, synchrotron radiation, Compton scattering, plasma effects 

(R&L, Chapters 5 - 8)

Part 4: Radiative Processes in Astrophysical Gas: Atomic and Molecular Media
(R&L, Chapters 9 –11)



Radiative Astrophysics: schedule
1 Mon Aug 29 Introduction, Specific Intensity & Moments R&L 1.1 – 1.3 

2 Wed Aug 31 Radiative Transfer Equation & Moments R&L 1.4 

Mon Sep 5 Labor Day: NO CLASS

3 Wed Sep 7 Blackbody and Thermal Radiation R&L 1.5 

4 Mon Sep 12 Einstein Coefficients R&L 1.6 

5 Wed Sep 14 Scattering R&L 1.7

6 Mon Sep 19 Radiative diffusion R&L 1.8 

7 Wed Sep 21 Maxwell's Eqns., Fourier Transforms R&L 2.1 – 2.3

8 Mon Sep 26 Polarization R&L 2.4

9 Wed Sep 28 EM Potentials and the L-W Potentials R&L 2.5, 3.1

10 Mon Oct 3 Radiation fields, Dipole approx. R&L 3.2

11 Wed Oct 5 Thomson Scattering, Harmonic Oscillator R&L 3.4, 3.6

12 Mon Oct 10 Lorentz Transformations & 4-vectors R&L 4.1, 4.2

13 Wed Oct 12 Emission from Relativistic Particles R&L 4.8



Radiative Astrophysics: schedule
14 Mon Oct 17 Bremsstrahlung I R&L 5

15 Wed Oct 19 Bremsstrahlung II R&L 5

16 Mon Oct 24 Bremsstrahlung III R&L 5

17 Wed Oct 26 Synchrotron Radiation I R&L 6 

18 Mon Oct 31 Synchrotron Radiation II R&L 6 

19 Wed Nov 2 Synchrotron Radiation III / Compton Scattering I R&L 6

20 Mon Nov 7 Compton Scattering I R&L 7

21 Wed Nov 9 Compton Scattering II R&L 7

22 Mon Nov 14 Plasma Effects R&L 8

23 Wed Nov 16 Atoms R&L 9

Mon Nov 21 Thanksgiving break: NO CLASS

Wed Nov 23 Thanksgiving break: NO CLASS

24 Mon Nov 28 Atoms R&L 9

25 Wed Nov 30 Radiative transitions R&L 10

26 Mon Dec 5 Molecules R&L 11



Lecture 1
Macroscopic description of radiation

Goal: understand the definitions of, and differences 
between

Radiative flux
Specific intensity

READING: R&L 1.1 – 1.3



Radiative flux
For an element of area, dA, the radiative flux (power per unit area) is defined by

𝐹 =
𝑑𝐸
𝑑𝐴𝑑𝑡

dA

and has units: erg cm–2 s–1 (c.g.s.) = 10–3  W m–2 (SI)

Note that the flux passing through a given element depends on its orientation

For an isotropic source of luminosity (power) L = dE/dt, conservation of energy 
implies

𝐹 =
𝐿

4𝜋𝑟!

Sphere of radius r



Monochromatic flux

The flux carried by radiation in the frequency range n to n + dn can be written 
Fn dn

where

𝐹! =
𝑑𝐸

𝑑𝐴𝑑𝑡𝑑𝜈

is the monochromatic flux

The c.g.s unit is erg cm–2 s–1 Hz–1, and a commonly-used unit in astronomy is 
the Jansky (Jy)
1 Jy = 10–23 erg cm–2 s–1 Hz–1 = 10–26 W m–2 Hz–1

Of course, we can also use wavelength in place of frequency and compute

𝐹" =
𝑑𝐸

𝑑𝐴𝑑𝑡𝑑𝜆

where 𝐹" = 𝐹! 𝑑𝜐/𝑑𝜆 = 𝜐#𝐹! / c or 𝜆𝐹" = 𝜈𝐹!



𝜈𝐹!
If you plot 𝜈𝐹! versus ln𝜈 or ln𝜆, the area under the curve is the total flux

Example: Galaxy SED models from Hayward and Smith (2015)

Two peaks at 1 and 100 micron indicate that stars and dust radiate roughly equal 
amounts of energy in this model

For a blackbody, 𝐹 = 1.36 [𝜈𝐹!]"#$%



Specific intensity

Flux measures the total amount of radiation in all directions passing through an 
element of area

dA

We can also think about a single ray (in the normal direction) and define the specific 
intensity

𝐼𝜈 =
𝑑𝐸

𝑑𝐴𝑑𝑡𝑑𝜈𝑑Ω

with units erg cm–2 s–1 Hz –1 sr–1

This defines the amount of energy within a cone of (infinitesimal) solid angle dΩ

R&L



The flux can be considered an angular moment of the specific intensity, obtained 
from an integral over all directions

𝐹!𝑑𝐴 = ∫ 𝐼!𝑑𝐴′𝑑Ω

where 𝑑𝐴′ = cosq 𝑑𝐴 is the projected area of the element of area

𝐹! = ∫ 𝐼!cosq 𝑑Ω

Convenient notation: µ = cosq è 𝑑Ω = sinq dq df = | dµ df | 

𝐹" = ,
#

!$
df ,

%&

&
𝐼"µ𝑑µ

Question 1 (in pairs; respond via Zoom poll): what is the flux for an 
isotropic radiation field (𝐼" the same in all directions)?

Relationship between flux and specific intensity

q



Relationship between flux and specific intensity

If 𝐼" is independent of µ and f, then 

𝐹" = ,
#

!$
df ,

%&

&
𝐼"µ𝑑µ

= 2𝜋𝐼" µ!/2 %&
& = 0

Of course: the energy flow from top to bottom is exactly balanced by the 
flow from bottom to top

If uniformly bright radiation is incident over just one hemisphere (µ > 0)

then 𝐹" = 2𝜋𝐼" µ!/2 #
& = 𝜋𝐼"

Example: small window in a hot kiln

This is a useful result that we’ll return to later



Lecture 2
Angular moments of specific intensity, radiative transfer

Goals: understand the significance of

Momentum flux / pressure
Mean intensity and energy density
Angular moments
Constancy of specific intensity along a ray (in vacuo), and the 
inverse square law for flux

READING: R&L 1.4, 1.5



Momentum flux

So far, we have been considering the flow of energy.  But photons also 
carry momentum of magnitude E/c

Momentum is, of course, is a vector, and the normal component of 
momentum is

E/c cosq = Eµ / c

The momentum flux is therefore

∫(𝐼"µ /c) cosq 𝑑Ω = ∫#
!$ df ∫%&

& (𝐼"/c) µ! 𝑑µ

This quantity is proportional to the second angular moment of the 
intensity (whereas the flux is proportional to the first angular moment).  
This is the pressure (associated with radiation at frequency 𝜈)

Question 1: for isotropic radiation, with intensity , 𝐼", what is the pressure?



Momentum flux

So far, we have been considering the flow of energy.  But photons also 
carry momentum of magnitude E/c

Momentum is, of course, is a vector, and the normal component of 
momentum is

E/c cosq = Eµ / c

The momentum flux is therefore

∫(𝐼"µ /c) cosq 𝑑Ω = ∫#
!$ df ∫%&

& (𝐼"/c) µ! 𝑑µ

This quantity is proportional to the second angular moment of the 
intensity (whereas the flux is proportional to the first angular moment).  
This is the pressure (associated with radiation at frequency 𝜈)

Question 1: for isotropic radiation, with intensity , 𝐼", what is the pressure?
Answer: p𝜈 = 2𝜋𝐼" µ'/3 %&

& /𝑐 = 4𝜋𝐼"/3𝑐



Mean intensity

The energy flux and pressure are proportional to the first and second angular 
moments.  What about the zeroth angular moment?  This is just the mean (angle-
averaged) intensity

𝐽! =
1
4𝜋 6

'

()
df 6

*+

+
𝐼! 𝑑µ

…note the 1/(4𝜋)

This has the same units as specific intensity, and is proportional to the energy 
density, 𝑢! , of radiation at frequency 𝜈. 

Element of energy in cylinder at right 

𝑑𝐸 = 𝐼𝜈𝑑𝐴𝑑𝑡𝑑𝜈𝑑Ω
= 𝐼𝜈𝑑𝐴 𝑑𝑠/𝑐 𝑑𝜈𝑑Ω
= 𝐼𝜈𝑑𝑉𝑑𝜈𝑑Ω/𝑐

So, the element of energy density is given by 𝑑𝑢!=	dE/dV = 𝐼𝜈𝑑𝜈𝑑Ω/𝑐
Integrating over solid angle, we find 

𝑢!= 𝑑𝐸/𝑑𝑉 = 4π𝐽𝜈/c

R&L



Angular moments of 𝐼!

To make things more elegant, the 1/(4𝜋) is typically used for all angular 
moments with the definitions 

𝐽" = &
($ ∫ 𝐼" 𝑑Ω “Mean intensity” cu𝜈 /4𝜋

𝐻" = &
($ ∫ 𝐼" cosq 𝑑Ω “Eddington flux” F𝜈 /4𝜋

𝐾" = &
($ ∫ 𝐼" cos2q 𝑑Ω “Second moment” cp𝜈 /4𝜋

For isotropic radiation,

𝐻" = 0

𝐾" =
&
'
𝐽" è pressure = &

'
energy density

(relativistic ideal gas)



Tensor representation

R&L treat the angular moments as scalars that are defined for an element 
of area in a specific orientation.

A more sophisticated analysis treats radiative flux (4𝜋𝐻") as a vector and 
pressure (4𝜋𝐾"/𝑐) as a 2nd-rank tensor

We define 𝑯𝝂 = &
($ ∫ 𝐼"

=𝒌 𝑑Ω and 𝑲𝝂 = &
($ ∫ 𝐼"

=𝒌=𝒌𝑑Ω

where =𝒌 is a unit directional vector.  

In Cartesian coordinates =𝒌 = (=kx , Cky , =kz)
= (sinq cosf,	sinq sinf, cosq )

So 𝑯𝝂 has 3 components, Hi	=	
&
($ ∫ 𝐼"

=ki𝑑Ω,	
where i = 1, 2, 3 for x, y, and z

and 𝑲𝝂 has 9 components, Kij=	
&
($ ∫ 𝐼"

=ki =kj𝑑Ω

q
𝑑Ω

D𝒌



Tensor representation

With these definitions, the radiative flux, 𝑭𝝂 = 4𝜋𝑯𝝂,	is a vector that 
shows the direction in which the radiation is travelling

If we define a vector element of area dA ,	where dA is pointing in the 
normal direction, energy passes through that area at a rate 𝑭𝝂.dA

We can also write this using the “summation convention” in which we sum 
over repeated indices:  *+

*,*"
= Fi		dAi

The pressure, 𝒑𝝂 = 4𝜋𝑲𝝂/c,	is a 2nd-rank tensor, and the rate at which 
j-momentum passes through the element is the j-component of pij dAi

q 𝑭𝝂
dA

𝑭𝝂.dA = 𝐹!dA cosq



Information content

Successive angular moments provide increasing amounts of information 
about the angular distribution of the radiation.  This is similar to a spherical 
harmonics expansion, in which we write 

𝑓(𝜃, 𝜙) =R
-.#

/

R
0.%-

-

𝑎-0𝑌-0(𝜃, 𝜙)

The coefficients 𝑎-0 provide successive finer detail about the angular 
distribution as 𝑙 gets larger and larger

Aside:	the	spherical	harmonics	are	
related	to	the	power	spectrum	
(e.g.	of	the	CMB),	by	the	relation	

𝐶3 =
1

2𝑙 + 1 b
45*3

3

𝑎34 (



Information content

In a spherical harmonics expansion:

There is one term with 𝑙 = 0, corresponding to the one 
component of 𝐽d

There are 3 terms with 𝑙 = 1, corresponding to the 3 
components of𝑯𝝂

There are 5 terms with 𝑙 = 2, but there are 9 components of 𝑲𝝂

Question 2:  but how many new pieces of information are 
provided by 𝑲𝝂?



Information content

There are only five new pieces of information

Note first that

Kij=	
$
%& ∫ 𝐼!

&ki &kj𝑑Ω is symmetric, so there are only six independent 
components

Still, we haven’t gotten to the five terms for 𝑙 = 2 

There is one additional relationship, involving the trace of K

What is the trace of K?

Tr(Kij)	=Kxx+Kyy+ Kzz =
$
%& ∫ 𝐼! (

1𝑘'# + 1𝑘(# + 1𝑘)#)𝑑𝛺 = 𝐽!

So this reduces the new information content by 1

General result: the first q angular moments provide the same directional 
information as the spherical harmonics expansion up to l = qto 𝑙 = q



Radiative transfer: constancy of 𝐼! along a ray

In a vacuum, and in steady-state, the specific intensity is constant along a ray

Proof: 

Consider the radiant energy that passes through both hoops shown above

𝑑𝐸 = 𝐼&𝑑𝐴&𝑑𝑡𝑑𝜈𝑑Ω! = 𝐼!𝑑𝐴!𝑑𝑡𝑑𝜈𝑑Ω&

where 𝑑Ω&,! = 𝑑𝐴&,!/𝑅2 is the solid angle subtended by hoop 1,2 as 
viewed from hoop 2,1

Hence 𝑑𝐴&𝑑Ω! = 𝑑𝐴!𝑑Ω& è 𝐼& = 𝐼!

If there’s a time dependence, then 𝐼! 𝑡 + 𝑅/𝑐 = 𝐼& 𝑡

How is this consistent with the inverse square law for flux?

R&L



Radiative transfer: constancy of 𝐼! along a ray

Consider now a uniformly bright (“Lambertian” sphere) that is viewed from a 
distance r

The observed flux is 𝐹 = ∫#
!$ df ∫2345"

& 𝜇𝐵 𝑑µ

= 2𝜋𝐵 µ!/2 234 5"
& = 𝜋𝐵(1 − cos! 𝜃6) = 𝜋𝐵 sin! 𝜃6

The intensity B does not depend on r, but the angle qc does!

sin 𝜃6 = 𝑅/𝑟 è 𝐹 = 𝜋𝐵 (𝑅/𝑟)!

Constant intensity along a ray è inverse square law for flux

R&L



Lecture 3
Radiative transfer

Goals: understand
Radiative transfer with emission and absorption
Optical depth and the source function
The radiative transfer equation as a “relaxation equation”
Angular moments of the transfer equation
Thermodynamics of blackbody radiation

READING: R&L 1.5



Emission

We now want to consider what happens when radiation travels through a medium 
capable of emitting and absorbing radiation

Define the spontaneous emission coefficient as the power emitted per unit volume 
per unit solid angle

(units: erg cm–3 s–1 sr –1)

and the monochromatic emission coefficient in a similar way per unit bandwidth

(units: erg cm–3 s–1 sr –1 Hz –1)

In travelling a distance ds along a ray, a beam of cross section dA travels through a 
volume dV=dAds, and the intensity therefore increases by 𝑑𝐼7 = 𝑗7𝑑𝑠

Other related quantity often used in stellar astrophysics:

𝜖7 = total monochromatic power per unit mass (erg s–1 g –1 Hz –1 ) = 4π𝑗7/r

𝑗 =
𝑑𝐸

𝑑𝑉𝑑𝑡𝑑Ω

𝑗7 =
𝑑𝐸

𝑑𝑉𝑑𝑡𝑑Ω𝑑𝜐



Absorption
Absorption removes power from a ray in proportion to the intensity that is already present

Define absorption coefficient, 𝛼#, by the equation

𝑑𝐼#
𝑑𝑠

= −𝛼#𝐼#

so 𝛼# has units cm–1

Microscopic description: suppose we have n absorbing particles per unit volume, each of 
which presents a cross-section 𝜎# to radiation at frequency n

Number of particles in cylinder = n dA ds

Total cross-section presented = n dA ds 𝜎#

Fraction of radiation removed = n ds 𝜎#
(covering factor in lower panel at right)

This fraction must equal −𝑑𝐼#/ 𝐼# = 𝛼#𝑑𝑠

which implies 𝛼# = n 𝜎#
(check dimensions: cm–1 = cm–3 cm2 as required)



Sign conventions and stimulated emission

The absorption coefficient, 𝛼*, is defined to be positive if the medium removes 
radiation in proportion to the amount already present 

As we’ll see later, there is an opposite process known as stimulated emission which 
adds radiation in proportion to the amount already present. This makes a negative 
contribution to the absorption coefficient.  

Under ordinary circumstances, absorption beats stimulated emission and the 
combined effect yields a positive value of 𝛼*, leading to an exponential decay in 
the intensity:  

𝑑𝐼*
𝑑𝑠

= −𝛼* 𝐼* < 0

But under special circumstances sometimes achieved in astrophysical media, 
stimulated emission can dominate absorption.  

Then 𝛼* is negative and the intensity can increase exponentially (e.g. in maser = 
“microwave amplification by the stimulated emission of radiation”)

𝑑𝐼*
𝑑𝑠

= −𝛼* 𝐼* > 0



Radiative transfer equation and optical depth

With both processes present, our equation becomes
𝑑𝐼7
𝑑𝑠

= 𝑗7 − 𝛼7 𝐼7

Pure emission (𝛼7= 0) solution: 𝐼7 𝑠 = 𝐼7 0 + ∫#
8 𝑗7 𝑠9 𝑑𝑠′

Pure absorption (𝑗7= 0) solution: 𝐼7 𝑠 = 𝐼7 0 exp −∫#
8𝛼7 𝑠9 𝑑𝑠′

With both processes present, it is convenient to define the “optical depth,” 
𝜏7 = ∫#

8𝛼7 𝑠9 𝑑𝑠′.  This is a dimensionless quantity. 

The optical depth measures distance along the ray in units of the 
mean-free-path (i.e. the mean distance travelled before a photon gets 
absorbed)

𝑙:;< = 1/𝛼7



Radiative transfer equation and source function

Noting that 𝛼7𝑑𝑠 = 𝑑𝜏7, we may divide the transfer equation by 𝛼7 to 
obtain  

𝑑𝐼7
𝑑𝜏7

=
𝑗7
𝛼7
− 𝐼7

We introduce the source function 𝑆7 = 𝑗7/𝛼7 to obtain

𝑑𝐼7
𝑑𝜏7

= 𝑆7 − 𝐼7

This is a relaxation equation, in that the intensity is relaxing towards 𝑆7 as it 
moves along the ray (although it may never reach 𝑆7)

In other words, if 𝐼7< 𝑆7 it will increase whereas if 𝐼7> 𝑆7 it will decrease

The formal solution is

In an optically-thick medium with 𝜏7>> 1, the first term is very small and 
there is no “memory” of 𝐼7(0). 𝐼7 gets very close to the local source function



Angular moments of the transfer equation

So far we’ve written the radiative transfer equation for a single ray

𝑑𝐼7
𝑑𝑠

= 𝑗7 − 𝛼7 𝐼7

where s is the distance along that ray

We can easily write this for all rays at once

=𝒌 . 𝜵𝐼7(=𝒌) = 𝑗7 − 𝛼7 𝐼7(=𝒌)

And add in time dependence if needed (rarely)

1
𝑐
𝜕𝐼7
𝜕𝑡 + =𝒌 . 𝜵𝐼7(=𝒌) = 𝑗7 − 𝛼7 𝐼7(=𝒌)

Later: look back at Lecture 2 and convince yourself I did this right



Angular moments of the transfer equation

Let’s take angular moments of this equation, i.e. multiply by µ+ and integrate 
𝑑Ω

1
𝑐
𝜕𝐼*
𝜕𝑡

+ &𝒌 . 𝜵𝐼*(&𝒌) = 𝑗* − 𝛼* 𝐼*(&𝒌)

Zeroth moment (n = 0):

4𝜋
𝑐
𝜕𝐽*
𝜕𝑡

+ 𝜵. 𝑭𝝊 = 4𝜋𝑗* − 4𝜋𝛼* 𝐽*

where I’ve assumed that 𝛼* is isotropic and noted 

F&𝒌 . 𝜵𝐼* &𝒌 𝑑Ω = F 1𝑘𝑖
𝜕𝐼*
𝜕1𝑘𝑖

𝑑Ω =
𝜕
𝜕1𝑘𝑖

F 1𝑘𝑖 𝐼* 𝑑Ω =
𝜕𝐹*-
𝜕1𝑘𝑖

= 𝜵. 𝑭𝝊

Above, we are using the summation convention in which we sum over 
repeated indices, i.e. we abbreviate ∑- 𝑥- 𝑥- as 𝑥- 𝑥-

Question: what physical principle does this differential equation encapsulate?  
Explain your answer briefly.



Angular moments of the transfer equation

The zeroth moment of the transfer equation is a statement of energy 
conservation

Time derivative of the density Divergence of the flux
of a conserved quantity of that quantity

𝜕𝑢7
𝜕𝑡 + 𝜵. 𝑭𝝊 = 4𝜋𝑗7 − 4𝜋𝛼7 𝐽7

Rate of production 
per unit volume (“sources”)

Rate of destruction 
per unit volume (“sinks”)



Angular moments of the transfer equation

Let’s take angular moments of this equation, i.e. multiply by µ> and 
integrate 𝑑Ω

1
𝑐
𝜕𝐼7
𝜕𝑡

+ =𝒌 . 𝜵𝐼7(=𝒌) = 𝑗7 − 𝛼7 𝐼7(=𝒌)

First moment (n = 1):

1
𝑐
𝜕𝑭𝝊
𝜕𝑡

+ 4𝜋 𝜵.𝑲7 = 0 − 𝛼7 𝑭𝝊

where we note that 

,=𝒌 . 𝜵𝐼7 =𝒌 =𝒌𝑑Ω = , j𝑘𝑖
𝜕𝐼7
𝜕j𝑘𝑖

j𝑘𝑗𝑑Ω =4𝜋
𝜕𝐾7?@
𝜕j𝑘𝑖

= 4𝜋 𝜵.𝑲7

Divergence of a 2nd-rank tensor is a vector
Question: what physical principle does this differential equation 
encapsulate?  Explain your answer briefly.



Angular moments of the transfer equation

Dividing through by c, we see that first moment of the transfer equation is 
a statement of momentum conservation

Time derivative of the Divergence of the momentum flux
momentum density

1
𝑐!
𝜕𝑭𝝊
𝜕𝑡 + 𝜵. 𝒑𝝊 = −𝛼7 𝑭𝝊/𝒄

Rate of “destruction” per unit volume
= force per unit volume exerted by the 
radiation field on the gas



Blackbody radiation: thermodynamic considerations

Blackbody radiation is radiation in thermal equilibrium

Allow an isolated enclosure to reach TE, i.e. a state of 
maximum entropy

Theorem: 𝐼i is a universal function, of 𝜐 and T, which is 
independent of direction and the nature of the enclosure 
(shape, material…).  This we call the Planck function, 𝐵i(𝑇)

𝐼i = 𝐵i(𝑇)



Blackbody radiation: thermodynamic considerations

Proof:  Join the enclosure to another enclosure at the same temperature, 
with a filter that reflects all radiation except at frequency 𝜐. Radiation at 
frequency 𝜐 can pass between the enclosures through a hole.

Unless 𝐼7 = 𝐼7′ at all frequencies (see Figure) and angles, energy could pass 
from one enclosure to the other, violating the 2nd Law of Thermodynamics

𝐼7 = 𝐵7(𝑇)

(R&L)



Blackbody radiation: thermodynamic considerations

Corollary:  The universal function, 𝐵7, must be a monotonically increasing 
function of T at every frequency

Unless 𝐼79 ≥ 𝐼7 heat could pass from the cooler container (left) to the hotter, 
violating the 2nd Law of Thermodynamics.  (Condition must be satisfied at 
every frequency)

𝐼7 = 𝐵7(𝑇)

at different temperatures

T’ > T



Kirchhoff’s Law for material in TE

Suppose we have a blob of material inside the enclosure (in 
equilibrium, so at temperature, T)

In thermal equilibrium, 𝐼! = 𝐵!(𝑇), so 

0 =
𝑑𝐼!
𝑑𝑠 = 𝑆! − 𝐼! = 𝑆! − 𝐵!

è 𝑆! = 𝐵!(𝑇) in TE, or 𝑗! = 𝛼! 𝐵!(𝑇)

This is Kirchhoff’s Law, which relates the absorption and emission 
coefficients in TE

𝐼i = 𝐵i(𝑇)



Kirchhoff’s Law

Kirchhoff’s Law applies to any material, under TE conditions.  The 
latter means that the material at temperature T is surrounded by 
blackbody radiation at the same temperature.  

However, in many circumstances, the material properties are not 
affected by the radiation that it is exposed to.  In that case, Kirchhoff’s 
Law may still apply, and the material is said to be in local
thermodynamic equilibrium (LTE)

Example: glass rod heated with a 
Bunsen burner (but not inside a 
furnace).  To a good approximation, 
𝑗! = 𝛼! 𝐵!(𝑇)

Kirchhoff’s law implies that good absorbers 
are good emitters, and poor absorbers are 
poor emitters.  This is why stainless steel 
makes a good teapot material (low absorptivity in the thermal IR)



Lecture 4
Blackbody radiation, Einstein coefficients

Goals: understand

The statistical mechanics of blackbody radiation
The Planck function
The Einstein coefficients
The equations of statistical equilibrium

Alternative textbook:
The Physics of Astrophysics Volume 1: Radiation by Frank Shu
ISBN: 978-1891389764



Statistical mechanics and the Planck function

To derive the Planck function, 𝐵!(𝑇), we start with four basic 
principles concerning photons

1) Each photon has energy hn

2) There’s a finite density of quantum states in phase space,
dNq / (d3p d3x) = 1/h3

When we account for the fact that photons have spin = 1 and two 
possible helicities, this becomes 2/h3

3) Since photons are bosons, there is no limit on the number of 
photons that can occupy a given quantum state.  This number is called 
the photon occupation number, N

4) In thermal equilibrium, the probability of finding n photons in any 
given state is proportional to the Boltzmann factor
exp (−En/kT), where En = nhn



Statistical mechanics: photon occupation number, N
The probability that a given quantum state contains n photons is 
therefore 

Pr 𝑛 = ":;<=/?@

#

where the “partition function,” Z, is the quantity needed to normalize 
the probabilities so they sum to unity

𝑍 = R
!"#

$

𝑒%!&'/)* =
1

1 − 𝑒%&'/)*

The mean occupation number is therefore

N = R
!"#

$

𝑛 Pr 𝑛 =
1
𝑍
R
!"#

$

𝑛𝑒%!&'/)* =
1
𝑍

𝑑𝑍

𝑑(ℎ𝜈𝑘𝑇)

N = (1 − 𝑒JKL/NO) 𝑒lKL/NO
(1 − 𝑒%&'/)*)2

=
1

𝑒.!/01 − 1



Energy density and Planck function

We’re now ready to compute the energy density  of radiation at 
frequency 𝜈 to 𝜈+𝑑𝜈

𝑢!𝑑𝑣 = ℎ𝑣 "
#.

N d3p = ℎ𝑣 "
#.

N 4𝜋p2dp

Energy per photon    Density of photons in phase space

The momentum of a photon has magnitude p = ℎ𝑣/𝑐, so this 
becomes 𝑢m𝑑𝑣 = 8𝜋ℎ𝑣 m$

n2
N d𝑣

è 𝐽m = 𝑐𝑢m/4𝜋= "#$+

%S
N

è 𝐵v =
wxv3

y/
&

z01/23'&



The Cosmic Microwave Background

The CMB provides a beautiful example of a Planck function, and 
is the most accurately measured in any experiment

T=2.72548 ± 0.00057 K  
(Fixsen et al. 2009, ApJ)

𝑣/𝑐



Significance of energy quantization

Note that we cannot derive the Planck function without 
discussing photons, i.e. the fact that radiant energy at frequency 
𝑣 is quantized in multiples of ℎ𝑣

Without this (i.e. in the limit ℎ → 0), we obtain the “classical 
result,” which diverges in the limit of large 𝑣 (the “ultraviolet 
catastrophe”)

𝐵! =
"#!3

$/
&

%01/23'& →
"&'!#

$/
= "&'

(/

This limit does indeed apply in the limit of low frequency 
(ℎ𝜈/𝑘𝑇 ≪ 1) and is called the Rayleigh-Jeans Law

In the opposite limit, 𝐵m is well approximated by pqm
%

n4 𝑒lqd/rs
(“Wien’s Law”)



Properties of the Planck function: derivatives

𝐵T =
UKT%

V$
W

X%&/()JW
or        𝐵Y =

UKV$

Y*
W

X%+/,()JW

Clearly 𝜕𝐵m/𝜕𝑇 > 0 for all 𝑇 and 𝑣, as required by the Second 
Law of Thermodynamics

Solving for 𝜕𝐵m/𝜕𝑣 = 0 (yields a transcendental eqn.), we may 
determine where the Planck function peaks

𝑣-./0
𝑇 =

2.81𝑘
ℎ = 58.8 GHz/K

Solving for 𝜕𝐵1/𝜕𝜆 = 0, we get the Wien displacement law

𝜆-./0𝑇 =
4.97ℎ𝑐
𝑘 = 0.290 cm K



Wien displacement law

Source Temperature 𝜆ABCD Waveband

CMB 2.73 K 1.1 mm mm-wave

Pluto 44 K 66 µm Far-IR

Earth 287 K 10 µm Mid-IR

0.1 M⦿main sequence star 2900 K 1.0 µm Near-IR

Sun 5800 K 500 nm (5000 Å) Visible

10 M⦿main sequence star 20000 K 145 nm (1450 Å) Far-UV

Youngest white dwarfs 250,000 K 12 nm (120 Å) Extreme UV / soft X-ray



Properties of the Planck function: integrals

𝐵m =
2ℎ𝑣3

𝑐p
1

𝑒qd/rs − 1

Integrating over frequency with the change of variable
𝑥 = ℎ𝜈/𝑘𝑇, we obtain

𝐵 = 3
#

$

𝐵, 𝑑𝜈 =
2ℎ
𝑐-

𝑘𝑇
ℎ

.
3
#

$
𝑥3

𝑒/ − 1
𝑑𝑥

= "#
$/

&'
#

: ;4

<=

For blackbody radiation leaving a surface isotropically, the 
flux is 𝐹 = 𝜋𝐵 = 𝜎sbT4  (the “Stefan-Boltzmann Law”)

where 𝜎sb = pq
n4

r
q

t u5

vw = 5.67 × 10–5	erg	cm–2	s–1	K–4



Properties of the Planck function: integrals

The total energy density is

𝑢 =
4𝜋𝐵
𝑐

=
4𝜎\]𝑇^

𝑐
= 𝑎𝑇^

where a	=	7.57	x	10–15 erg	cm–3	K–4 is called the 
“radiation constant”

The pressure associated with blackbody radiation can 
dominate in the interiors of high-mass stars

𝑝 =
𝑎𝑇^

3



The Einstein coefficients

We consider an atom or molecule with two states, 1 and 2

Spontaneous emission

R&L

Line profile function (units Hz–1), 
normalized such that 

𝜙 𝜈 is not quite a delta function, because various processes (natural linewidth, Doppler 
motions) give the line a finite width, but typically Δ𝜈 ≪ 𝜈0

Atoms per unit volume in state 2



The Einstein coefficients

We consider an atom or molecule with two states, 1 and 2

Absorption

R&L

If 𝐽! varies slowly with 𝜈 and Δ𝜈 ≪ 𝜈0, then we can treat 𝜙 𝜈 as a delta 
function and write ̅𝐽 = 𝐽!(𝜈0)



The Einstein coefficients

We consider an atom or molecule with two states, 1 and 2

Stimulated emission

R&L

The process is the reverse of absorption

Unlike spontaneous emission, its rate is 
proportional to the radiation field

As we’ll see (and as Einstein found), this 
process has to be present on 
thermodynamic grounds



Equation of statistical equilbrium

In steady-state, the rate of transitions from 2 to 1 will be 
exactly balanced by the rate from 1 to 2

𝑛U 𝐴UW + 𝑛U 𝐵UW ̅𝐽 = 𝑛W 𝐵WU ̅𝐽

which implies

Now, suppose we are in thermal equilibrium

Then ̅𝐽 = 𝐵> (Planck function)

and (Boltzmann
factor)



Equation of statistical equilibrium

Given the Boltzmann factor for n2/n1, we then have

If ̅𝐽 is to equal the Planck function,  "#!3

$/
<

%01/23?<

we require



As noted previously, 

This is the rate at which energy is added by spontaneous emission 
(per unit bandwidth, per unit volume, per unit solid angle)

The combined effect of absorption and stimulated emission is to 
remove energy at a rate proportional to the mean intensity,
[𝑛v 𝐵vp − 𝑛p 𝐵pv ] ℎ𝑣 𝜙 𝜈 𝐽m (per unit bandwidth, per unit 
volume)

This has to equal ∫𝛼m 𝐼m 𝑑Ω = 4𝜋𝛼m 𝐽m

so 𝛼m =
qm
tu
[𝑛v 𝐵vp − 𝑛p 𝐵pv ] 𝜙 𝜈

Emission and absorption coefficients



The source function

Given these expressions for 𝛼m and 𝑗m , and using the relationship 
between the Einstein coefficients, we may compute the source 
function

𝑆m =
|6
}6
= ~4 �47

~7 �74 l~4 �47
= pqm%

n$
0

(!)"
(")!

%0

In thermal equilibrium,  
~*�$
~$�*

= 𝑒&,/)* (Boltzmann factor)

and we recover the Kirchhoff’s Law, 𝑆,= 𝐵,

The condition for “local thermodynamic equilibrium” (LTE) is clearly 
just that 𝑛0/ 𝑛2 is given by the Boltzmann factor

This typically holds at sufficiently high density, regardless of whether 
𝐽m= 𝐵m

Example: the surface of the Sun, where 𝐽,~ 0
-
𝐵, but 𝑛v/ 𝑛2 is 

typically close to LTE



Lecture 5

Goals: understand

Different types of “temperature”
Effects of collisional excitation
The kinetic and excitation temperatures
Maser amplification and its astrophysical applications



Regardless of whether a system is in LTE, we can always 
define some temperature, such that

C$D#
C#D$

≡ 𝑒qm/rs89

We call this the “excitation temperature,” 𝑇_`

The condition for LTE is then that 𝑇_` equals the 
temperature of the gas

Either way, 𝑆! = 𝐵!(𝑇EF) 

The excitation temperature



We can also define several other temperatures that are equal to each 
other in TE but could differ in other circumstances.  These definitions are 
used regardless of whether we are in TE 

Kinetic temperature, Tkin,  characterizes the distribution of particle 
velocities (Maxwell-Boltzmann distribution at temperature Tkin)

Radiation temperature, Trad(n) characterizes the mean intensity through 
the definition Jn ≡ Bn (Trad)

Brightness temperature, TB (n), characterizes the specific intensity along a 
given ray through the definition In ≡ Bn (TB)

Rayleigh-Jeans brightness temperature, TB,RJ , characterizes the specific 
intensity along a given ray through the definition In ≡ 2kTB,RJ /l2 .  This is 
used whether or not the RJ limit applies.

Other temperatures astronomers like to define



Effective temperature, Teff, is a measure of total (i.e. frequency 
integrated) flux, through the definition F ≡ sSB Teff

4 )

This is widely used in describing stars, for which the luminosity 
may be written L = 4𝜋𝑅2sSBTeff

4 

In LTE, Tex = Tkinè Kirchhoff’s Law holds since
Sn = Bn (Tex ) = Bn (Tkin)

In complete thermal equilibrium, Tex = Tkin = Trad 

For isotropic radiation TB  (along any ray) = Trad  

But note that TB,RJ  differs from TB unless hn << kTB

Other temperatures



With radiative processes alone, we had  

But inelastic/superelastic collisions with another particle 
can also induce a transition from one state to another

These are characterized by a collision rate that depends 
on the kinetic temperature

𝐶vp = rate of inelastic collisions from state 1 to 2
𝐶pv = rate of superelastic collisions from state 2 to 1

We now have

𝑛" 𝐶"< + 𝑛" 𝐴"< + 𝑛" 𝐵"< ̅𝐽 = 𝑛< 𝐶<" + 𝑛< 𝐵<" ̅𝐽

Effect of collisions on the excitation temperature

𝑛p 𝐴pv + 𝑛p 𝐵pv ̅𝐽 = 𝑛v 𝐵vp ̅𝐽



We now have 
𝑔-
𝑔0
exp(−ℎ𝑣/𝑘𝑇ex) ≡

𝑛-
𝑛0
=

𝐶0- + 𝐵0- ̅𝐽
𝐶-0 + 𝐴-0 + 𝐵-0 ̅𝐽

Let’s consider first the case where collisions are absent (say because the 
density is very low) and we are in thermal equilibrium at temperature, T

In thermal equilibrium at temperature T, we know that radiative processes 
alone give us

1+
1,
exp(−ℎ𝑣/𝑘𝑇) = 2,+ ̅4

5+,62+, ̅4

The right hand side depends only on the radiation field, so this must mean
2,+ ̅4

5+,62+, ̅4
= 1+

1,
exp(−ℎ𝑣/𝑘𝑇rad)

whether or not we are in TE

Effect of collisions on the excitation temperature



Now suppose we are in TE and collisions are significant

If 1+
1,
exp(−ℎ𝑣/𝑘𝑇) is to equal  7,+6 2,+ ̅4

7+,65+,62+, ̅4
, then we must also have

𝐶+(
𝐶(+

=
𝑔(
𝑔+
exp(−ℎ𝑣/𝑘𝑇)

Since collisions are controlled by the kinetic temperature of the gas, this 
must mean  7,+

7+,
= 1+

1,
exp(−ℎ𝑣/𝑘𝑇kin) whether or not we are in TE

In general, Tkin ≠ Trad , then

𝑛-
𝑛0
=

𝐶0- + 𝐵0- ̅𝐽
𝐶-0 + 𝐴-0 + 𝐵-0 ̅𝐽

will lie somewhere between 1+
1,
exp(−ℎ𝑣/𝑘𝑇kin) and 1+

1,
exp(−ℎ𝑣/𝑘𝑇rad)

Effect of collisions on the excitation temperature



The collision rates, C21 and C12, are proportional to the volume density of 
particles, n, with which our atom can collide, e.g. C21 = q21n

We define the critical density, ncr = A21/q21, as the particle density at which 
C21 is equal to A21

In the high-density limit, n >> ncr, the collisional terms dominate and

In the low-density limit, n << ncr, the radiative terms dominate and

L"
L#
= M#"N O#" ̅.

M"#N P"#N O"# ̅.
~ /!" ̅$

0"!1/"! ̅$
= 2"

2!
exp(−ℎ𝑣/𝑘𝑇rad) which implies Tex = Trad

You’ll work this out more fully in the homework

“Critical density”

L"
L#
= M#"N O#" ̅.

M"#N P"#N O"# ̅.
~ 3!"

3"!
= 2"

2!
exp(−ℎ𝑣/𝑘𝑇kin) which implies Tex = Tkin



Under some conditions actually attained in the 
interstellar gas, certain transitions of specific molecules 
can have a “population inversion” in which 

C:
C;

> D:
D;

This implies a negative excitation temperature and a 
negative absorption coefficient  &,

.8
[𝑛9 𝐵9: − 𝑛: 𝐵:9 ] 𝜙 𝜈

Leading to the exponential amplification of radiation in 
accord with  VW<

VX
= 𝑗> − 𝛼> 𝐼>

Maser emission



Most notable example: the 22 GHz transition of H2O

Maser emission

Neufeld et al. (2021) ApJ



Most notable example: the 22 GHz transition of H2O

In warm environments (Tkin > 300 – 400 K), we see small 
spots of maser radiation with brightness temperatures 
TB up to 1014 K

A fascinating phenomenon in its own right, but also a 
fantastic “tool”, because emission that bright can be 
observed using the techniques of radio interferometry 

Maser emission



100 m single dish (e.g. GBT)
Angular resolution is approximately 
𝜃~ l/D = 1.4 x 10–4  rad = 28′′
(only slightly better than human eye, for which q ~ 40”)

Interferometer (e.g. VLA)
𝜃~ l/Dmax = 4.3 x 10–7  rad = 0.09′′

Maximum separation (not individual dish size) = 36 km
(only slightly better than HST, for which q ~ 0.05”)

Very Long Baseline Interferometer
𝜃~ l/Dmax = 1.4 x 10–9  rad = 0.00028′′ = 280 µas 

Maximum separation (not individual dish size) up to 10,000 km

VLBI (Very Long Baseline Interferometry)
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VLBI observations of the 22 GHz water maser towards the 
active galaxy NGC 4258 reveal a warped circumnuclear disk 
viewed nearly edge-on

Maser emission: example application

Herrnstein et al. 1999



Each maser spot is tagged with its Doppler velocity along the 
line-of-sight, revealing a disk in Keplerian rotation

Maser emission: example application

Central mass = 3.6 x 107 M⦿within 0.13 pc 
è black hole, not star cluster

Miyoshi et al. 1993



Over a period of years, the Doppler motions associated with 
the radially beamed spots are observed to march redward

Maser emission: example application

Acceleration, a = v2/r = 9.5 km/s per yr

They measured a and v, so they could 
determine r

This defines that actual physical scale of the 
system (in pc), not the angular size

We have a standard ruler for something 
that is spatially-resolved, so we have a 
distance indicator, d = r/q

Latest determination (Pesce et al 2020):
d = 7.58 ± 0.11 Mpc (1.5% uncertainty)

Herrnstein et al. 1999



Other applications include parallax measurements

Structure of the Milky Way, based on trigonometric parallaxes from water 
and methanol masers in regions of star formation  (Reid et al. 2019: BeSSel
and VERA surveys)

Distance to Galactic Center

R0 = 8150 ± 150 pc

(but not as good as a determination
using IR interferometry of stars)

R0 = 8178 ± 13stat ± 22sys pc

from the GRAVITY collaboration (2019)



Lecture 6
Scattering

Goals: understand
Scattering
Radiative transfer with scattering
The radiative diffusion approximation

READING: R&L 1.6, 1.7



Scattering

There’s another important radiative process that we have not yet 
considered: the scattering of radiation

Here, photons are redirected but neither absorbed or emitted

Key example: scattering by electrons (a.k.a. Thomson scattering)

As we’ll see later, if hn << mec2, 
the scattering is coherent in the 
electron rest frame with n’ = n

Electron scattering is not exactly isotropic (we’ll see that later 
too), but has a forward-backward symmetry and can be 
approximated as isotropic

qhn

hn’



Scattering

To account for scattering that is coherent and isotropic, we can just add 
two terms to the transfer equation for a given ray:

𝑑𝐼!
𝑑𝑠 = 𝑗! + 𝜎B 𝐽! − 𝛼! 𝐼!− 𝜎B 𝐼!

where 𝜎B is a scattering coefficient with dimensions length–1 

(just like the absorption coefficient 𝛼B).  The mean distance travelled by 
a photon before is scattered is 1/𝜎B .

Annoying aside: R&L and most other texts use the same symbol for the 
scattering coefficient as for the cross-section.

𝜎B 𝐼! is the rate (per unit distance along the ray) at which intensity is 
removed from this ray by scattering out of this direction

𝜎B 𝐽! is the rate (per unit distance along the ray) at which energy is 
added to this ray by scattering of radiation originally moving in other 
directions



Scattering

To account for scattering that is coherent and isotropic, we can 
just add two terms to the transfer equation for a given ray:

𝑑𝐼i
𝑑𝑠

= 𝑗i + 𝜎d 𝐽i − 𝛼i 𝐼i− 𝜎d 𝐼i

This change to our equation is deceptively simple.  In reality, it
complicates the situation greatly by coupling the radiative 
transfer equations we solve for different rays

Without scattering I could solve the transfer equation separately for each ray
With scattering, I have to solve for all rays simultaneously 



Scattering in LTE

To keep things (relatively) simple, let’s assume that we are in LTE with 
𝑗! = 𝛼B𝐵!(T)

𝑑𝐼!
𝑑𝑠 = 𝛼B 𝐵!+ 𝜎B 𝐽! − 𝛼! 𝐼!− 𝜎B 𝐼!

We can extend our definition of optical depth by writing
𝑑𝜏B ≡ (𝛼B+ 𝜎B) ds to obtain

𝑑𝐼!
𝑑𝜏B

=
𝛼B

𝛼B + 𝜎B
𝐵! +

𝜎B
𝛼B + 𝜎B

𝐽! − 𝐼! = 𝑆!− 𝐼!

With the inclusion of scattering, our source function becomes
𝑆!= 𝜖!𝐵! + (1 − 𝜖!) 𝐽!

where 𝜖B ≡
C=

C=DE=



Physical meaning

Photons can interact with matter by being absorbed or getting 
scattered  

The mean distance between interacion events is

𝑙��� =
1

𝛼d + 𝜎d

In any such interaction, the probability of absorption is  𝜖i= }<
}<��<

and the probability of scattering is 1 − 𝜖i= �<
}<��<

1 − 𝜖i is called the single-scattering albedo (recall the definition of 
planetary albedos)



Random walk

In the presence of scattering, photons do a random walk  
where the mean step size is 𝑙mfp

Q1 (poll, individually)  On average, how many steps will 
a photon take before it is absorbed?

Choices: a,b,c,d,e

a) 1/𝜖!2
b) 1/𝜖!
c) 1/(1 − 𝜖!)
d) 𝜖!
e) (1 − 𝜖!)

𝑙mfp

l∗



Random walk

In the presence of scattering, photons do a random walk  
where the mean step size is 𝑙mfp

Q1 (poll, individually)  On average, how many steps will 
a photon take before it is absorbed?

A  The average number of steps, N, is 1/𝜖!

Q2 (poll, in groups) After N steps, what is the r.m.s. displacement in the 
x-direction (or any other direction)?

𝑙mfp

l∗



Random walk

In the presence of scattering, photons do a random walk  
where the mean step size is 𝑙mfp

Q1 (poll, individually)  On average, how many steps will 
a photon take before it is absorbed?

A  The average number of steps, N, is 1/𝜖!

Q2 (poll, in groups) After N steps, what is the r.m.s. displacement in the 
x-direction (or any other direction)?

After N random steps, the mean square displacement is

(Δ𝑥)(+(Δ𝑦)( +(Δ𝑧)( = 𝑁𝑙mfp(

The mean distance travelled (r.m.s. displacement) is

𝑁+/(𝑙mfp =
Q%NR%
Q%

+/( +
Q%NR%

= +
Q%(Q%NR%)

+/(

In any one direction (e.g. the x-direction) it is l∗ = (Δ𝑥)( +/( = +
UQ%(Q%NR%)

+/(

𝑙mfp

l∗



Angular moments of the transfer equation

Previously, we noted that the radiative transfer equation for a single ray
(without scattering)

𝑑𝐼;
𝑑𝑠

= 𝑗; − 𝛼; 𝐼;

could be written for all rays at once

c𝒌 . 𝜵𝐼;(c𝒌) = 𝑗; − 𝛼; 𝐼;(c𝒌)

Taking the zeroth and first moments, we got

𝜵. 𝑭𝝊 = 4𝜋𝑗; − 4𝜋𝛼; 𝐽; Energy conservation

4𝜋 𝜵.𝑲; = −𝛼; 𝑭𝝊 Momentum conservation

Now let’s add scattering



Angular moments of the transfer equation

Our transfer equation becomes

𝑑𝐼*
𝑑𝑠 = 𝑗* + 𝜎! 𝐽*− 𝛼* 𝐼* − 𝜎! 𝐼*

could be written for all rays at once

&𝒌 . 𝜵𝐼* &𝒌 = 𝑗* + 𝜎! 𝐽*− 𝛼* 𝐼* &𝒌 − 𝜎!𝐼*(&𝒌)

Taking the zeroth and first moments, we got

𝜵. 𝑭𝝊 = 4𝜋𝑗*+ 4𝜋𝜎!𝐽* − 4𝜋𝛼* 𝐽* − 4𝜋𝜎!𝐽* = 4𝜋𝑗* −4𝜋𝛼* 𝐽*

Energy conservation unchanged (scattering conserves photons)

4𝜋 𝜵.𝑲* = −(𝛼* + 𝜎!) 𝑭𝝊

Momentum conservation modified because of additional momentum transfer to gas



Plane parallel geometry

Now let’s suppose we have plane-parallel geometry, again in LTE, with the z-axis 
along the direction where the intensity changes

In other words, we are assuming =
=/
= =

=>
= 0

And the only non-zero components of F and K are Fz and Kzz

The moment equations become 

𝑑𝐹;?
𝑑𝑧

= 4𝜋𝑗; − 4𝜋𝛼; 𝐽; = −4𝜋𝛼;(𝐽; − 𝐵;)

𝑑𝐾;??
𝑑𝑧 = −(𝛼; + 𝜎;)𝐹;?



Plane parallel geometry

The moment equations relate the derivative of one moment to the value of the 
previous one.  

𝑑𝐹;?
𝑑𝑧

= 4𝜋𝑗; − 4𝜋𝛼; 𝐽; = −4𝜋𝛼;(𝐽; − 𝐵;)

𝑑𝐾;??
𝑑𝑧

= −(𝛼; + 𝜎;)𝐹;?/4𝜋

To “close” the system of equations, we need something else

For isotropic radiation, we found previously that 𝐾;??= 0
+
𝐽;, and we’ll see that this 

turns out to be a reasonable approximation more generally

If we make this “Eddington approximation,” we can derive a 2nd order ODE for 𝐽;
(differentiating the second equation again and substituting for 𝑑𝐹;/dz to obtain)

𝑑-𝐽;
𝑑𝑧-

~3
𝑑-𝐾;??
𝑑𝑧-

= 3(𝛼; + 𝜎;)𝛼;(𝐽; − 𝐵;)



Eddington approximation

The Eddington approximation is generally good when the radiation is nearly-
isotropic as in stellar interiors

It is also exactly true in two special cases

1) For “semi-isotropic radiation” (travelling in one hemisphere), 
i.e. if 𝐼; = a  for µ > 0

𝐼; = 0  for µ < 0 where µ = cosq as before

2) When 𝐼; is a linear function of µ, 𝐼; = a + bµ,

for which 𝐽; =
0
.8 ∫#

-8 df ∫%0
0 𝐼' 𝑑µ = 0

- ∫%0
0 (a + bµ) 𝑑µ = a + 0b

and 𝐾;?? =
0
.8 ∫#

-8 df ∫%0
0 𝐼' µ- 𝑑µ = 0- ∫%0

0 (aµ-+ bµ+) 𝑑µ = 0+ a + 0b



Application to an irradiated semi-infinite slab

Let’s solve our second order ODE for the case of a “semi-infinite,” isothermal slab 
of material irradiated by semi-isotropic radiation at its surface

@+49
@?+ = 3(𝛼; + 𝜎;)𝛼;(𝐽; − 𝐵;)

We can introduce a special optical 
depth, t* = dz / l∗, and rewrite this

𝑑-𝐽;
𝑑t∗-

= (𝐽; − 𝐵;)

t* measures z distance in units of the mean distance between absorption events

The solution is (𝐽; − 𝐵;) = 𝑎e–t∗ + 𝑏e+t∗

Boundary conditions 

1) finite 𝐽; at large t∗ è b = 0
2)    𝐽; = 𝐽;(0) at the irradiated surface

𝐽7(0) 

z



Application to an irradiated semi-infinite slab

Hence (𝐽! − 𝐵!) = (𝐽!(0)− 𝐵!)e–t∗

è 𝐽!(t∗) = 𝐽!(0) e–t∗+ 𝐵! (1 − e–t∗)

Near the surface (t∗ << 1 or equivalently z << l∗), 𝐽! is determined by the 
incident radiation, 𝐽!~ 𝐽!(0)

In the interior (t∗ >> 1 or equivalently z >> l∗), 𝐽! reaches thermal 
equilibrium with the matter 𝐽!~ 𝐵!

Another relaxation equation.  The distance l∗ is often termed the 
thermalization length.  In the homework, you’ll solve a similar problem 
but with a source of luminosity at the center of a finite slab

𝐽7(0) 

z



Lecture 7
Review of EM theory

Goals: 

Understand the radiative diffusion approximation

Review:
Lorentz force
Maxwell’s Equations
EM potentials

READING: R&L 2.1,2.5,2.3



The radiative diffusion (Rosseland) approximation

If we are in the deep interior of a medium where the temperature 
changes slowly on the scale of the thermalization length
(i.e. if dT/dz << T/l∗), 

we can approximate 𝐽i very accurately by 𝐵i (T)

Moreover, the radiation is very nearly isotropic, so that 𝐽i = 3𝐾i

These are extraordinarily good approximations in stellar interiors

We can then compute the flux, using the first moment of the 
transfer equation

��=
�� = −(𝛼i + 𝜎i)𝐹i/4p



The radiative diffusion (Rosseland) approximation

𝐹i = −
4𝜋

𝜎i + 𝛼i
𝑑𝐾i
𝑑𝑧

= −
4𝜋

3(𝜎i + 𝛼i)
𝑑𝐽i
𝑑𝑧

= −
4𝜋

3(𝜎i + 𝛼i)
𝑑𝐵i(𝑇)
𝑑𝑧

= −
4𝜋

3(𝜎i + 𝛼i)
𝜕𝐵i
𝜕𝑇

𝑑𝑇
𝑑𝑧

The energy flux is proportional to the temperature gradient, as we 
might have expected

To determine the total (frequency-integrated flux), we can write

𝐹 = −
4𝜋
3𝛼�

𝑑𝐵 𝑇
𝑑𝑧

= −
𝑐
3𝛼�

𝜕𝑢
𝜕𝑇

𝑑𝑇
𝑑𝑧

=− −
4𝑎𝑐𝑇3

3𝛼�
𝑑𝑇
𝑑𝑧

where 𝛼� is the average value of 𝜎i + 𝛼i and using u = 4𝜋B/c = aT4



The Rosseland mean “opacity”

For a “grey” medium with 𝜎i + 𝛼i independent of 𝜐, the Rosseland
mean opacity 𝛼� is simply 𝜎i + 𝛼i

In general, the appropriate average is a weighted harmonic mean

1
𝛼�

=
∫(𝜎i+𝛼i)lv

𝜕𝐵i
𝜕𝑇 𝑑𝜐

∫𝜕𝐵i𝜕𝑇 𝑑𝜐

The integral in the numerator is dominated by the frequencies 
where (𝜎i+𝛼i) is smallest.  This is where the flux is transported 
most rapidly



The radiative diffusion equation

This is called the radiative diffusion (or Rosseland) equation

𝐹 = −
4𝜋
3𝛼�

𝐵 𝑇
𝑑𝑧

= −
𝑐
3𝛼�

𝑑𝑢 𝑇
𝑑𝑧

= −
𝑐
3𝛼�

𝜕𝑢
𝜕𝑇

𝑑𝑇
𝑑𝑧

= −
4𝑎𝑐𝑇3

3𝛼�
𝑑𝑇
𝑑𝑧

It has the classic form of a diffusion equation for some quantity Q
(in this case energy)

Flux of Q = diffusion coefficient x gradient in the density of Q

And the diffusion coefficient is always of order

Speed of the carrier of Q x mean distance travelled 



Definitions of the electric and magnetic fields

Operational definition of E, B and q:
Lorentz force on a charged particle, F = q (E + v x B/c)

è Rate of work done on particle =  v . F = q v . E

Continuum description, f = r E + j x B/c

Force per unit volume Current density
(flux of charge)

Charge density

Rate of work done per unit volume =  j . E



Note on units

R&L use Gaussian-c.g.s units, which are widely used in 
theoretical physics and astronomy
• In this system, unlike in the SI system, there are no dimensional 

constants, 𝜇0 and 𝜖0, and the speed of light appears explicitly in 
Maxwell’s equations.  

• Coulomb’s Law becomes F = q1q2/r2

• The unit of charge is the statCoulomb (1 statC = 1 cm3/2 g1/2 s–1)
also known at the electrostatic unit (esu) or (rarely) the Franklin

The electronic charge, e = 4.803204 x 10−10 statC
• The unit of magnetic field is the Gauss (1 G = cm—1/2 g1/2 s–1 = 10–4 T)
• Lorentz force on a charged particle, F = q (E + v x B/c)

so E and B have the same unit



Maxwell’s Equations

Gauss’s Law: 𝜵. 𝑬 = 4𝜋𝜌

No magnetic monopoles: 𝜵.𝑩 = 0

Faraday’s Law: 𝜵×𝑬 = − O
P
Q𝑩
ST

Ampere’s Law: 𝜵×𝑩 = O
P
Q𝑬
ST
+ VW

P
𝒋



Implications of Maxwell’s equations

𝜵×𝑩 =
1
𝑐
𝜕𝑬
𝑑𝑡

+
4𝜋
𝑐
𝒋

𝟎 = �𝝆
��
+ 𝜵. 𝒋 n

tu
𝑬.𝜵×𝑩 = v

�u
�𝑬𝟐

��
+ 𝒋 . 𝑬

n
tu
𝑩.𝜵×𝑬 − n

tu
𝜵.(𝑬×𝑩) = 𝑬

tu
. �𝑬
��
+ 𝒋 . 𝑬

− �
tu
. �𝑩
��

− n
tu
𝜵.(𝑬×𝑩) = v

�u
�𝑬𝟐

��
+ 𝒋 . 𝑬

0 = �
��

𝑬𝟐��$

�u
+ 𝜵. 𝒄

tu
𝑬×𝑩 + 𝒋 . 𝑬

n
tu 𝜵. n

tu 𝑬.

Conservation of charge



Implications of Maxwell’s equations

0 =
𝜕
𝑑𝑡

𝑬𝟐 + 𝐵2

8𝜋
+ 𝜵.

𝒄
4𝜋

𝑬×𝑩 + 𝒋 . 𝑬

Energy density, u             Energy flux, F Power dissipation
(Poynting vector) (per unit volume)

Conservation of energy



Electromagnetic potentials

Making use of the vector identities 
𝜵.(𝜵 x V) = 0 and 𝜵 x 𝜵𝜓 = 0
we can automatically enforce 𝜵. B = 0 by writing 
B = 𝜵 x A
and automatically enforce Faraday’s Law

0 = 𝜵×𝑬 + <
$
r𝑩
Vt

= 𝜵× 𝑬 + <
$
r𝑨
Vt

by writing 

𝑬 + <
$
r𝑨
Vt

= −𝜵𝜙



Gauge transformation

When we write

B = 𝜵 x A 𝑬 + <
$
r𝑨
Vt

= −𝜵𝜙
We have some flexibility in choosing A and 𝜙
In particular, because 𝜵 x 𝜵𝜓 = 0,
we can add the gradient of any scalar function 𝜓 to A, 
provided we also subtract (1/c)d𝜓/dt from 𝜙

This “gauge transformation” leaves E and B unchanged
A → A + 𝜵𝜓
𝜙 → 𝜙 − (1/c)𝜕𝜓/𝜕𝑡



Lecture 8
EM waves and polarization

Goals: understand

Maxwell’s equations in the Lorentz gauge
Polarization: astrophysical context

READING: R&L 2.4



Lorentz gauge

For a suitable choice of 𝜓(x,t), we can always arrange 
things so that 𝜵. 𝑨 = −(1/c)𝜕𝜙/𝜕𝑡

This is called the Lorentz gauge

With this choice, the two remaining Maxwell’s equations 
become 

𝜵2𝜙 − <
$/

r/v
r/t

= −4𝜋𝜌 Gauss’s Law

𝜵2𝑨 − <
$/

r/𝑨
r/t

= −4𝜋𝒋/c Ampere’s Law



Wave solution

𝜵2𝜙 − <
$/

r/v
r/t

= −4𝜋𝜌 Gauss’ Law

𝜵2𝑨 − <
$/

r/𝑨
r/t

= −4𝜋𝒋/c Ampere’s Law

In a vacuum, 𝜌 = 0 and 𝒋 = 0 and the solution is 
𝜙 = 𝜙w𝑒x(𝒌.𝒙?&$t)

𝑨 = 𝑨𝟎𝑒x(𝒌.𝒙?&$t)

As usual, 𝜙w and 𝑨𝟎 are complex, with the argument 
representing phase, and we take the real part of the RHS



Wave solution: relation between 𝑨𝟎 and 𝜙)

𝜙 = 𝜙w𝑒x(𝒌.𝒙?&$t)

𝑨 = 𝑨𝟎𝑒x(𝒌.𝒙?&$t)

This solution is premised on the Lorentz Gauge, which 
relates 𝑨𝟎 to 𝜙w

𝜵. 𝑨 = −(1/c)𝜕𝜙/𝜕𝑡è ik. 𝑨𝟎 =−(1/c)(−𝑖𝑘𝑐𝜙w)
𝜙w= G𝒌 . 𝑨𝟎 is the projection of 𝑨𝟎 onto the direction of 
propagation



Wave solution: E and B fields

𝑨 = 𝑨𝟎𝑒x(𝒌.𝒙?&$t)

è 𝑩 = 𝜵×𝑨 = (𝑖𝑨𝟎× 𝒌) 𝑒x(𝒌.𝒙?&$t)

𝜙 = 𝜙w𝑒x(𝒌.𝒙?&$t)

è 𝑬 = −𝜵𝜙 − <
$
r𝑨
Vt
= (−𝑖𝒌𝜙w + 𝑖𝑘𝑨𝟎) 𝑒x(𝒌.𝒙?&$t)

Note that 𝑬 × G𝒌 = (0 + 𝑖𝑘𝑨𝟎 ×G𝒌) 𝑒x(𝒌.𝒙?&$t) = 𝑩

è B and E are mutually perpendicular and 
vary in phase

𝑩𝟎 𝑬𝟎



Wave solution: E and B fields

Waves are transverse
𝑩𝟎. 𝒌 = 𝑖𝑨𝟎 × 𝒌 . 𝒌 = 0
𝑬𝟎. 𝒌 = 𝑖(𝑨𝟎. i𝒌 − 𝜙�) 𝑘2 = 0

Thus, 𝑩 = 𝑬 × i𝒌 has the same magnitude as 𝑬

The flux is 𝑺 = 𝒄
tu𝑬×𝑩=	

𝒄
tu
E(t)B(t) i𝒌 = 𝒄

tu
E2(t)	i𝒌 = 𝒄

tu
B2(t)	i𝒌

Averaged over one cycle, we get

𝑺 = 𝒄
�u𝑬𝟎. 𝑬𝟎

∗ i𝒌 = 𝒄
�u𝑩𝟎. 𝑩𝟎

∗ i𝒌



Spectral analysis

Let’s now consider the Fourier transform of E(t), 
computed over some period T
JE'(𝜔) =

<
"{ ∫w

' 𝑒x|t 𝐸 𝑡 𝑑𝑡 (complex)

Parseval’s theorem tells us that
o
�

s
𝐸2 𝑡 𝑑𝑡 = 4πo

�

¡
rEs(𝜔) 2𝑑𝜔

But ∫w
' 𝐸2 𝑡 𝑑𝑡 = :;'

$
𝑺 T , so the average (frequency-

integrated) flux over this period is 

𝑺 T =
$
' ∫w

} JE'(𝜔) 2𝑑𝜔



Spectral analysis

𝑆 T =
$
' ∫w

} JE'(𝜔) 2𝑑𝜔

is an expression for the total flux 

𝐹 = ∫w
}𝐹> 𝑑𝜐 = ∫w

}(𝐹>/2𝜋) 𝑑𝜔

Hence, we may equate the integrands in these two 
equations and obtain

𝐹> = ";$
'

JE'(𝜔) 2



Polarization: astrophysical context

Polarization provides key astrophysical information 

Examples: 

Scattered radiation and the “unified AGN model”
Probing µG magnetic fields with

Polarized synchrotron radiation
Polarized dust emission
Starlight transmitted through the ISM
Faraday rotation within a magnetized plasma



Polarization: unified AGN model

Key supporting evidence

If you look at the polarized 
component of the light 
emitted by Seyfert 2 galaxy, it 
is more similar to that of a 
Seyfert 1 galaxy

Polarization is imparted by 
scattering off gas and dust

(Opposite example: seeing 
fish in a lake when wearing 
polarizing sunglasses)



Polarization as a probe of magnetic fields, 
which show large scale Galactic structure

Polarized emission from cosmic-rays in our Galaxy as measured by Planck at 30 GHz

Charged particles orbit magnetic field lines and emit radiation with with its E-field 
perpendicular to the interstellar B-field

Swirls show B-field direction  (Line integral convolution map*) 30 GHz synchrotron radiation
*Invented by Cabral and Leedom

Look at Wikipedia article



Polarization as a probe of magnetic fields, 
which show large scale Galactic structure

Polarized emission from dust grains in our Galaxy as measured by Planck at 353 GHz

Grains are elongated and preferentially aligned perpendicular to the interstellar B-field

è they emit thermal radiation with its E-field perpendicular to the IS B-field

353 GHz dust emissionSwirls show B-field direction  (Line integral convolution map*)

*Invented by Cabral and Leedom
Look at Wikipedia article



…. and as probe of magnetic fields 
in individual interstellar gas clouds 

And a probe of magnetic fields in interstellar 
gas clouds 

Smaller scale maps 
from Soler+ 2016

Black lines show the
directions of the 
B-field inferred from 
the IR polarization 
of background stars.

In this case, IR 
radiation with the 
electric field 
perpendicular to the 
interstellar B-field 
direction is 
preferentially
absorbed



Faraday rotation

And a probe of magnetic fields in interstellar 
gas clouds 

B-fields along our 
line of sight causes 
“Faraday rotation”

All-sky map from Oppermann+ 2012

As polarized radiation propagates through a 
magnetized plasma, the polarization direction 
is rotated through an angle proportional to 
𝜆( ∫𝐵∥𝑛# 𝑑𝑠



Lecture 9
Polarization

Goals: understand

Stokes parameters

READING: R&L 2.4



Polarization of a monochromatic wave

The electric field is written 𝑬 = 𝑬𝟎𝑒x(𝒌.𝒙?&$t)

with the understanding that this really means
𝑬 = Re{𝑬𝟎𝑒x(𝒌.𝒙?&$t)}

𝑬𝟎 is a complex vector, which is perpendicular to the 
propagation direction, G𝒌.  Let’s orient the z-axis along the 
propagation direction, so 𝑬𝟎 is in the xy-plane
𝑬𝟎 = V𝒙𝐸w~ + V𝒚𝐸w� , where 𝐸w~ and 𝐸w� are complex

Note we never need to treat the B field separately, since
𝑩 = 𝑬 × G𝒌 has the same magnitude and phase



Polarization of a monochromatic wave

We can write the complex numbers 𝐸w~ and 𝐸w� as follows 

𝐸w~ = ℇ~𝑒xv= 𝐸w�= ℇ�𝑒xv> with ℇ~, ℇ� , 𝜙~ , 𝜙� ∈ ℜ

At z = 0, we then get 

𝑬 = V𝒙 ℇ~ cos(𝜔𝑡 −𝜙~) + V𝒚 ℇ� cos(𝜔𝑡 − 𝜙�) 



Polarization of a monochromatic plane wave

Case 1: 𝐸#//𝐸#> is real  

è 𝜙/= 𝜙> = 𝜙
è The x and y components of E vary in phase

è 𝑬 = (�𝒙 ℇ/ + �𝒚 ℇ> ) cos(𝜔𝑡 − 𝜙)

è Linearly polarized radiation

Case 2: 𝐸#//𝐸#> is ±𝑖

è 𝜙/ = 𝜙> ±
8
- and ℇ/ = ℇ> = ℇ

èThe x and y components are 900 out of phase

è𝐸 = ℇ�𝒙 cos(𝜔𝑡 − 𝜙/) ± ℇ�𝒚 sin(𝜔𝑡 − 𝜙/)
è Circularly polarized radiation

x

y
ℇ%

SHM along
the dashed line

ℇ&

x

y

Radius = ℇ

Rotation at angular
speed ±𝜔

𝜔

E

E



Polarization of a monochromatic plane wave

Case 3: 𝐸#//𝐸#> is complex (or imaginary but ≠ ±𝑖)
è 𝜙/= 𝜙> − ∆𝜙
èThe E-field rotates around an ellipse

è Elliptically polarized radiation

Most generally, the polarization of a monochromatic wave is characterized by 
three parameters: ∆𝜙, ℇ/ , ℇ>

This makes sense, because three parameters are needed to describe an ellipse: 
semi-major axis, axial ratio, and orientation

x

y

E



Stokes parameters

We define the Stokes parameters as follows
𝐼 ≡ 𝐸#/ 𝐸#/∗ + 𝐸#> 𝐸#>∗ = ℇ/- + ℇ>-

𝑄 ≡ 𝐸#/ 𝐸#/∗ − 𝐸#> 𝐸#>∗ = ℇ/- − ℇ>-

𝑈 ≡ 𝐸#/ 𝐸#>∗ + 𝐸#> 𝐸#/∗ = 2ℇ/ℇ> cos Δ𝜙
𝑉 ≡ 𝑖(𝐸#> 𝐸#/∗ + 𝐸#/ 𝐸#>∗) = 2ℇ/ℇ> sin Δ𝜙
There are 4 parameters, but only 3 are needed to define an ellipse
So for this case of monochromatic radiation, there is a redundant 
information è there must be a relationship between them, and 
indeed
𝑄- + 𝑈- + 𝑉- = (ℇ/- − ℇ>-)-+ 4ℇ/-ℇ>- cos2Δ𝜙 + 4ℇ/-ℇ>- sin2Δ𝜙

= (ℇ/- + ℇ>-)-= 𝐼-

As we’ll see, this relationship need not apply when we superpose 
waves at slightly different frequencies or take a time average when 
the Stokes parameters are varying



Stokes parameters: meaning

𝐼 ≡ 𝐸#/ 𝐸#/∗ + 𝐸#> 𝐸#>∗ = ℇ/- + ℇ>-

𝑄 ≡ 𝐸#/ 𝐸#/∗ − 𝐸#> 𝐸#>∗ = ℇ/- − ℇ>-

𝑈 ≡ 𝐸#/ 𝐸#>∗ + 𝐸#> 𝐸#/∗ = 2ℇ/ℇ> cos Δ𝜙
𝑉 ≡ 𝑖(𝐸#> 𝐸#/∗ + 𝐸#/ 𝐸#>∗) = 2ℇ/ℇ> sin Δ𝜙

𝐼 = �u
n 𝑆 is proportional to the total flux

𝑉 ∝ sin Δ𝜙 is called the “circularity parameter”
𝑉 = 0 for linear polarized radiation
𝑉 = ± 𝐼 for circularly polarized radiation
𝑉/𝐼 determines the axial ratio

U and Q determine the orientation of the ellipse



Partially-polarized radiation

So far, we have considered radiation in which the polarization state is unchanging 
and the Stokes parameters are constant.  

For simplicity, let’s assume the flux is constant but the polarization state changes 
on some timescale ∆𝑡 that is much smaller than the observation period, T, but 
larger than the period of oscillation, 2𝜋/𝜔.

We will observe time averaged values of the Stokes parameters, 
𝐼 *, 𝑄 *, 𝑈 *, and 𝑉 *

For constant I , 𝐼 *
- = 𝐼- *

But for the parameters that vary, we have
𝑈 *

- ≤ 𝑈- *, 𝑄 *
- ≤ 𝑄- *, 𝑉 *

- ≤ 𝑉- *

Hence, 𝐼 *
- ≥ 𝑈 *

-+ 𝑄 *
-+ 𝑉 *

-



Partially-polarized radiation

We can also think of this graphically by drawing 3D-vectors to represent (U,	Q,,	V)

So long as U,	Q,,	and	V		are constant, I	=	 𝑈- + 𝑄- + 𝑉- is the length of such a 
vector

Suppose we have two such vectors, p1 and p2 representing the Stokes parameters 
during two equal time periods.  

The time-averaged I		is	½(|p1| +|p2|)
The time averaged (U,Q,V)	is simply ½(p1 + p2), and thus the time-averaged 
quantity 𝑄 - + 𝑈 - + 𝑉 - is ½|p1 + p2|

The triangle inequality, |p1 + p2| ≤ |p1| +|p2|, tells us 𝑄 - + 𝑈 - + 𝑉 - ≤ 𝐼
The same argument applies to the superposition of two monochromatic waves of 
similar frequency but different polarization state

p1
p2

p1 + p2



Fractional polarization, 𝛱

We define the fractional polarization, 𝛱, as follows

𝛱 ≡
𝑈p + 𝑄p + 𝑉p

𝐼

If the polarization state is constant, 𝛱 = 1
If the polarization state varies completely randomly, 𝛱 = 0

In general, 𝛱 can lie anywhere between 0 and 1



Lecture 10
Retarded and Lienard-Weichart Potentials

Goals: understand

The retarded potentials
The L-W potentials for a point charge
Potentials for a collection of charges
Potential for a collection of charges
The wave zone

READING: R&L 3.1, 3.2



Solution to Maxwell’s equation with charges and currents

We wish to solve Maxwell’s equations for non-zero 𝜌 and 𝒋

Let’s focus first on the equation for 𝜙
To solve this inhomogenous equation, we first determine the Green’s function 
i.e. the solution for the case of a delta function at location 𝒙@

𝜵2𝜙 −
1
𝑐#
𝜕#𝜙
𝜕#𝑡

= −4𝜋𝑄(𝑡)𝛿(𝒙 − 𝒙@)

The solution must be a spherical wave centered on 𝒙@

𝜙(𝒙, 𝑡) = $
A
𝑓(𝑡 − 𝑅/𝑐), where 𝑅 = 𝒙 − 𝒙@

Check: 𝜵2𝜙 = $
A"

B
BA

𝑅# BC
BA

= $
A"

B
BA

𝑅# − D
A"
− D@

AE
= $

A"
D@
E
− D&

E
+ AD@@

E"
= $

E"
B"C
B"F

𝜵2 − +
X"

Y"

Y"Z
𝜙
𝑨 = −4𝜋

𝜌
𝒋/𝑐



Solution to Maxwell’s equation with charges and currents

𝜙(𝒙, 𝑡) = 0
B
𝑓(𝑡 − 𝑅/𝑐)

But how do we determine 𝑓?

Consider the limit of small 𝑅.  Then the spatial derivatives dominate those with 
respect to time, and the equation becomes 𝜵2𝜙 = −4𝜋𝑄(𝑡)𝛿(𝒙 − 𝒙C)

But we know the solution to that from electrostatics: 𝜙 = D(F)
B

lim
B→#

1
𝑅
𝑓(𝑡 − 𝑅/𝑐) =

𝑄(𝑡)
𝑅

⟹ 𝑓 = 𝑄

The exact solution for all 𝑅 is therefore 𝜙(𝒙, 𝑡) = 0
B
𝑄(𝑡 − 𝑅/𝑐) = 0

B
𝑄(𝑡IJF)

where the “retarded time” 𝑡IJF ≡ 𝑡 − 𝑅/𝑐



Solution to Maxwell’s equation with charges and currents

Because Maxwells’ equations are linear, this implies that the general solution is 

𝜙(𝒙, 𝑡) = 3
𝜌 𝒙C, 𝑡 − 𝒙 − 𝒙C /𝒄

𝒙 − 𝒙C 𝑑𝑉′

𝜙(𝒙, 𝑡) = 3
𝜌

𝒙 − 𝒙C
𝑑𝑉′

where indicates a retarded value (evaluated at the 𝑡IJF appropriate to each 
location in 𝑉′)

An identical argument yields 

𝑨(𝒙, 𝑡) =
1
𝑐
3

𝒋
𝒙 − 𝒙C

𝑑𝑉′

These are called the retarded potentials



Solution to Maxwell’s equation with charges and currents

𝜙(𝒙, 𝑡) = 3
𝜌

𝒙 − 𝒙C 𝑑𝑉′

𝑨(𝒙, 𝑡) =
1
𝑐
3

𝒋
𝒙 − 𝒙C

𝑑𝑉′

Interpretation: there is a time lag in the propagation of information about 𝜌 and 𝒋
The information only propagates at the speed of light

Note: the equations allow a solution where 𝜌 and 𝒋 are to be evaluated at 

𝑡 + 𝒙 − 𝒙C /c , i.e at some future time.  [The outgoing spherical wave solution 
we adopted could be replaced by an incoming wave 0B 𝑓(𝑡 + 𝑅/𝑐)] 

But this can be rejected on the grounds of causality, because it would be 
inconsistent with the notion that charges and currents cause electric and 
magnetic fields



The potential for a moving point charge

There’s a clever trick for enforcing the retarded time within the integrals for the 
retarded potentials.  We can write

𝜙 𝒙, 𝑡 = F
𝜌 𝒙@, 𝑡GHF
𝒙′ − 𝒙

𝑑𝑉@ = F
𝜌 𝒙@, 𝑡@

𝒙′ − 𝒙
𝛿 𝑡@ − 𝑡GHF 𝑑𝑉@𝑑𝑡′

We are now ready consider the potentials associated with a moving point charge q
which is located at position 𝒙@ = 𝒓(𝑡))

For this charge, we have 𝜌 𝒙′, 𝑡 = 𝑞𝛿(𝒙′ − 𝒓(𝑡))
𝒋 𝒙′, 𝑡 = 𝑞𝒗(𝑡)𝛿(𝒙′ − 𝒓(𝑡))

where 𝒗 𝑡 = 𝒓̇(𝑡)

For the point charge, we then find

𝜙 𝒙, 𝑡 = F
𝑞𝛿(𝒙′ − 𝒓(𝑡′))

𝒙′ − 𝒙
𝛿 𝑡@ − 𝑡GHF 𝑑𝑉@𝑑𝑡′



The potential for a moving point charge

We can first perform the integration 𝑑𝑉; to obtain

𝜙 𝒙, 𝑡 = C
𝑞𝛿(𝒙′ − 𝒓(𝑡′))

𝒙′ − 𝒙
𝛿 𝑡; − 𝑡<=> 𝑑𝑉;𝑑𝑡′ = C

𝑞
𝒓(𝑡′) − 𝒙

𝛿 𝑡; − 𝑡<=> 𝑑𝑡′

=
𝑞

𝒓(𝑡<=>) − 𝒙
C𝛿 𝑡; − 𝑡 + 𝒓 𝑡; − 𝒙 /𝑐 𝑑𝑡′

=
𝑞

𝑅(𝑡<=>)
C𝛿 𝑡; − 𝑡 + 𝑅(𝑡;)/𝑐 𝑑𝑡′

where 𝑹 = 𝒓 − 𝒙 and 𝑅 = 𝑹

Subtle but very important point: this integral of a delta function is not unity:

C𝛿 𝑦 𝑑𝑥 =
∫𝛿 𝑥 𝑑𝑥

𝜅 =
1
𝜅

where

𝜅 =
𝑑𝑦
𝑑𝑥 ?@A

= 1 +
𝑅̇(𝑡;)
𝑐

>'@>()*

= 1 +
𝑅̇(𝑡<=>)
𝑐



The potential for a moving point charge

Picture:

Hence, 𝜅 = 1 + Ḃ(FBCD)
L with 𝑅̇ 𝑡IJF = −𝑣. 𝑅̈

𝜙 𝒙, 𝑡 =
𝑞

𝜅(𝑡IJF)𝑅(𝑡IJF)
=

𝑞
𝜅𝑅

𝑨 𝒙, 𝑡 =
𝑞𝒗

𝜅(𝑡IJF)𝑅(𝑡IJF)
=

𝑞𝒗
𝑐𝜅𝑅

with 𝜅 = (1 − 𝑣. 𝑅̈/𝑐)

These are called the Lienard-Weichart potentials

q

x’=r(t)x

R	=	r(t)– x

v	= 𝒓̇(t)

And, by an identical argument



Notes on the Lienard Wiechert potentials

with 𝜅 = (1 − 𝒗. c𝑹/𝑐)

1) For a stationary charge, 𝜅 = 1 and 𝑅 𝑡IJF = 𝑅 is constant

We get the familiar electrostatic result: 𝜙 = 𝑞/𝑅 𝑨 = 𝟎

2) For moving charges, there are two additional effects
i) everything is evaluated at the retarded time

ii) the factor 𝜅 ≠ 1 (unless the motion is perpendicular to 𝑅̈)
This arises because∫ 𝜌 𝑑𝑉′ ≠ ∫𝜌𝑑𝑉′ = 𝑞

3) The κ factor is extremely important for relativistic particles, where 𝑣 is close to c
and 1/κ becomes very large when 𝒗 is in the direction c𝑹 (i.e. moving towards us) 

𝑨 𝒙, 𝑡 =
𝑞

𝜅(𝑡[#Z)𝑅(𝑡[#Z)
=

𝑞𝒗
𝑐𝜅𝑅𝜙 𝒙, 𝑡 =

𝑞
𝜅(𝑡[#Z)𝑅(𝑡[#Z)

=
𝑞
𝜅𝑅



Let’s choose the origin     of our coordinate system within the charge collection of 
assumed size L.  The observer is located at position x, as always, and the charges are 
at location x’ with  x’ < L/2

The observer is said to be in the “wave zone” if x >> L and x >> l, where l is the 
characteristic wavelength of any radiation that these charges emit

In the “wave zone”, we may make two approximations because x >> L 

𝑨 𝒙, 𝑡 =
1
𝑐
3
𝒋(𝒙C, 𝑡IJF)
𝒙 − 𝒙C

𝑑𝑉C ≈
1
𝑐 𝒙

3 𝒋(𝒙C, 𝑡IJF) 𝑑𝑉C

𝑡IJF = 𝑡 − 𝑅/c ≈ 𝑡 − (𝑥 − c𝒌. 𝑥C)
Here, c𝒌 = �𝒙 is the unit vector pointing in the direction that waves would propagate 
from the source to the observer

Potential due to collection of charges: the wave zone

x’
x

x

L

R ~	x	– D𝒌. 𝒙′

Potential due to collection of non-relativistic
charges: the wave zone



Potential due to a collection of charges

Given the “wave zone” approximation,

Let’s consider the spatial derivatives of 𝑨 at the observer’s location

𝜕𝐴M
𝜕𝑥N

= −
1
𝑐𝑥-

𝜕𝑥
𝜕𝑥N

3𝑗M 𝑑𝑉C +
1
𝑐𝑥
3
𝜕𝑗M
𝜕𝑡
𝜕𝑡IJF
𝜕𝑥N

𝑑𝑉C

We can also determine that 

𝜕𝑥
𝜕𝑥N

=
𝜕
𝜕𝑥N

𝑥)𝑥) =
𝑥N
𝑥
= c𝑘N

and
𝜕𝑡IJF
𝜕𝑥N

=
𝜕
𝜕𝑥N

𝑡 −
1
𝑐
𝑥 − c𝒌. 𝑥C = −

1
𝑐
𝑥N
𝑥
= −

c𝑘N
𝑐

so 

𝑨 𝒙, 𝑡 =
1
𝑐𝑥
6 𝒋(𝒙\, 𝑡[#Z) 𝑑𝑉\

𝜕𝐴]
𝜕𝑥

= −
𝐴]
𝑥
+
𝟏
𝑐
𝜕𝐴]
𝜕𝑡

D𝑘



Potential due to a collection of charges

To get this equation                                                    we have so far only assumed x >> L

Note the two terms have different dependences on our distance from the source

First term is ∝ I'
A
∝ $

A"
and  B ∝ $

A"
è u ∝ $

A(

This is the standard result from electro/magnetostatics

However, the second term is ∝ I'
A)
∝ $
A#

and B ∝ $
A#

è u ∝ $
A"

Electrodynamics, with time-varying 𝐴- caused by time-varying currents (i.e. accelerating 
charges), can transport energy over large distances

In the wave zone, where x >> 2pl, the second term has a magnitude ≫ first term
$
E
BI'
BF
~ J

E
𝐴- =

$
#&"

𝐴- ≫
I'
'

Thus, we find  BI'
B'*

= −
K0*
E
BI'
BF

.     Similar reasoning è BC
B'*

= −
K0*
E
BC
BF

. 

𝜕𝐴]
𝜕𝑥 = −

𝐴]
𝑥 +

𝟏
𝑐
𝜕𝐴]
𝜕𝑡

D𝑘



Lecture 11
Wave zone, dipole approximation, Thomson scattering

Goals: understand

The dipole approximation
Larmor’s formula
Thomson scattering
READING: R&L 3.3, 3.4



In the wave zone, the solution is a spherical transverse wave 

=5E
=/F

= −
O)F
L
=5E
=F

è 𝑩 = 𝜵×𝑨 = −
P𝒌
L
× =𝑨

=F

=S
=/F

= −
O)F
L
=S
=F

è 𝑬 = −𝜵𝜙 − 0
L
=𝑨
=F
= 0

L
=S
=F
c𝒌 − 0

L
=𝑨
=F

But, 0
L
=S
=F
= −𝜵.𝑨 =

P𝒌
L
. =𝑨
=F

(Lorentz Gauge)

𝑬 = 0
L
=S
=F
c𝒌 − 0

L
=𝑨
=F
=

P𝒌
L
. =𝑨
=F
c𝒌 − c𝒌. c𝒌 0

L
=𝑨
=F
= =𝑨

=F
×
P𝒌
L
× c𝒌 = 𝑩× c𝒌

So, as before, 𝑬, 𝑩 and c𝒌 are mutually perpendicular and 𝐸 = 𝐵

The Poynting vector is 𝑺 = L
.8𝑬 × 𝑩 = L

.8 𝐵
- c𝒌

Fancy way of writing 1

Triple-product rule: 𝒂 × 𝒃 ×𝒄 = 𝒃 𝒂. 𝒄 − 𝒂 𝒃. 𝒄



Differential power

Let’s consider an element of area, dA, at position x
Energy passes through it at a rate dP = S dA

The solid angle subtended at the source is dW = dA/x2

So @T
@U
= 𝑆𝑥- = L

.8
𝐵- 𝑥- = L

.8
=𝑨
=F
×
P𝒌
L

-
𝑥-= VWX

!Y
.8L

=𝑨
=F

-
𝑥-

where Θ is the angle between =𝑨
=F

and c𝒌

@T
@U is called the differential power (erg s–1 sr–1) and depends on the direction c𝒌

x’

x

dA



Differential power and the dipole approximation

Given our expression for the vector potential

We find that 

For the system to radiate, we clearly need time-varying currents

A considerably simplification occurs in the size of the emission region, L, is much 
smaller than the characteristic wavelength l
In that limit, the “dipole approximation” is said to apply and phase differences across 
the source are negligible.  Thus, we can assume the same retarded time for the 
entire emission region, and write

𝑑𝑃
𝑑Ω

=
sin2Θ
4𝜋𝑐3

𝜕
𝜕𝑡
3 𝒋(𝒙C) 𝑑𝑉C

-

𝐴(𝒙, 𝑡) =
1
𝑐 𝒙

6 𝒋(𝒙\, 𝑡[#Z) 𝑑𝑉\

𝑑𝑃
𝑑Ω

=
sin2Θ
4𝜋𝑐3

𝜕𝑨
𝜕𝑡

(

=
sin2Θ
4𝜋𝑐3

𝜕
𝜕𝑡
6 𝒋(𝒙\, 𝑡[#Z) 𝑑𝑉\

(



Dipole approximation

Suppose we have a collection of N charges, with individual charges qi
located at positions 𝒙¹(t), where 𝑖 ranges from 1 to N

In that case,  𝒋 𝒙º = ∑v» 𝑞¹ 𝒗¹ 𝛿(𝒙¹ − 𝒙′) where 𝒗¹= ̇𝒙¹

Hence, ∫ 𝒋(𝒙º) 𝑑𝑉º = ∑v» 𝑞¹ ̇𝒙¹

and thus

Defining the dipole moment

We obtain   �¼�½ =
�̈ 4¿ÀÁ$Â
tun% or �¼

�½=
𝒅̈ ×D𝒌 4

tun%

𝑑𝑃
𝑑Ω =

sin2Θ
4𝜋𝑐3

𝜕𝑨
𝜕𝑡

(

=
sin2Θ
4𝜋𝑐3

𝜕
𝜕𝑡
6 𝒋(𝒙\) 𝑑𝑉\

(

=
sin2Θ
4𝜋𝑐3 b

+

_

𝑞] ̈𝒙]

(

𝒅 =b
+

_

𝑞] 𝒙]



Dipole approximation

�¼
�½ =

�̈ 4¿ÀÁ$Â
tun% or �¼

�½=
𝒅̈ ×D𝒌 4

tun%

Integrating over solid angle, we obtain Larmor’s formula for the total power

𝑃 = ∫ @̈ +VWX!Y
.8L"

𝑑Ω = @̈ +

.8L" ∫%0
0 2𝜋(1 − 𝜇2) 𝑑𝜇 = - @̈ +

+L"

Comment about the various approximations

1) In the wave zone approximation, we assume x >> L and x >> l
but make no assumption about the relative magnitudes of L and l

2) In the dipole approximation, we also assume L << l
This is generally a good approximation for light atoms/molecules, which have typical 
size L ~ a0 (Bohr radius) and electronic transitions with l~ hc/DE ~ hca0 /Ze2

Hence L/l~ Ze2/hc ~ Z/137



k

z

x

E

Q

e

Thomson scattering

We are now ready to consider the scattering of radiation by an 
electron (or other point charge)

We suppose a polarized EM wave is incident along the z-axis, 
causing the electron to move in simple harmonic motion along 
the x-axis



Thomson scattering: scattered power

If 𝑬 = �𝒙 ℇÇ cos𝜔𝑡

then 𝑭 = 𝑞 𝑬 + 𝒗
n × 𝑩 ~ �𝒙 𝑞 ℇÇ cos𝜔𝑡

and 𝒙̈ = �𝒙 È
É ℇÇ cos𝜔𝑡

Hence 𝒅̈ = 𝑞𝒙̈ = �𝒙 È$

É ℇÇcos𝜔𝑡

The power this electron radiates by virtue of its acceleration is

𝑃 = p �̈ 4

Ên% =
pÈO

ÊÉ$n% ℇÇ
2cos2𝜔𝑡 = �uÈO

ÊÉ$nO
n
tu ℇÇ

2cos2𝜔𝑡

typically << 1

incident flux, S



Thomson scattering: total cross-section

𝑃 = µ;¶%

·¸#$%
𝑆

The power radiated represents scattering, and thus the 
scattering cross-section for an electron is

𝜎𝑇 =
8𝜋𝑒4

3𝑚𝑒2𝑐4
=
8𝜋
3

𝑒2

𝑚𝑒𝑐2
p
=
8𝜋𝑟02

3
= 6.65 ×10lpwcmp

𝜎𝑇 is called the Thomson cross-section and 𝑟0 = 2.82 x 10–13 cm 
is the “classical radius” of the electron

Protons also scatter radiation, but the cross-section is a factor 
(mp/me)2 = 18372 smaller

Note that 𝜎𝑇 is independent of n (although this classical 
treatment breaks down for hn greater than ~ 𝑚𝑒𝑐2)



Thomson scattering: angular distribution

k

z

x

E

Q

e

�¼
�½=

𝒅̈ ×D𝒌 4

tun% , so the angular distribution has a sin2Q dependence

Very important point: the relevant angle is with the x-axis 
(polarization direction) not the z-axis (incoming wave direction)



Thomson scattering: differential cross-section

We may write the differential power of the scattered radiation

�¼
�½=

𝒅̈ 4

tun% sin2Q = ËO

É=
$nO

n
tu ℇÇ

2cos2𝜔𝑡 sin2Q =𝑺𝑟�p sin2Q

terms of a differential cross-section

𝑑𝑃
𝑑Ω

=
𝑑𝜎
𝑑Ω

𝑆

with ��
�½ = 𝑟�psin2Q



Thomson scattering: angular distribution

D𝒌

𝑧

𝑥 𝑬

𝒅̈

Notes on the scattering of linearly-polarized radiation

1) The scattered radiation has a forward-backwards symmetry 
because sin2Q = sin2 (–Q)

2) The scattered radiation is polarized with the E field in the       
xz plane

𝑬

Incoming linearly polarized
wave

Power pattern
Rotational symmetry about x



Thomson scattering: unpolarized radiation

D𝒌

𝑧

𝑥 𝑬

𝒅̈

So far, we have consider scattering of linearly-polarized radiation

With unpolarized radiation, the dipole moment has a y-component 
(in-and-out of the plane of the “paper”)

We now have 𝑑̈NO = 𝑑̈PO = Q
O
𝒅̈O by symmetry because x and y

are equivalent

𝑬

Incoming unpolarized
wave



Thomson scattering: unpolarized radiation

D𝒌

𝑧

𝑥 𝑬

𝒅̈

The (time-averaged) differential power emitted is now
�¼
�½

= �̈L4

tun%
sin2Q + 

�̈M4

tun%
sin2 u

p
= 𝒅̈4

tun%
v
p

sin2Q + v
p

and the differential scattering cross-section is 
��
�½ =

v
p 𝑟�

p(1 + sin2Q)

𝑬

Incoming unpolarized
wave



Thomson scattering: unpolarized radiation

D𝒌

𝑧

𝑥 𝑬

𝒅̈

Subtle point: the x axis is no longer a special axis.  Any 
rotational symmetry has to exist about the z-axis.
The relevant angle is therefore q, not Q 
(i.e. the angle to the z axis)

Thus, ���½ =
v
p 𝑟�

p(1 + cos2q)

𝑬

Incoming unpolarized
wave

Q

q



Thomson scattering: unpolarized radiation

The total scattering cross-section is the same as for polarized 
radiation, 

𝜎 =
1
2
𝑟#-3(1 + cos2𝜃)𝑑Ω =

1
2
𝑟#-3

%0

0
2𝜋(1 + 𝜇-) 𝑑𝜇 =

8𝜋𝑟#-

3
= 𝜎*

As we shall see, the scattered radiation can be partially-
polarized, even when the incoming radiation is unpolarized



Lecture 12
Thomson scattering, charge in a harmonic potential

Goals: understand

Finish up Thomson scattering of unpolarized radiation
Scattering by a charge in a harmonic potential
Begin review of Special Relativity



D𝒌

𝑧

𝑥 𝑬

𝒅̈

Define the      axis as being rotated at angle q, so it remains perpendicular to the y 
axis while also being perpendicular to 𝑘̈

The time averaged value of ℰ/P
- is reduced by a factor cos2q relative to the average 

value of ℰ>P
-

è The scattered radiation has [6D
[%D

=
ℰQP

+

ℰRP
+ = cos-q

è The degree of polarization Π = D
[
= 0%]^V+_

06 ]^V+_
is zero for q = 0 and 1 for q = p/2 

𝑬

Incoming unpolarized
wave

Q

q

𝑥′

𝑥C

Thomson scattering: unpolarized radiation



So far, we have considered the motion of a free electron upon which an EM wave is 
incident

Suppose the electron is bound in a harmonic potential (relevant to the case of 
atoms and molecules) and has a natural angular frequency of oscillation 𝜔#

Equation of motion: 𝑚𝑥̈ + 𝑚𝜔#-𝑥 + damping term = 𝑞𝐸/

The damping term is small but represents the energy loss due to radiation.  We can 
usually treat this as a perturbation.

Let’s consider first an undriven oscillator (𝐸/ = 0) without damping

𝑚𝑥̈ + 𝑚𝜔#-𝑥 = 0 è 𝑥 = 𝑥#𝑒M`SF

where 𝑥# is the complex amplitude of the oscillator

Radiation from a harmonic oscillator



𝑥 = 𝑥#𝑒M`SF è dipole moment, 𝑑 = 𝑞𝑥#𝑒M`SF

And thus 𝑑̈ = −𝑞𝜔#2𝑥#𝑒M`SF (sinusoidal oscillation with amplitude 𝑥# )

è 𝑑̈2 = 0
-
𝑞2𝜔#4 𝑥# -

Mean power radiated 𝑃 = - @̈!

+L"
= a!`S# /S !

+L"

The particle energy, E,  is the maximum value of 0-𝑚𝑥̇
2 , which is 0-𝑚𝜔#

2 𝑥# 2

Hence,  @b@F = − a!`S# /S !

+L" = − -`S!a!

+cL" 𝐸 =
b
d$%&

where the energy loss timescale 𝜏𝑟𝑎d ≡
+cL"

-`S!a!
= +L
I' `S

!

Radiation from a harmonic oscillator

cos2𝜔'𝑡



Key point:

𝜏𝑟𝑎d ≡ − +cL"

-`S!a!
= +L
-I' `S

!

𝜔#𝜏𝑟𝑎d =
+L

-I' `S
= +e'

.8I'
≫ 1 unless we are considering high-energy gamma-rays

è Fraction of energy lost per oscillation period is << 1

Can treat radiation as a perturbation

Energy decreases as 𝑒%F/d$%( , so amplitude decreases as 𝑒%F/ -d$%(

In other words, 𝑥 = 𝑥#𝑒%fF/- 𝑒M`SF

where the “damping constant,” Γ = 1/𝜏𝑟𝑎d

Radiation from a harmonic oscillator: energy loss



As you probably remember from a sophomore course on waves, 

𝑥 = 𝑥#𝑒%fF/- 𝑒M`SF is the solution to the equation of motion for the (undriven) 
damped harmonic oscillator

𝑚(𝑥̈ + Γ𝑥̇ + 𝜔#-𝑥) = 0

Note: It is shown in R&L 3.4 that the effect of radiation is to yield a reaction force 
that is proportional to 𝑥̇ , the third time derivative of position.  
This in only true in an average sense anyway, and since the damping term is a small 
perturbation, we have 𝑥̇ = −𝜔#-𝑥̇

So 𝑚(𝑥̈ + Γ𝑥̇ + 𝜔#-𝑥) = 0 is a very good approximation that is easy to work with

Equation of motion for a damped harmonic oscillator

…

…



We may now compute what happens when an EM wave is incident on the bound 
electron.  We just add a ”driving term” on the right-hand-side

𝑥̈ + 𝛤𝑥̇ + 𝜔#-𝑥 =
𝐹
𝑚
= −

𝑒
𝑚
𝐸𝑜𝑥 𝑒%M`F

Here 𝜔 is the angular frequency of the incident wave, which (in general) differs from 
the natural frequency of oscillation 𝜔#

The solution is 𝑥 = 𝑥#𝑒%M`F + (the	decaying	solution	we	obtained	before)

Here, 𝐸𝑜𝑥 and 𝑥# are complex as before, and the actual E field and displacement are 
given by the real parts of 𝐸𝑜𝑥 𝑒%M`F and 𝑥#𝑒%M`F

i.e. 𝐸𝑥 = 𝐸𝑜𝑥 cos (𝜔𝑡 − 𝛿b) and 𝑥 = 𝑥𝑜 cos (𝜔𝑡 − 𝛿/)

Equation of motion for a damped harmonic oscillator

…



Substituting 𝑥 = 𝑥#𝑒%M`F into the equation of motion, we get

−𝜔2𝑥# − 𝑖𝛤𝜔𝑥# + 𝜔#-𝑥# 𝑒%M`F = −
𝑒𝐸𝑜𝑥
𝑚

𝑒%M`F

⇒ 𝑥# =
𝑒𝐸𝑜𝑥
𝑚

1
𝜔#- − 𝜔2 − 𝑖𝛤𝜔

⇒ 𝑥# 2 =
𝑒2 𝐸𝑜𝑥 2

𝑚2

1
𝜔#- − 𝜔2 2 + 𝛤2𝜔2

and

𝛿/ = 𝛿b − tan%0
𝛤𝜔

𝜔2 − 𝜔#-

In resonance 𝜔 = 𝜔0 , there’s a 8
-

phase difference between force and position

(è force in phase with velocity, maximizing the energy input to the system)

Equation of motion for a damped harmonic oscillator



We can now use the Larmor formula, as before, to determine the frequency 
dependence of the cross-section.  The time-averaged power radiated is

using 𝑥̈ = −𝜔- 𝑥0 𝑒%M`F

Substituting for 𝑥0 2 from the previous slide, we find

and dividing finally by 𝑆 = L
g8

𝐸𝑜𝑥 2 we obtain the scattering cross-section

𝜎 =
𝑃
𝑆 =

8𝜋𝑒4

3𝑚2𝑐2
𝜔.

𝜔#- − 𝜔2 2 + 𝛤2𝜔2
= 𝜎𝑇𝜔.

𝜔#- − 𝜔2 2 + 𝛤2𝜔2

Scattering cross-section for a damped harmonic oscillator

𝑃 = p �̈ $

Ên%
= p ËÇ̈ $

Ên%
= Ë$ ÇA $ÍN

Ên%

𝑃 =
𝑒2 𝑥0 2𝜔t

3𝑐3
=

𝑒4 𝐸𝑜𝑥 2

3𝑐3𝑚2

𝜔t

𝜔�p −𝜔2 2+ 𝛤2𝜔2



𝜎 =
𝜎𝑇𝜔.

𝜔#- − 𝜔2 2 + 𝛤2𝜔2 =
𝜎𝑇𝜔.

𝜔 − 𝜔# 2 𝜔 + 𝜔# 2 + 𝛤2𝜔2

1) High frequency limit (𝜔 >> 𝜔#): 𝜎~ 𝜎𝑇
Same behavior as the unbound particle because the restoring force is negligible

2) Low-frequency limit (𝜔 << 𝜔#): 𝜎~ `T

`ST
𝜎𝑇 ~

0
eT

“Rayleigh scattering”

3) Near resonance (𝜔 ~ 𝜔#): 𝜎~
h)`ST

.`S+ `%`S !6i!`S!

As you are asked to demonstrate in the next homework

𝜎(𝜔#) = 𝑐1𝜆#- and ∫𝜎 𝜈 𝑑𝜈 = 𝑐2
J!

cL
where 𝑐1 and 𝑐2 are constants (involving

integers and p)

Frequency dependence



Review of SR: goals of the discussion

Our discussion of SR is motivated by the fact that relativistic 
charged particles are widespread in the Universe.  

They are inevitably involved in two of the three emission 
processes we’ll consider: synchrotron radiation and inverse 
Compton radiation.

So we’ll need to understand

1) How the differential power dP/dW transforms as we go 
from one inertial reference frame to another
2) The dynamics of relativistic particles in a magnetic field



The fundamental postulates of SR

These are usually expressed as
1) The laws of physics are the same in any inertial reference frame 

(IRF)
2) The speed of light is the same in any inertial reference frame
The fundamental object in SR is the “event,” which occurs at a particular 
spatial position 𝑥, 𝑦, 𝑧 and at a particular time, 𝑡.
If we take two events, the emission and reception of a radio signal, the 
second postulate implies that 

𝑐OΔ𝑡O −(Δ𝑥O + Δ𝑦O + Δ𝑧O) = 𝑐OΔ𝑡TO −(Δ𝑥TO + Δ𝑦TO + Δ𝑧′O)

where 𝑥, 𝑦, 𝑧, 𝑡 are the values measured in one IRF (call it S) and 
and 𝑥′, 𝑦′, 𝑧′, 𝑡′ are those measured in another (S’)



Four-vectors

Apart from the – sign, the “invariant” quantity  𝑐-Δ𝑡- −(Δ𝑥- + Δ𝑦- + Δ𝑧-)
looks a lot like the square of the length of a 4-D vector

The location of an event in spacetime may be expressed in two ways using the 
4-vectors 

𝑥U =

𝑐𝑡
𝑥
𝑦
𝑧

or 𝑥U =

−𝑐𝑡
𝑥
𝑦
𝑧

Here, 𝜇 can take 4 values, conventionally 0, 1, 2, 3

and 𝑐OΔ𝑡O −(Δ𝑥O + Δ𝑦O + Δ𝑧O) may be written Δ𝑥UΔ𝑥U

using the summation convention.  To obey Lorentz invariance, we only 
ever sum over one subscripted index and one superscripted



Lecture 13
Special relativity

Goals: review SR

4-vectors
Aberration and Doppler shift
Differential power received from a relativistic source
Relativistic beaming



Four-vectors

𝑥j =

𝑐𝑡
𝑥
𝑦
𝑧

or 𝑥j =

−𝑐𝑡
𝑥
𝑦
𝑧

In this notation, a superscripted Greek letter index indicates a 
contravariant 4-vector, the meaning of which will be explained later, while 
a subscripted index indicates a covariant 4-vector
The contravariant and covariant forms differ only in the sign of the 0th

element

𝑥U =

−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

𝑐𝑡
𝑥
𝑦
𝑧

= 𝜂UV 𝑥V (“lowering the index”)

where 𝜂O! is the Minkowski metric

The inverse transformation is 𝑥, = 𝜂j' 𝑥j (“raising the index”)



Invariance: 3-vectors

We are familiar with the invariant properties of 3-vectors when we 
rotate the coordinate system

Angles and lengths are preserved under rotations, and therefore dot 
products are invariant

If 𝒂º = 𝑹 𝒂 =
cos 𝜃 sin 𝜃 0
−sin 𝜃 cos 𝜃 0
0 0 1

𝑎Ç
𝑎Î
𝑎�

(and 𝒃º = 𝑹 𝒃)

(rotation about z axis through angle 𝜃)

then 𝒂C. 𝒃C = 𝒂C𝒙 𝒃C𝒙 + 𝒂′𝒚 𝒃′𝒚+ 𝒂′𝒛 𝒃′𝒛 = 𝒂𝒙 𝒃𝒙 + 𝒂𝒚 𝒃𝒚 + 𝒂𝒛 𝒃𝒛 = 𝒂. 𝒃

and 𝒂′ = 𝒂º. 𝒂º = 𝒂 . 𝒂 = 𝒂



Invariance: 3-vectors

The invariance of 𝒂. 𝒃 under rotation is linked to a mathematical 
property of 𝑹. In the summation convention
𝒂º. 𝒃º = 𝑎′¹ 𝑏′¹ = 𝑅¹|𝑅¹r𝑎|𝑏r

The right hand side is equal to 𝑎|𝑏| because 𝑅¹| 𝑅¹r = 𝛿|r
where 𝛿N) is the “Kronecker delta” (equals 1 when 𝑗 = 𝑘 and 0 otherwise)

In matrix notation, this is saying 𝑹𝑹𝑻 = 𝑰

(𝑅 is said to be orthogonal: the transpose of 𝑅 is equal to the inverse)



Invariance: 4-vectors

In SR, the analog of rotation is a “velocity boost” from one frame to 
another.  The rotation matrix, R, is replaced by the Lorentz 
transformation, so 𝑥′Ð = Λ m

Ð 𝑥m

with                                                          representing a velocity boost 𝛽𝑐
along the x-axis

and where 𝛾 = v
vlÑ4

Now, Δ𝑥′ÐΔ𝑥′Ð = Λ m
Ð Δ𝑥m𝜂ÐÒΛ Ó

Ò 𝜂Ó�Δ𝑥� = Δ𝑥Ð Δ𝑥Ð

because Λ m
Ð 𝜂ÐÒ Λ Ó

Ò = 𝜂ÓÒ or equivalently 𝜦𝑻𝜼 𝜦 = 𝜼

Λ ,
j =



4-vectors

More generally, a 4-vector is any vector that transforms in accord with 
the Lorentz transformation, 𝑉′Ð = Λ m

Ð 𝑉m

And the scalar product of any two 4-vectors, 𝑉Ð𝑊Ð, is a Lorentz-
invariant scalar.  The postulates of SR then imply that the equations of 
physics can be written as 4-vector equations

Example: we may define the 4-velocity 𝑈Ð≡ �ÇP

�Ó

where 𝑑𝜏 = −𝑑𝑥Ð𝑑𝑥Ð/𝑐2 is the element of proper time
𝑑𝜏 is a Lorentz invariant scalar, so 𝑈Ð must clearly transform the way 
𝑥Ð does (i.e. as a four-vector) 



4-velocity

How does the 4-velocity relate to the three-velocity u?

Well, 𝑑𝜏2 = −𝑑𝑥Ð𝑑𝑥Ð/𝑐2 = 𝑑𝑡p − (𝑑𝑥p + 𝑑𝑦p+ 𝑑𝑧p)/𝑐2

= 𝑑𝑡p(1 − 𝑢2/𝑐2)= 𝑑𝑡p/ 𝛾p ⇒ 𝑑𝜏 = dt/ 𝛾

Hence, 𝑈Ð= �
�Ó

𝑐𝑡
𝑥
𝑦
𝑧

= 𝛾 �
��

𝑐𝑡
𝑥
𝑦
𝑧

= 𝛾

𝑐
𝑑𝑥/𝑑𝑡
𝑑𝑦/𝑑𝑡
𝑑𝑧/𝑑𝑡

=
𝛾𝑐
𝛾𝒖

The product 𝑈Ð𝑈Ðshould be Lorentz invariant and indeed it is

𝑈Ð𝑈Ð = −𝛾p 𝑐p + 𝛾p 𝑢p = − 𝑐p



Other physical quantities that are manifestly 4-vectors

4-acceleration: 𝑎Ð≡ �ÔP

�Ó

Key feature of the 4−acceleraion: 𝑎Ð𝑈Ð =
�ÔP

�Ó 𝑈Ð =
v
p
�(ÔPÔP)

�Ó = 0
𝑎Ð and 𝑈Ð are orthogonal

In the instantaneous rest frame of the particle 𝑎′Ð = 0
𝒂′

4-momentum: 𝑝Ð≡ 𝑚�𝑈Ð =
𝛾𝑚�𝑐
𝛾𝑚�𝒖 =

𝑚 𝑐
𝑚𝒖 = 𝐸/𝑐

𝒑

where 𝑚� is the rest mass and 𝑚 = 𝛾𝑚� is the “relativistic mass”

−𝑐p𝑝Ð𝑝Ð = 𝐸p − 𝑝pcp is Lorentz invariant and equal to 𝑚�2𝑐4



4-momentum for photons

For a photon, 𝑈Ð is infinite and 𝑚� is zero

But the energy is 𝐸 = ℎ𝑣 = ℏ𝜔 and the 

3-momentum is 𝒑 = qm
Õ
i𝒌 = ℏ𝒌

Hence the 4-momentum is 𝑝Ð= ℏ𝜔/𝑐
ℏ𝒌

We may define the  4-wave-vector 𝑘Ð= 𝜔/𝑐
𝒌

such that 𝑝Ð= ℏ𝑘Ð

𝑘Ð is a “null vector” with 𝑘Ð𝑘Ð = 𝑘2−
Í$

n$ = 0
In Minkowski space, we can have a non-zero vector with zero length



Invariance of the phase

The scalar product 𝑘Ò𝑥Ò = (𝒌. 𝒙 − 𝜔𝑡) is a Lorentz invariant

This is the phase of an EM wave: 𝑬 ∝ 𝑒𝐢(𝒌.𝒙? |t)

It makes sense that this should be Lorentz-invariant.  A 
charge located at a place and time where 𝐸 and 𝐵 vanish will 
not accelerate, and all observers in an IRF need to agree 
about that.  So they must all agree about where 
𝒌. 𝒙 − 𝜔𝑡 = 𝑛 + <

"
π



Doppler shift and aberration

Consider an EM wave propagating in the xy-plane at angle q
to the x-axis

𝑘Ò =
B
C

1
cos 𝜃
sin 𝜃
0

=		
B
C

1
µ

1 − µ2 0/-

0

𝑘Ò is a 4-vector è we know how it 
transforms

𝑘′Ò = Λ !
Ò 𝑘!

y

x

k

q



Doppler shift and aberration

In a velocity boosted frame 𝑆’ (v-boost in x-direction)

𝑘′Ò =
*
%

1
µ

1 − µ2 v/p

0

=
*
%

𝛾(1 − 𝛽𝜇)
𝛾(𝜇 − 𝛽)
1 − µ2 v/p

0

= *x

%

1
µ′

1 − µ′2 v/p

0
𝜔Õ = 𝛾 1 − 𝛽𝜇 𝜔 (Doppler shift)

𝜇′ =
DEF
GEFD

(Aberration)



Doppler shift and aberration

𝜔Õ = 𝛾 1 − 𝛽𝜇 𝜔 𝜇′ =
DEF
GEFD

Limiting cases
𝜇 = 1:  (q = 0 è velocity boost along direction of k)

𝜔T = 𝛾 1 − 𝛽 𝜔 = Q\]
QD]

𝜔 ~ (1 − 𝛽)𝜔 if 𝛽 <<1

𝜇T = 1

𝜇 = 0:  (q = p/2 è velocity boost perpendicular to k)
𝜔T = 𝛾 𝜔

𝜇T = −𝛽 ⇒ sin ^
O
− 𝜃′ = −𝛽 ⇒ 𝜃T~ ^

O
+ 𝛽 if 𝛽 <<1

(Note: for Earth’s orbital motion around the Sun, 𝛽 = 1.0 x 10–4 ⇒ 𝜃@ = 10–4 rad = 20’’)



We are now in a position to compute the differential power, 
from an accelerating relativistic particle.  We’ll denote the 
instantaneous rest frame of the particle, 𝑆′, and the observer 
frame (lab frame), 𝑆
Let’s say 𝑆′ is moving along the positive x-axis at speed v, and 
the differential power in the instantaneous rest frame is 

𝑑𝑃C

𝑑Ω′
=

𝑑𝐸C

𝑑ΩC𝑑𝑡′

We previously computed the transformation from S to S’,

Differential power emitted by a relativistic particle

𝜇′ = ÐlÑ
vlÑÐ 𝜔º = 𝛾 1 − 𝛽𝜇 𝜔



Differential power emitted by a relativistic particle

So in the lab frame, we want to compute

𝑑𝑃
𝑑Ω

=
𝑑𝐸
𝑑Ω𝑑𝑡

=
𝑑𝐸
𝑑𝐸′

𝑑Ω′
𝑑Ω

𝑑𝑡
𝑑𝑡′

%0 𝑑𝐸′
𝑑Ω′𝑑𝑡′

Let’s consider these factors one at a time
@b
@b*

= `
`* =

0
n 0%oj

@U*

@U
= @j*

@j
= @
@j

j %o
0%oj

= 0%oj 6 (j %o)o
0%oj + = 0%o!

0%oj + =
0

n! 0%oj +

@F
@F*
= 𝛾 to obtain

𝑑𝑃
𝑑Ω =

1
𝛾4 1 − 𝛽𝜇 +

𝑑𝑃′
𝑑Ω′



Lecture 14
Special Relativity continued

Goals: understand

Relativistic beaming
Relativistic dynamics and the Lorentz force on a charge
Electromagnetism with 4-vectors



Emitted versus received power

This is an expression for the angular dependence of the emitted power, 𝑃e

𝑑𝑃𝒆
𝑑Ω

=
1

𝛾4 1 − 𝛽𝜇 +
𝑑𝑃′
𝑑Ω′

But this is different from the power RECEIVED by a stationary observer in 
the lab frame.  If two photons are emitted at times 𝑡0′ and 𝑡0′ + 𝑑𝑡 ′, the 
difference between the ARRIVAL times will be 𝑑𝑡5 = 𝛾𝑑𝑡 ′(1 − 𝛽𝜇)

This is not the same as the difference between the emission times as 
determined in the lab frame S, 𝑑𝑡 = 𝛾𝑑𝑡C, because of the difference in light 
travel times 𝛽𝜇 𝑑𝑡

So the power received has an additional factor of (1 − 𝛽𝜇) in the 
denominator 

𝑑𝐸
𝑑Ω𝑑𝑡5

=
𝑑𝑃𝒓
𝑑Ω

=
𝑑𝑃𝒆
𝑑Ω

𝑑𝑡
𝑑𝑡5

=
1

𝛾4 1 − 𝛽𝜇 𝟒
𝑑𝑃′
𝑑Ω′



Relativistic beaming

Let’s consider first a source of radiation that is isotropic in its own rest frame 

𝑑𝑃𝑟
𝑑𝛺

=
1

𝛾4 1 − 𝛽𝜇 .
𝑃′
4𝜋

For a highly relativistic particle with 𝛽~1, the denominator becomes very small 
when 𝜇 = 1 (i.e. when q = 0) and the radiation is travelling along the positive x-
axis (i.e. the direction of motion)

For q = 0, 

Q1: In the limit 1 − 𝛽 << 1, how does 1 − 𝛽 depend on 𝛾?

𝑑𝑃𝑟
𝑑𝛺 =

1
𝛾4 1 − 𝛽 k

𝑃′
4𝜋



Relativistic beaming

Let’s consider first a source of radiation that is isotropic in its own rest frame 

𝑑𝑃𝑟
𝑑𝛺

=
1

𝛾4 1 − 𝛽𝜇 .
𝑃′
4𝜋

For a highly relativistic particle with 𝛽~1, the denominator becomes very small 
when 𝜇 = 1 (i.e. when q = 0) and the radiation is travelling along the positive x-
axis (i.e. the direction of motion)

For q = 0, 

Q1: In the limit 1 − 𝛽 << 1, how does 1 − 𝛽 depend on 𝛾?
A:  1/𝛾2 = 1 − 𝛽 1 + 𝛽 ~ 2 1 − 𝛽 è 1 − 𝛽 ~ 1/(2𝛾2)

So very strong beaming along the x-axis 

𝑑𝑃𝑟
𝑑𝛺 =

1
𝛾4 1 − 𝛽 k

𝑃′
4𝜋

𝑑𝑃𝑟
𝑑𝛺 = 16𝛾4

𝑃′
4𝜋 ⇒



Relation to the retarded potentials

Recall the k factor in our expression for the Lienard-Wiechert potentials

1/𝜅 ∝ 1 − 𝛽 %0~ 2γ-

Hence, E and B are ∝ γ- and 𝐹 ∝ 𝐸 × 𝐵 ∝ γ.

𝜙 𝒙, 𝑡 =
𝑞

𝜅(𝑡[#Z)𝑅(𝑡[#Z)
=

𝑞
𝜅𝑅

𝑨 𝒙, 𝑡 =
𝑞𝒗

𝜅(𝑡[#Z)𝑅(𝑡[#Z)
=

𝑞𝒗
𝑐𝜅𝑅

with 𝜅 = (1 − 𝒗. D𝑹/𝑐)



Relativistic beaming

If we also take the limit of small 𝜃 as well as small as 1 − 𝛽, we may 
approximate 𝜇 by
(1 − 𝜃-/2) to	obtain

𝑑𝑃𝑟
𝑑𝛺

~
1

𝛾4 1 − 𝛽(1 − 𝜃-/2) .
𝑃′
4𝜋

~
1

𝛾4 1 − 𝛽 + 𝜃-/2 .
𝑃′
4𝜋

~
1

𝛾4 1/[2𝛾2] + 𝜃-/2) .
𝑃′
4𝜋

=
16𝛾4

1 + 𝛾2𝜃- .
𝑃′
4𝜋

Thus the beam has an opening angle ~1/𝛾
Power pattern (polar plot with 𝑟 ∝ 𝑑𝑃/𝑑𝛺)

~ 1/𝛾
𝑑𝑃′/𝑑𝛺′ 𝑑𝑃𝑟/𝑑𝛺

𝑣 ~ c𝑆’ 𝑆



Accelerating, relativistic charge

In the instantaneous rest frame of an accelerating charge, the radiation is 
not isotropic but instead has a sin2Q′ dependence on the angle to the 
acceleration

The power radiated is given by the Larmor formula, which may be written

𝑑𝑃C/𝑑Ω′ =
𝑒- 𝑎C -sin2QC

𝑐+
=
𝑒-𝑎j𝑎jsin2QC

4𝜋𝑐+
The 3-acceleration may be at any angle to the 3-velocity, leading to a 
variety of beam patterns (R&L Fig 4.11)

𝑆’ 𝑆

𝑎’ ⊥ 𝑣

𝑎’ ∥ 𝑣



Four vector operators

For 3-vectors, a key vector operator is ∇≡
𝜕/𝜕𝑥
𝜕/𝜕𝑦
𝜕/𝜕𝑧

For 4-vectors, the analog is 𝜕j ≡
=
=/Y

=

(1/𝑐)𝜕/𝜕𝑡
𝜕/𝜕𝑥
𝜕/𝜕𝑦
𝜕/𝜕𝑧

The analog of ∇-= =+

=/+
+ =+

=>+
+ =+

=?+

is therefore 𝜕j𝜕j = =+

=/+
+ =+

=>+
+ =+

=?+
− 0
L+

=+

=F+

This operator is Lorentz invariant and is called the d’Alembertian
It is variously written 𝜕-,      , or     2



Acceleration of a charge in an electric field

In 4-vector notation, we may write Newton’s second law as

𝑓j = 𝑚# 𝑎j

Like 𝑎j, 𝑓j is orthogonal to 𝑈j , so in the instantaneous rest frame S’, 
where  𝑈Cj = 𝑐

𝟎 , we must have

𝑓Cj = 0
𝒇′ = 0

𝒒𝑬′

But how do we know how the B and E-fields transform?

We’ll need to formulate electromagnetism in a form that is Lorentz 
invariant, with equations involving 4-vectors and tensors. 



The 4-current-density, 𝑗Ò

Let us define the 4-current-density as

𝑗j =
𝜌𝑐
𝒋

Q2: what is 4-divergence of 𝑗j i.e. what is  𝜕j 𝑗l



The 4-current-density, 𝑗Ò

Let us define the 4-current-density as

𝑗j =
𝜌𝑐
𝒋

Q2: what is 𝜕j𝑗j

Answer: the 4-divergence of 𝑗j is zero

𝜕j𝑗j =
𝜕𝜌
𝜕𝑡 + 𝜵. 𝒋 = 0 by conservation of charge

Because the right-hand-side is Lorentz-invariant and 𝜕j is a 4-vector 
operator, this shows that 𝑗j is indeed a 4-vector



The 4-potential, 𝐴Ò

We now observe that Maxwell’s equations, 

Can be written as a 4-vector equation

𝜕;𝜕;𝐴j = −
4𝜋𝑗j

𝑐

where the 4-potential 𝐴j ≡ 𝜙
𝑨

The relation between 𝜙 and 𝑨 for the Lorentz gauge we are using is also a 
4-vector equation

𝜕j𝐴j =
1
𝑐
𝜕𝜙
𝜕𝑡

+ 𝜵. 𝑨 = 0

𝜵2𝜙 − +
X"

Y"m
Y"Z

= −4𝜋𝜌 Gauss’ Law

𝜵2𝑨 − +
X"

Y"𝑨
Y"Z

= −4𝜋𝒋/c Ampere’s Law



The electric and magnetic fields

Since we know that 𝐴j transforms as a 4-vector, we can compute how 

E and B transform

The fields can be treated very beautifully using this object that is a bit like 
the curl

𝐹qo = 𝜕q𝐴o − 𝜕o𝐴q

This has 16 components (since 𝛼 and 𝛽 each take values from 0 to 3) and is 
a 2nd rank 4-tensor

It transforms according to 𝐹qo′ = Λq
n Λo

r 𝐹nr

It is clearly antisymmetric, so there are six independent components (with 
zeros along the diagonal): amazingly, these components are just the E and 
B-fields (3 components for each)



The EM field tensor

𝐹qo = 𝜕q𝐴o − 𝜕o𝐴q is called the EM field tensor

Working out each component, we find that

𝐹qo =

0 − 𝐸/ − 𝐸> − 𝐸?

𝐸/ 0 𝐵? −𝐵>

𝐸> −𝐵? 0 𝐵/

𝐸? 𝐵> − 𝐵/ 0

The Lorentz 4-force on a charge q with 4-velocity 𝑈q is  𝑓o =
0
L
𝑞𝐹qo𝑈q

(We can confirm that in the instantaneous rest-frame, where 𝑈′q = 𝑐
𝟎 ,  

𝑓′o =
0
𝒒𝑬′ as required)



Summary: the Lorentz invariant laws of electromagnetism 

𝜕+𝜕+𝐴, = −
4𝜋𝑗,

𝑐

𝐹-. ≡ 𝜕-𝐴. − 𝜕.𝐴-

𝑓. =
1
𝑐
𝑞𝐹-.𝑈-

Maxwell’s Equations

𝜕,𝐴, = 0Lorentz Gauge

𝜕,𝑗, = 0Conservation of charge

Definition of EM field tensor

Lorentz force



Bremsstrahlung: introduction

Bremsstrahlung = “braking radiation”

Example: X-ray tube (developed in the early 20th century)

By Roentgen-Roehre.svg: Hmilchderivative work: Coolth (talk) -
Roentgen-Roehre.svg, Public Domain, 
https://commons.wikimedia.org/w/index.php?curid=11691922



Bremsstrahlung: astrophysical context

In the astrophysical context, we are talking about the deflection of 
electrons in a plasma in close encounters with protons (or other 
ions)

Also known as free-free emission

Interstellar environments where we find a plasma include

1) Photoionized regions (HII regions, planetary nebulae
H + hnà H+ + e

2) Collisionally-ionized regions (behind shock waves) 
H + e à H+ + e + e

e

p
a



HII regions and planetary nebulae

Credits: NASA, ESA, M. Robberto and the 
Hubble Space Telescope Orion Treasury 
Project Team

Orion nebula

Gas is photoionized by a hot star with an effective temperature above ~ 25,000 K

Gas kinetic temperature ~ 104 K
Visible wavelength emission is 
dominated by spectral lines 
(“bound-bound” emission)

Radio continuum emission (1.5 GHz 
map below by Subrahmanyan et al. 
2001) is dominated by free-free 
emission



Supernova shock waves

Supernovae release ~ 1051 erg of kinetic energy into the ISM, sending out 
expanding shock waves that can persist for tens of thousands of years

Gas kinetic temperature ~ 106 K or higher
The Vela SN remnant has an estimated age of 11,000 yr

Filaments of the Vela Supernova Remnant
Image Credit & Copyright: Angus Lau, Y Van, 
SS Tong (Jade Scope Observatory)

But free-free emission leads to
radio and X-ray continuum (below)  

Again, the visible wavelength 
emission is dominated by bound-
bound transitions of ions 

http://www.jadescope.com/


Lecture 15
Bremsstrahlung

Goals: understand

Acceleration of electrons in collisions within a plasma
The significance of the bmin parameter
Emission from a (non-relativistic) collection of particles 
with a thermal distribution of velocities



Acceleration of one free charge by another

X

Y

Question 1: which of the following interactions can produce a non-zero 𝑑̈?
(a) e – p (b) e – H (c) e – e (d) e– – e+



Acceleration of one free charge by another

X

Y

Question 1: which of the following interactions can produce a non-zero 𝑑̈?
(a) e – p (b) e – H (c) e – e (d) e– – e+

Answer: all except (c)

In an e – e collision, the center of charge remains at the center of mass ⇒ 𝑑̈ = 0

Also, an e – H interaction can lead to a force on the electron, because the electron 
can induce a dipole moment in the atom

Here, we will focus on the first case, e – p (or more generally, e – ion)



Acceleration of one free charge by another

Let’s consider an interaction at impact parameter b (not too small) so the 
deflection angle is small (i.e. << 1 rad)

In this limit, the x velocity is roughly constant, so 𝑥 = 𝑢𝑡
(if we define 𝑡 = 0 as the moment of closest approach)

The separation, r, is well approximated by 𝑏- + 𝑥- = 𝑏- + 𝑢-𝑡-
and therefore the acceleration is 𝑎 = 𝑍𝑒-/ (𝑚J 𝑟-) = 𝑍𝑒-/(𝑚J[𝑏- + 𝑢-𝑡-]) 

⇒ 𝑑̈ = 𝑒𝑎 =
𝑍𝑒+

𝑚J(𝑏- + 𝑢-𝑡-)

– e

Ze

Impact 
parameter, b

x

speed, u << c

r



Acceleration of one free charge by another

𝑑̈ = 𝑒𝑎 =
𝑍𝑒+

𝑚J(𝑏- + 𝑢-𝑡-)

We can now compute the electric and magnetic fields at distance R in the wave 
zone

𝐸- = 𝐵- =
4𝜋
𝑐
𝑆 =

4𝜋
𝑐
1
𝑅-

𝑑𝑃
𝑑Ω

=
4𝜋
𝑐𝑅-

𝑑̈
-
sin-Θ

4𝜋𝑐+

⇒ 𝐸(𝑡) =
𝑑̈ sin Θ
𝑐-𝑅 =

𝑍𝑒+sin Θ
𝑚J𝑐-𝑅(𝑏- + 𝑢-𝑡-)

To get the spectrum of the emitted radiation, we are interested in the Fourier 
transform of the electric field (Lecture 8)

æE* 𝜔 =
1
2π

3
%*/-

*/-
𝑒M`F 𝐸 𝑡 𝑑𝑡 →

𝑍𝑒+sin Θ
2π𝑚J𝑐-𝑅𝑏-

3
%$

$ 𝑒M`F

1 + 𝑡-/𝑡L-
𝑑𝑡 𝑎𝑠 𝑇 → ∞

where 𝑡L = 𝑏/𝑢 is the “collision time”



Acceleration of one free charge by another

The integral 

3
%$

$ 𝑒M`F

1 + 𝑡-/𝑡L-
𝑑𝑡 = 𝜋𝑡L𝑒%`F"

⇒ æE* 𝜔 =
𝑍𝑒+sin Θ
𝑚J𝑐-𝑅𝑏-𝑡L

𝑒%`F" =
𝑍𝑒+sin Θ
𝑚J𝑐-𝑅𝑏𝑢

𝑒%`s/:

The average monochromatic flux at distance R is then (Lecture 8)

𝐹; =
2𝜋𝑐
𝑇

æE* 𝜔 - =
𝜋𝑍2𝑒tsin2 Θ

2𝑚J
-𝑐+𝑅-𝑇𝑏-𝑢-

𝑒%.8's/:

(average during time period T)

The radiant energy at frequency n emitted due to this interaction is then

𝑊; = 𝑇∫𝐹;𝑑𝐴 = 𝑇 ∫𝑅-𝐹;𝑑Ω =
8u!JZ g8/+
-cC

+L[s+:+
𝑒%-`s/: = .u!JZ

+cC
+L[

8
s:

-
𝑒%.8's/:



Key points

𝑊; =
4𝑍2𝑒t

3𝑚J
-𝑐+

𝜋
𝑏𝑢

-
𝑒%.8's/:

This expression is the amount of energy emitted per unit bandwidth, dE/dn, due to a 
single collision with impact parameter b and electron velocity u

Key approximations:  

(1) we have neglected quantum effects: this is a purely “classical result”
(2) we neglected the acceleration of the ion
(3) we assumed a small angle deflection

Key feature: the distribution in frequency is nearly flat until 𝜔𝑡𝑐 = 𝜔𝑏/𝑢 reaches ~ 1

E(t)

1/ tc

ÛE% 𝜔

𝜔t

tc



Emission from an ensemble of particles

Let’s focus on a single ion, and think about all the electrons that may hit it

Rate at which electrons hit at impact parameter between 𝑏 and 𝑏 + 𝑑𝑏
= 𝑛𝑒𝑢 𝑑𝐴 = 𝑛𝑒𝑢 2𝜋𝑏 𝑑𝑏

Monochromatic power emitted in such collisions 

= 𝑊; 𝑛𝑒𝑢 2𝜋𝑏 𝑑𝑏 =
4𝑍2𝑒t

3𝑚J
-𝑐+

𝜋
𝑏𝑢

-
𝑒%.8's/: 𝑛𝑒𝑢 2𝜋𝑏 𝑑𝑏

=
8𝜋3𝑍2𝑒t𝑛𝑒
3𝑚J

-𝑐+𝑢
𝑑𝑏
𝑏
𝑒%.8;s/:

Total power per ion due to all collisions = g8"u!JZ!+
+cC

+L[: ∫ @ss 𝑒
%.8;s/:

Problem: the integral diverges (but only logarithmically) at small b, implying that the 
power radiated is infinite



Emission from an ensemble of particles

What went wrong?

Two approximations that we made break down at small b

(1) Our approximation that the deflection angle is small.  

(2) Our neglect of quantum effects, as the angular momentum me b u is quantized in 
units of ℏ

Since the divergence of the integral is logarithmic, even a rough estimate of where 
the approximations break down can yield a useful result.

So the idea is to truncate the integral ∫ @ss 𝑒
%.8;s/: at some lower limit, bmin, where 

the approximations tend to break down.

Let’s consider each of them in turn.



Small deflection angle approximation

Let us consider the acceleration in the y-direction (i.e. perpendicular to the initial 
direction of motion)

𝑎𝑦 = −𝑎cos𝜃 = −𝑎
𝑏
𝑟 = −

𝑍𝑒2

𝑚𝑒𝑟2
𝑏
𝑟 = −

𝑍𝑒2𝑏
𝑚J(𝑏- + 𝑢-𝑡-)+/-

The y-velocity the electron acquires during the collision is

𝑢𝑦 = 3
%$

$

𝑎> 𝑑𝑡 = −
𝑍𝑒2

𝑚𝑒𝑢𝑏
3
%$

$
𝑑𝑞

1 + 𝑞-
+
-
= −

2𝑍𝑒2

𝑚𝑒𝑢𝑏

where 𝑞 = 𝑢𝑡/𝑏

– e

Ze

Impact 
parameter, b

x

speed, u << c

r𝜃



Small deflection angle approximation

The deflection angle is small if and only if

|𝑢𝑦| =
-uJ!

c+:s
≪ 𝑢

or equivalently 

𝑏 ≫
𝑍𝑒2

𝑚𝑒𝑢2/2

We’ll call the right-hand-side of this inequality 𝑏cM!
0

The small angle approximation breaks down for 𝑏 smaller than ~𝑏cM!
0

– e

Ze

Impact 
parameter, b

x

speed, u << c

r𝜃



Classical treatment of electron motion

The classical treatment of the electron motion is valid if and only if

Electron angular momentum
𝑙 = 𝑚𝑒𝑢𝑏 ≫ ℏ

or equivalently 

𝑏 ≫
ℏ
𝑚𝑒𝑢

We’ll call the right-hand-side of this inequality 𝑏cM!
-

The classical treatment of the electron motion breaks down for 𝑏 smaller than ~𝑏cM!
-

Bottom line: our treatment is valid if and only if 𝑏 ≫ 𝑏cM!
0 and 𝑏 ≫ 𝑏cM!

-

Take total power per ion due to all collisions = g8"u!JZ!+
+cC

+L[: ∫s\E(

$ @s
s 𝑒

%.8;s/:

where 𝑏cM! is the larger of 𝑏cM!
0 and 𝑏cM!

-



Which is larger, 𝑏¸xC
< or 𝑏¸xC

" ?

Answer: it depends on 𝑢

𝑏cM!
- =

ℏ
𝑚𝑒𝑢

so
𝑏cM!
-

𝑏cM!
0 =

𝑢ℏ
2𝑍𝑒2

=
1
2
𝐾J
𝜒

0/-

where 𝐾J=𝑚𝑒𝑢2/2 is the electron kinetic energy, and  

𝜒 = 𝑍2𝑚𝑒𝑒4/[2ℏ2]= 13.6 𝑍2 eV is the ionization potential of a H-like ion of charge 𝑍𝑒

So, for 𝐾J larger than 𝜒, 𝑏cM!
- is larger and the classical treatment of the electron 

motion breaks down first as 𝑏 → 0

So, for 𝐾J smaller than 𝜒, 𝑏cM!
0 is larger and the small angle approximation breaks 

down first as 𝑏 → 0

𝑏cM!
0 =

𝑍𝑒2

𝑚𝑒𝑢2/2



Which is larger, 𝑏¸xC
< or 𝑏¸xC

" ?

In an HII region, 𝑇~ 104 K

⇒ typical electron K. E. ~ 𝑘𝑇 ~1 eV ≪ 𝜒 = 13.6 eV (for H)

⇒ 𝑏É¹~
v > 𝑏É¹~

(p) ⇒ small angle approximation is what breaks down

In a hot shocked region, 𝑇~ 106 K and	the	opposite	is	usually	
true



In any case, our integral                                 may be written

where 𝐸0 is the exponential integral function and

The total power per ion due to all collisions =

For monoenergetic electrons at velocity 𝑢,	we can determine the emission 
coefficient by multiplying by the density of ions 𝑛𝑖 and dividing by 4𝜋

𝑗'vv(𝑢) =
2𝜋-𝑍2𝑒t𝑛𝑒𝑛𝑖
3𝑚J

-𝑐+𝑢
𝐸0(𝜉cM!)

Because of the quantization of photon energies, this expression is only correct 
when ℎ𝜈 < Ke .  If that condition does not apply, then 𝑗'vv(𝑢) =0

Power emitted per ion

8𝜋3𝑍2𝑒t𝑛𝑒
3𝑚J

-𝑐+𝑢
𝐸0(𝜉cM!)

6
*+',

+
𝑑𝑏
𝑏 𝑒,-./*/1 6

2+',

+
𝑒,2

𝜉 𝑑𝜉 ≡ 𝐸3(𝜉456)

𝜉456 =
4𝜋𝑏456𝜐

𝑢



Lecture 16
Bremsstrahlung/ introduction to synchrotron radiation 

Goals: understand

Emission from a (non-relativistic) collection of particles 
with a thermal distribution of velocities
Free-free absorption
Astrophysical introduction to cosmic rays and 
synchrotron radiation 



𝑗'vv 𝑢 =
2𝜋-𝑍2𝑒t𝑛𝑒𝑛𝑖
3𝑚J

-𝑐+𝑢
𝐸0 𝜉cM! for 𝜈 <

𝑚J𝑢-

2ℎ

= 0 for 𝜈 >
𝑚J𝑢-

2ℎ

Emission coefficient for a thermal distribution 
of electron energies

We can average 

over a Maxwell-Boltzmann distribution of electron velocities to 
obtain the overall emission coefficient for a plasma at temperature T

I’ll omit the details, but neglecting the weak logarithmic factor 
involving E1, the temperature and frequency dependence must be 
𝑗d�� 𝑇 ∝ 𝑇lv/pexp(− qm

rs
)

We end up with 𝑗d�� 𝑇 = váâ$ËQ

ÊÉRn2
pu

ÊrsÉR

v/p
𝑛𝑒𝑛𝑖 𝑔̅�� exp(−

qm
rs
)

where 𝑔̅�� ν, 𝑇 is a fudge factor (the “Gaunt factor”) of order unity 



Emission coefficient for a thermal distribution 
of electron energies

In cgs units, we get 

|<SS s
ãäå Õ�T2¿T7¿äT7æçT7

= 1.1×10lÊ� ~=
Õ�T2

~]
Õ�T2 𝑔̅�� 𝑍p

s
è

lv/p
elqd/rs

A proper treatment, with careful inclusion of quantum mechanical 
effects, is needed to compute the Gaunt factor.

𝑔̅�� ν, 𝑇 decreases from ~ 5 at ℎ𝑣/𝑘𝑇 = 10–4  to ~ 1 at ℎ𝑣/𝑘𝑇 = 1
(see R&L figure 5.3)

Integrating over frequency and solid angle, we get the power emitted 
per unit volume: 

Here the frequency-averaged Gaunt factor 𝑔̅é 𝑇 ~ 1.2 ± 20%

∫4𝜋𝑗'vv 𝑇 𝑑𝜈
erg cm%+s%0

= 1.4 × 10%-w
𝑛𝑒

cm%+
𝑛𝑖

cm%+ 𝑔̅x
𝑇
K

0/-
𝑍-



Observed spectra of HII regions

At high frequencies, the free-free continuum flux measured from HII 
regions, 𝐹d is usually in good agreement with 𝑗d��

But at low energies, the flux typically drops at low frequency 

Thick      Thin

This behavior suggests that optical depth effects become important at low 
frequency (𝜈 <nT ) so 𝐼' approaches the Planck function and 𝐹'. ∝ 𝜈- (R-J limit)

lo
g𝐹

d

log 𝜈

𝑗788

𝐹7

Slope ~ − 0.1

Slo
pe

 ~
+
2

log(𝑘𝑇/ℎ)log(nT)



Free-free absorption

Free-free absorption is the inverse process to free-free emission:
radiation can be absorbed during a collision

Because we have a thermal plasma, we can use Kirchhoff’s Law to compute 
the absorption coefficient

𝛼d�� =
𝑗d��

𝐵d
∝
𝜆p

𝑇
𝑗d�� ∝ 𝜆p 𝑇lÊ/p𝑍p𝑛𝑒𝑛𝑖 𝑔̅�� (for ℎ𝑐/𝜆 ≫ 𝑘𝑇)

The optical depth 𝜏'vv = ∫𝛼'vv𝑑𝑠 ∝ ∫𝑛𝑒𝑛𝑖 𝑑𝑠 ≡ ”Emission measure”, 𝐸𝑀

𝜏d�� = 6.2 × 10lvv𝑍p
𝑇

104K

lÊ/p 𝜆
cm

p
𝑔̅��

𝐸𝑀
cmlápc

For the Orion nebula, 𝑇~104K and 𝐸𝑀~ 106 cm%tpc
(𝑛𝑒~ 𝑛𝑖~103 cm%+ and 𝐷~ 1 pc)

𝜏'vv~1 at 𝜆 ~50 cm (where 𝑔̅vv ~ 5) or equivalently 𝜈~ 0.6 GHz



Energetic charged particles in astrophysics

Energetic charged particles are well known in the 
Milky Way (directly detectable as “cosmic rays”) 
and in external galaxies, especially radiogalaxies



Discovery of cosmic rays by Victor Hess

Victor F. Hess, center, departing from Vienna about 1911, was awarded the 
Nobel Prize in Physics in 1936.  (New York Times, August 7, 2012, page D4)



The nature of CR was controversional

Published: December 31, 1932
Copyright © The New York Times



Published: December 31, 1932
Copyright © The New York Times

Published: December 31, 1932
Copyright © The New York Times

The nature of CR was controversional



Cosmic ray energy spectrum 
CR are observed over a remarkable range of energies

Maximum energy detected to date: 50 J 
(~ K.E. of a fastball in Little League baseball) 

Total energy density ~  1 eV cm–3

… somewhat LARGER than that of
starlight, the CMB, or the Galactic B-field

Cosmic ray spectrum (credit: HAP / A. Chantelauze)

50 J

Draine, 2011



Interaction with the interstellar gas

• High energy (E > 280 MeV) cosmic rays create g-rays via
CRp + p à CRp + p + p0

p0 à g + g

• Lower energy cosmic rays ionize and heat the ISM      
CRp + H à CRp + H+ + e
CRp + H2 à CRp + H2

+ + e

• Secondary electrons can cause additional ionization and  
heating, and can excite UV emissions from H and H2
(important in dense clouds where starlight is absent) 



Origin of cosmic rays
Primary origin is believed to be fast shocks in supernova 
remnants 

Fermi acceleration of particles “trapped” between converging 
“magnetic” mirrors (Fermi 1954)

Preshock
Gas

Cold
Fast-moving
Supersonic

Postshock
Gas

Hot
Slower-moving
Subsonic

Shock front

Preshock
Gas

Cold
Fast-moving
Supersonic

Postshock
Gas

Hot
Slower-moving
Subsonic

Shock front



Radio galaxies

Active galaxies can produce giant jets of relativistic electrons that we can 
detect via synchrotron radiation

3C 237 (size = 290 kpc) Centaurus A (size = 700 kpc)

Credits: NRAO, CSIRO/ATNF, ATCA, ASTRON, Parkes, MPIfR, 
ESO/WFI/AAO (UKST), MPIfR/ESO/APEX, NASA/CXC/CfA



Lecture 17
Synchrotron radiation I

Goals: understand

Motion of a relativistic electron in a magnetic field
Power radiated by such an electron
The spectrum of synchrotron radiation (for an electron 
with a specific energy)



Electron equation of motion

The electron equation of motion is

𝑑𝑝j

𝑑𝜏
=
𝑞
𝑐
𝐹 '
j 𝑈j

⇒ 𝑚J
𝑑
𝑑𝜏

𝛾𝑐
𝛾𝒗 =

𝑞
𝑐

0 − 𝐸/ − 𝐸> − 𝐸?

𝐸/ 0 𝐵? −𝐵>

𝐸> −𝐵? 0 𝐵/

𝐸? 𝐵> − 𝐵/ 0

𝛾𝑐

𝛾𝑣/

𝛾𝑣>

𝛾𝑣?

=
𝑞
𝑐
𝛾 𝒗. 𝑬
𝑐𝑬 + 𝒗×𝑩

If E is zero in the lab frame, we find

𝑚J𝛾
𝑑
𝑑𝑡

𝛾𝑐
𝛾𝒗 =

𝑞
𝑐
𝛾 𝟎
𝒗×𝑩 ⇒ 𝑚J𝛾

𝑑𝒗
𝑑𝑡

=
𝑞
𝑐
𝒗×𝑩

and 𝛾 = constant ⇒ 𝒗 = constant 



Electron equation of motion

𝑚J𝛾
𝑑𝒗
𝑑𝑡

=
𝑞
𝑐
𝒗×𝑩 𝒗 = constant

We can decompose v into the components
parallel and perpendicular to the B-field 

𝒗 = 𝒗∥ + 𝒗{

and write 

@𝒗∥
@F
= 0 @𝒗_

@F
= a
cCnL

𝒗{×𝑩

Thus, 

𝒗∥ = constant and  𝒗{ = constant

The electron executes a helical motion at constant speed

R&L Fig 6.1



Pitch angle

We define the pitch angle, 𝛼, as the angle between 𝒗 and 𝑩

sin𝛼 =
𝒗{
𝒗

cos𝛼 =
𝒗∥
𝒗

so 𝛼 = 𝜋/2 for circular motion ⊥ to 𝑩
𝛼 = 0 for linear motion along 𝑩

R&L Fig 6.1



Larmor frequency

Angular frequency of gyration, 𝜔2, is derived from

𝑎 =
𝑑𝒗{
𝑑𝑡

=
𝒗{ 2

𝑟
= 𝑣{𝜔2

𝑞
𝑚J𝛾𝑐

𝑣{𝐵 = 𝑣{𝜔2

⇒ 𝜔2 =
𝑞𝐵
𝑚J𝛾𝑐

This is called the Larmor frequency

The Larmor frequency is independent of the pitch angle and depends on v 
only through 𝛾

For an electron, 𝜔2 = 17.6 2
j}
𝛾%0rad s%0

corresponding to a frequency 𝜈2 =
``
-8 = 2.8 2

j} 𝛾
%0Hz



Acceleration

The acceleration 𝑎 = 𝑣{𝜔2 is perpendicular to the velocity, 𝑣

Let’s orient our axes so that 𝑣 is instantaneously in the x-direction and 𝑎 is in 
the y-direction

Then 𝑎> = 𝑣{𝜔2 and the 4-acceleration is 

𝑎j = @~Y

@d
= @

@d
𝛾𝑐
𝛾𝒗 = 𝛾 @

@F
𝛾𝑐
𝛾𝒗 = 𝛾- 0

𝑑𝒗/𝒅𝒕 = 𝛾-
0
0

𝑣{𝜔2
0

since 𝛾 is constant

In the instantaneous particle rest frame, 𝑆’, we find 𝑎′j = 𝑎j
(since the x and t components are both zero)

Hence, the 3-acceleration in the rest-frame has magnitude 𝑎′ = 𝑎′> = 𝛾-𝑣{𝜔2



Total radiated power

The power radiated in the particle rest frame is given by the Larmor formula

𝑃’ =
2 𝑒𝑎C 2

3𝑐3
=
2 𝑒𝛾𝟐𝑣{𝜔2 2

3𝑐3
=
2𝑒2𝛾𝟒𝑣{2

3𝑐3
𝑒𝐵
𝛾𝑚𝑒𝑐

-

=
2𝛾𝟐𝑣{2

3𝑐
𝑒2

𝑚𝑒𝑐

-

8𝜋
𝐵2

8𝜋
=
2𝛾𝟐𝑣{2

𝑐2
𝜎*𝑈2𝑐

What about the power radiated in the lab frame, 𝑃J = 𝑑𝐸/𝑑𝑡?

We have 

𝑑𝐸 = 𝛾 𝑑𝐸C + 𝑣d𝑝/C = 𝛾 𝑑𝐸C because d𝑝/C = 0 (forward/backward symmetry)
𝑑𝑡 = 𝛾 𝑑𝑡C + 𝑣d𝑥′ = 𝛾 𝑑𝑡C because the particle is at rest in 𝑆’

So 𝑃J = 𝑑𝐸/𝑑𝑡 = 𝑑𝐸′/𝑑𝑡′ = 𝑃’ = 2𝜎*𝑈2𝛽{- 𝛾𝟐



Rate of energy loss

𝑃J = 2𝑐𝜎*𝑈2𝛽{- 𝛾𝟐

Averaged over an isotropic distribution of pitch-angles

𝛽{- = 𝛽- sin-𝛼 = -
+
𝛽- ⇒ 𝑃J = .

+
𝑐 𝜎* 𝑈2 𝛽 - 𝛾𝟐

As the electrons lose energy, their Lorentz factor decreases slowly according to

𝑃J = −
𝑑
𝑑𝑡 𝛾𝑚J𝑐- ⇒

𝑑𝛾
𝑑𝑡 = −

𝑃J
𝑚J𝑐-

= −
4 𝑐 𝜎* 𝑈2 𝛽 - 𝛾𝟐

3𝑚J𝑐-

so the energy loss timescale is

𝜏9��� ≡ −
𝛾

𝑑𝛾/𝑑𝑡
=

3𝑚J𝑐
4𝑐 𝜎* 𝑈2 𝛽 - 𝛾

=
2.5×100+ yr
(𝐵/𝜇𝐺)- 𝛾

For 𝐵 = 5 𝜇𝐺 and 𝛾 = 104,  we find 𝜏9��� = 100Myr



Spectrum of the radiation received

Consider the plane in which the particle is moving instantaneously

Because of beaming, an observer only sees radiation during a small fraction of the 
electron orbit, when the electron is between points P and Q

The angle ∠𝑃𝐶𝑄 ~2/𝛾

The radius of curvature, r, is given by 

𝛾𝑚J
𝑣-

𝑟 =
𝑞
𝑐 𝑣 × 𝐵 =

𝑒𝑣𝐵sin𝛼
𝑐 ⇒ 𝑟 =

𝛾𝑚J𝑣𝑐
𝑒𝐵sin𝛼 =

𝑣
𝜔2sin𝛼

P Q

C

r

1/𝛾

2/𝛾



Spectrum of the radiation received

Time taken for particle to travel from P to Q, Δ𝑡 = I ∠T7D
,

= -I
n,
= -

n``VWXq

This is not, however, the duration of the pulse that is received, because of light 
travel time effects

Radiation emitted from P at time 𝑡� arrives at time 𝑡�5 = 𝑡�+ 𝑙�/c
Radiation emitted from Q at time 𝑡a arrives at time 𝑡a5 = 𝑡a+ 𝑙a/c
where 𝑙� and 𝑙a are the distances from the observer

P Q

C

r

1/𝛾

2/𝛾 𝑟 =
𝑣

𝜔9sin𝛼



Spectrum of the radiation received

Consider the plane in which the particle is moving instantaneously

Length of the observed pulse of radiation is 

Δ𝑡5 = 𝑡a5 − 𝑡�5 = (𝑡a−𝑡� ) + (𝑙a − 𝑙�)/𝑐 = 2𝑟/[𝛾𝑣] − 2𝑟sin(1/𝛾)/c

=
2

𝛾𝜔2sin𝛼
−

2𝑣
𝑐𝜔2sin𝛼

sin(1/𝛾) =
2

𝛾𝜔2sin𝛼
1 − 𝛽 𝛾 sin(1/𝛾)

~
2

𝛾𝜔2sin𝛼
1 − 1 −

1
2𝛾-

1 −
1
6𝛾-

~
4

3𝛾3𝜔2sin𝛼
for 𝛾 ≫ 1

P Q

C

r

1/𝛾

2/𝛾 𝑟 =
𝑣

𝜔9sin𝛼



Spectrum of the radiation received

The E-field shows a pulse of width Δ𝑡5~ (𝛾3𝜔2sin𝛼)%0

which implies that the emitted spectrum contains angular frequencies up to 
~ 𝛾3𝜔2sin𝛼 = 𝛾2 a2

cCL
sin𝛼

Note the factor 𝛾3: for a highly relativistic electron this can be way higher than 
the Larmor frequency

R&L Fig 6.3



Power spectrum of synchrotron radiation

The power spectrum is obtained by taking the Fourier transform of the pulse 
shape (and squaring its magnitude) – see R&L Section 6.4 for details

If we define the “cutoff” (angular frequency) by 𝜔n =
Ê
p𝛾

3𝜔�sin𝛼, the 

monochromatic power emitted per electron is 
�¼
�Í = Ê

pu
È%� ¿ÀÁ}
É$n%

𝐹 Í
Í&

where

𝐹 𝑥 = 𝑥o
Ç

¡

𝐾w
Ê
𝜉 𝑑𝜉

R&L Fig 6.6

𝑭 𝒙 ∝ 𝒙𝟏/𝟐𝒆%𝒙𝑭 𝒙 ∝ 𝒙𝟏/𝟑



Lecture 18
Synchrotron radiation II

Goals: understand

Synchrotoron spectrum for monoenergetic electrons
The synchrotron spectrum expected with a power-law 
distribution of electron energies
Inverse Compton radiation



Transition from cyclotron (𝛾~1) to synchrotron (𝛾 ≫ 1) radiation

Clearly, in the non-relativistic limit (“cyclotron radiation”) there is no beaming and 
the  E-field is just a sine wave è the power spectrum is a delta function at 𝜔 = 𝜔2

As 𝛾 increases, the waveform starts to get distorted by the effects of beaming and 
we start to get harmonics

R&L Fig 6.8

R&L Fig 6.9



Transition from cyclotron (𝛾~1) to synchrotron (𝛾 ≫ 1) radiation

As  𝛾 becomes very large, we see higher and higher harmonics which eventually 
“wash-out” to yield a continuum

R&L Fig 6.10



Power spectrum for synchrotron (𝛾 ≫ 1) radiation

Once the spectrum is well approximated by a continuum, the spectrum is

𝑑𝑃
𝑑𝜔 =

3
2𝜋

𝑞3𝐵 sin𝛼
𝑚J𝑐-

𝐹
𝜔
𝜔L

Key features of this result:

1) The total power is 

𝑃 = 3
#

$ 𝑑𝑃
𝑑𝜔

𝑑𝜔 =
3
2𝜋

𝑞3𝐵 𝜔L sin𝛼
𝑚J𝑐-

3
#

$
𝐹 𝑥 𝑑𝑥

=
3
2𝜋

𝑞3𝐵 sin𝛼
𝑚J𝑐-

3
2 𝛾

3𝜔2sin𝛼
8𝜋
9 3

=
4
9
𝑞3𝐵 sin𝛼
𝑚J𝑐-

3
2 𝛾

3
𝑞𝐵
𝑚J𝛾𝑐

sin𝛼

=
2
3
𝑞4𝐵-

𝑚J
2𝑐+

𝛾2sin2𝛼 ~ 2𝑐𝜎*𝑈2𝛽{- 𝛾𝟐

(since 𝛽{~sin𝛼).   This agrees with our previous result from the Larmor formula.



Power spectrum for synchrotron (𝛾 ≫ 1) radiation

Key features of @T
@`

= +
-8

a"2 VWXq
cCL+

𝐹 `
`"

2)    The function F only depends on 𝜔/𝜔L and is independent of 𝜔/𝜔2

Explanation: the relativistic beaming factor is a function of 𝛾𝜃

Recall that @T$
@�

= 0tn#

06n!_+ T
TC
.8
= 0

06n!_+ T
@T$
@� c�/

So E(t)/Emax is a universal function of 𝛾𝜃

We now need to return to an earlier figure to determine how the arrival time is 
related to 𝜃



Spectrum of the radiation received

We will now call M the midpoint of the region where the emitted radiation is 
beamed towards us

The arrival time of radiation 
emitted from point Q relative 
to the middle of the pulse is

Δ𝑡: = 𝑡;: − 𝑡4: = (𝑡;−𝑡4 ) + (𝑙; − 𝑙4)/𝑐 = 𝑟𝜃/𝑣 − 𝑟sin𝜃/c

=
𝜃

𝜔9sin𝛼
−

𝑣
𝑐𝜔9sin𝛼

sin𝜃 =
𝜃

𝜔9sin𝛼
−

1
𝜔9sin𝛼

1 −
1
2𝛾< 𝜃 −

𝜃3

6

~
1

𝜔9sin𝛼
𝜃
2𝛾< +

𝜃3

6 =
1

𝛾=𝜔9sin𝛼
𝜃𝛾 −

𝜃3𝛾3

6 =
3
2𝜔>

𝜃𝛾 −
𝜃3𝛾3

6

So E and 𝜔>𝑡 are both functions of 𝜃𝛾 alone è E is a fixed function of 𝜔>𝑡

Q

C

r
𝜃

𝑟 =
𝑣

𝜔9sin𝛼

𝑀



The pulse shape is a fixed function of 𝜔$𝑡
As plotted below (E(t)/Emax versus 𝜔>𝑡), the pulse shape looks the same whatever 𝛾 and B

i.e. 𝐸(𝑡)/𝐸max = 𝑔(𝜔>𝑡)

So when we take the Fourier transform, we get

ÛE% 𝜔 = 3
<?∫ 𝑒

5@A 𝐸 𝑡 𝑑𝑡 = 3
<?∫ 𝑒

5@A 𝑔 𝜔>𝑡 𝑑𝑡 =
3

<?@-
∫ 𝑒5(@/@-)2 𝑔 𝜉 𝑑𝜉

The integral is a function of 𝜔/𝜔> alone, and thus the spectral shape (i.e. 𝑃 𝜔 /𝑃𝑚𝑎𝑥 is 
a function of 𝜔/𝜔>)

Meaning: spectrum is identical for (𝐵 = 1µ𝐺, 𝛾 = 2×10-) and (𝐵 = 4µ𝐺, 𝛾 = 10-) 
(Both cases have the same 𝜔> which is ∝ 𝛾=𝜔9 ∝ 𝛾<𝐵

E(t)/Emax1

𝜔>𝑡



The pulse shape is a fixed function of 𝜔$𝑡
As plotted below (E(t)/Emax versus 𝜔>𝑡), the pulse shape looks the same whatever 𝛾 and B

i.e. 𝐸(𝑡)/𝐸max = 𝑔(𝜔>𝑡)

So when we take the Fourier transform, we get

ÛE% 𝜔 = 3
<?∫ 𝑒

5@A 𝐸 𝑡 𝑑𝑡 = 3
<?∫ 𝑒

5@A 𝑔 𝜔>𝑡 𝑑𝑡 =
3

<?@-
∫ 𝑒5(@/@-)2 𝑔 𝜉 𝑑𝜉

The integral is a function of 𝜔/𝜔> alone, and thus the spectral shape (i.e. 𝑃 𝜔 /𝑃𝑚𝑎𝑥 is 
a function of 𝜔/𝜔>)

Meaning: spectrum is identical for (𝐵 = 1µ𝐺, 𝛾 = 2×10-) and (𝐵 = 4µ𝐺, 𝛾 = 10-) 
(Both cases have the same 𝜔> which is ∝ 𝛾=𝜔9 ∝ 𝛾<𝐵

E(t)/Emax1

𝜔>𝑡



Power spectrum for synchrotron (𝛾 ≫ 1) radiation

Key features of @T
@`

= +
-8

a"2 VWXq
cCL+

𝐹 `
`"

3)    The function F → 0 as 𝜔 → 0

This must mean that æE* 𝜔 = 0
-�∫ 𝑒

M`F 𝐸 𝑡 𝑑𝑡 → 0 as 𝜔 → 0

which implies that the pulse has zero net area: ∫𝐸 𝑡 𝑑𝑡 = 0

This makes sense, because integrating over one orbit is equivalent to placing orbiting 
electrons everywhere on a circle

This is just a current loop, which has no electric
dipole moment (and a constant magnetic dipole
moment) è no long range E-field decreasing as 
as only 1/R è no radiation



Synchrotron spectrum for a power-law distribution of energies

So far, we have only considered the emission of relativistic electrons 
with a single energy 𝛾𝑚J𝑐-

𝑑𝑃
𝑑𝜔

=
3
2𝜋

𝑞3𝐵 sin𝛼
𝑚J𝑐-

𝐹
𝜔
𝜔L

where 𝜔L is proportional to 𝛾2 𝐵

But cosmic rays have a roughly power law distribution of energies over 
a huge range of 𝛾

Let’s suppose that the number of electrons with Lorentz factor 𝛾 to 
𝛾 + 𝑑𝛾 is 𝑑𝑁 = 𝛾%� 𝑑𝛾 where 𝑝 is some positive number.  

The integral ∫𝑑𝑁 will diverge either at large 𝛾 (if 𝑝 < 1) or small 𝛾 (if 
𝑝 > 1) (or both if 𝑝 = 1), so let’s assume that this power law applies 
only over some large range of Lorentz factors, 𝛾1 to 𝛾2



Cosmic ray energy spectrum 
CR are observed over a remarkable range of energies

Maximum energy detected to date: 50 J 
(~ K.E. of a fastball in Little League baseball) 

Total energy density ~  1 eV cm–3

… somewhat LARGER than that of

starlight, the CMB, or the Galactic B-field

Cosmic ray spectrum (credit: HAP / A. Chantelauze)

50 J

Draine, 2011



Synchrotron spectrum for a power-law distribution of energies

The power radiated by this collection of electrons is then

𝑑𝑃�^�
𝑑𝜔

= 3
𝑑𝑃
𝑑𝜔

𝑑𝑁 = 3
n,

n+
𝑑𝑃
𝑑𝜔

𝛾%�𝑑𝛾 ∝ 3
n,

n+

𝐹(𝜔/𝜔L) 𝛾%�𝑑𝛾

Now let’s define 𝑥 ≡ 𝜔/𝜔L = 𝑘𝜔/𝛾- ⇒ 𝛾 = 𝑘𝜔/𝑥

where 𝑘 is some constant that depends on B but not 𝛾

𝑑𝑃�^�
𝑑𝜔

∝ 3
/,

/+

𝐹 𝑥 (𝑘𝜔/𝑥)%�/- 𝑑( 𝑘𝜔/𝑥) ∝ 𝜔(0%�)/- 3
/,

/+

𝐹 𝑥 𝑥(�%+)/-𝑑𝑥

If 𝜔L for 𝛾0≪ 𝜔≪ 𝜔L for 𝛾-, then 𝑥0≪ 1 and 𝑥-≫ 1.  We can then take 
the integral from 0 to ∞, and the only frequency dependence is 𝜔(0%�)/-



Synchrotron spectrum for a power-law distribution of energies

Through this analysis, we find that a power law distribution of 
electron energies yields a power law distribution of emitted 
frequency but the power-law indices are different

𝑑𝑁 = 𝛾'/ 𝑑𝛾 ⇒ 𝐹+ ∝ 𝜐'0

where 𝑠 = v
p (𝑝 − 1)

We call 𝑠 the “spectral index”
(equals –2 in the Rayleigh Jeans limit, ~0.1 for Bremsstrahlung)

Typically, the spectral index for synchrotron is ~0.7, corresponding 
to 𝑝 = 2𝑠 + 1 ~ 2.4



Synchrotron self-absorption

As in the case of Bremsstrahlung, synchrotron radiation can 
become optically-thick at low frequencies

However, with a power-law distribution of energies instead of a 
thermal distribution, the spectral index is  –5/2 instead of -2.

lo
g𝐹

d

log 𝜈

𝑗7
DE

𝐹7

Slope ~ − 0.7

Slo
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 ~
+
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5

log
2𝜋𝑞𝐵𝛾22
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Inverse Compton radiation

In addition to emitting synchrotron radiation, relativistic electrons also scatter 
radiation, especially the cosmic microwave background (CMB).  This gives rise to 
to what is known as “inverse Compton radiation”

CMB photons have a typical energy 

𝜖 ~ 𝑘𝑇��x = 3.77 × 10%0terg ~ 2.36 × 10%. eV

Consider a photon incident at angle 𝜃 to the particle velocity as shown below

Electron

Photon

𝜃
xv ~ c

Picture in the lab frame 𝑆
(observer at rest in Galaxy)



Inverse Compton radiation

In the rest frame of the electron, 𝑆C, the photon energy is 𝜖C= 𝛾𝜖 1 + 𝛽𝜇

For an isotropic distribution of photons in the lab frame, the average value of 
1 + 𝛽 cos 𝜃 is 1, and thus the typical CMB photon is highly blueshifted as viewed 

in the electron rest frame: 𝜖′ = 𝛾𝜖

Q1:  𝛾 is the average value of 𝜖C/𝜖, but what is the minimum value (if 𝛾 ≫ 1)?

Electron
xv ~ c

Photon

𝜃
xv ~ c



Inverse Compton radiation

In the rest frame of the electron, 𝑆C, the photon energy is 𝜖C= 𝛾𝜖 1 + 𝛽𝜇

For an isotropic distribution of photons in the lab frame, the average value of 
1 + 𝛽 cos 𝜃 is 1, and thus the typical CMB photon is highly blueshifted as viewed 

in the electron rest frame: 𝜖′ = 𝛾𝜖

Q1:  𝛾 is the average value of 𝜖C/𝜖, but what is the minimum value (if 𝛾 ≫ 1)?

Answer: at 𝜇 = −1 (i.e. 𝜃 = 𝜋 ⇒ photon coming directly from behind)
we have 𝜖C = 𝛾𝜖 1 − 𝛽 ~ 𝛾𝜖/[2𝛾-] = 𝜖/[2𝛾]
Some photons (with 𝜃 very close to p) are redshifted, but most are blueshifted

Electron
xv ~ c

Photon

𝜃
xv ~ c



Inverse Compton radiation

In the rest frame of the electron, 𝑆C, the scattering is coherent provided 
𝜖′ ≪ 𝑚J𝑐- (recoil negligible)

Thus, the energy of the scattered photon in the electron rest frame is
𝜖0C = 𝜖C = 𝛾𝜖 1 + 𝛽 cos 𝜃

Suppose the scattered photon emerges at angle 𝜃0′ to the x-axis (as measured in 
the electron rest frame 𝑆C)

Converting back to the lab frame, this scattered photon has energy
𝜖0 = 𝛾𝜖0′ 1 + 𝛽 cos 𝜃0′

Electron
x

Incoming photon
𝜃′

x
𝜃3′

Scattered photon

Picture in the electron
rest frame 𝑆′



Inverse Compton radiation

So we have
𝜖~ 𝑘𝑇��x Energy of CMB photon in 𝑆 frame
𝜖C = 𝛾𝜖 1 + 𝛽 cos 𝜃 Energy of CMB photon in the 𝑆′ frame
𝜖0C = 𝜖C Energy of scattered photon in the 𝑆′ frame
𝜖0 = 𝛾𝜖0′ 1 + 𝛽 cos 𝜃0′ Energy of scattered photon in the 𝑆 frame

Q2: what is the typical energy of the scattered photon in the lab frame?

Electron
x

Incoming photon
𝜃′

x
𝜃3′

Scattered photon

Picture in the electron
rest frame 𝑆



Inverse Compton radiation

So we have
𝜖~ 𝑘𝑇��x Energy of CMB photon in 𝑆 frame
𝜖C = 𝛾𝜖 1 + 𝛽 cos 𝜃 Energy of CMB photon in the 𝑆′ frame
𝜖0C = 𝜖C Energy of scattered photon in the 𝑆′ frame
𝜖0 = 𝛾𝜖0′ 1 + 𝛽 cos 𝜃0′ Energy of scattered photon in the 𝑆′ frame

Q2: what is the typical energy of the scattered photon in the lab frame?

Answer: 𝜖0 = 𝛾-𝜖 1 + 𝛽 cos 𝜃)(1 + 𝛽 cos 𝜃0′ = 𝛾-𝜖

Average = 1 because CMB is isotropic in 𝑆
Average = 1 because of forward-backward symmetry in 𝑆′

Electron
x

Incoming photon
𝜃′

x
𝜃3′

Scattered photon

Picture in the electron
rest frame 𝑆



Inverse Compton radiation

𝜖0 = 𝛾-𝜖 (1 + 𝛽 cos 𝜃)(1 + 𝛽 cos 𝜃0′)

So, the lab frame,  the scattered radiation has typical energy 𝛾-𝜖 and maximum 
energy 4 𝛾-𝜖

For a Lorentz factor of 104, this yields a typical energy 

𝜖0~ 108 2 × 10%. eV = 20 keV

(microwaves scattered to yield X-rays!)

This process works so long as 𝜖C is less than ~ 𝑚J𝑐-,
i.e. for 𝛾 up to ~𝑚J𝑐-/ 𝜖 = �00 ���

- × 0#fT ��
~2.5 × 10�

In principle, it can therefore produce gamma rays with energies up to 
𝜖0 ~ 𝛾-𝜖~ (𝑚J𝑐-/𝜖)- 𝜖 ~ (𝑚J𝑐-)-/𝜖 ~100� eV 



Lecture 19
Inverse Compton radiation II

Goals: understand

Spectrum of IC radiation: 
monoenergetic case
power-law distribution

Compton scattering by non-relativistic thermal electrons



Inverse Compton radiation

Let’s work out the power generated by this process.  To do so, we need to find the 
mean intensity of the radiation in the electron rest frame, 𝐽′ = 𝑐𝑢′/4p.
The scattered power will then be 𝑃C = 4𝜋𝐽C𝜎*

Consider first a beam of photons travelling at angle 𝜃 to the direction of motion

The photon 4-momentum is 𝑝j = 𝜖/𝑐
𝒑 =

𝜖/𝑐
−𝜖cos𝜃/𝑐
−𝜖sin𝜃/𝑐

0

Suppose there are 𝑛 photons per unit volume.  Then 𝑢 = 𝑛𝜖 and 𝑢′ = 𝑛′𝜖′

Electron
xv ~ c

hn = 𝜖

𝜃
xv ~ c



Inverse Compton radiation

How does 𝑛 transform to the 𝑆′ frame?  We can construct a 4-vector exactly 

analogous to the 4-current 𝑗j = 𝑞 𝑛𝑐
𝑛𝒗 .  It is 𝑉j =

𝑛𝑐
𝑛𝒗𝒑 =

𝑛𝑐
−𝑛𝑐cos𝜃
−𝑛𝑐sin𝜃

0
So 𝑛 must transform exactly the same way as 𝜖

In other words, the photon density in the 𝑆C frame is 𝑛C = 𝛾𝑛 1 + 𝛽 cos 𝜃
exactly in the same way that 𝜖C = 𝛾𝜖 1 + 𝛽 cos 𝜃

In the 𝑆′ frame, the energy density associated with these photons is 

𝑢C = 𝑛C𝜖C = 𝛾2 1 + 𝛽 cos 𝜃 2 𝑛 𝜖 = 𝛾2 1 + 𝛽 cos 𝜃 2 𝑢

If we now consider an isotropic distribution of photons instead of a beam, we

obtain 𝑢C = 𝛾2 1 + 2𝛽 cos 𝜃 + 𝛽2 cos2 𝜃 𝑢 = 𝛾- 1 + o+

+
𝑢



Inverse Compton radiation

The scattered power is then 𝑃C = 4𝜋𝐽C𝜎* = 𝑐𝑢′𝜎*

where 𝐽C = 𝑐𝑢′/ 4𝜋 is the mean intensity of the radiation in the 𝑆C frame

As we discussed previously, the scattered power is invariant, so in the lab frame we 
also have

𝑃𝑠 = 𝑃C = 𝑐𝑢C𝜎* = 𝛾- 1 +
𝛽-

3
𝑢𝜎*𝑐

This is the rate at which power is added to the radiation field due to blueshifted
scattered photons.  We have to subtract the rate at which CMB photons are 
removed, 𝑢𝜎*𝑐, to obtain the net power produced by the inverse Compton process

𝑃𝐼𝐶 = 𝑃C = 𝑐𝑢C𝜎* − 𝑢𝜎*𝑐 = 𝛾- + o+n+

+
− 1 𝑢 𝜎*𝑐 =

.
+
𝛽-𝛾-𝑢 𝜎*𝑐

using 𝛾- − 1 = 𝛽- 𝛾-

This result is true even if 𝛾 isn’t >> 1



Inverse Compton radiation

𝑃𝐼𝐶 =
.
+
𝛽-𝛾-𝑢 𝜎*𝑐 may look vaguely familiar!

Recall the result we got for synchrotron radiation in Lecture 17

𝑃synch =
.
+ 𝑐 𝜎* 𝑈2 𝛽

- 𝛾𝟐

The ratio of these is just the ratio of the photon energy density
to the magnetic field energy density

𝑃��
𝑃V�X]�

=
𝑢
𝑈2

=
𝑎𝑇CMB.

𝐵-/8𝜋

Putting in numbers, we find (amazingly) that for 𝑇CMB = 2.73 K

𝑃��
𝑃V�X]�

=
3.25 𝜇𝐺

𝐵

-
~ 0.3



Spectrum of Inverse Compton Radiation for a single value of g

In the limit of large g, the spectrum extends to 𝜖0,��� = 4 𝛾-𝜖, and can be 
expressed as a function of 𝑥 = 𝜖0/𝜖0,��� alone

i.e. @T@�,
= @T

@�, ���
𝑓(𝑥)

This makes sense, because 𝜖0 = 𝛾-𝜖 (1 + 𝛽 cos 𝜃)(1 + 𝛽 cos 𝜃0′)
è 𝑥 = 𝜖0 /𝜖0,��� =(1 + 𝛽 cos 𝜃)(1 + 𝛽 cos 𝜃0′)/4

𝑓 𝑥 can be written in a fairly simple
analytic form

𝑓 𝑥 = 2𝑥 ln𝑥 + 𝑥 + 1 − 2𝑥2

(Blumenthal & Gould, Rev Mod Physics, 1970)

𝑓 𝑥

𝑥 = 𝜖3/𝜖3,TUV



Spectrum of Inverse Compton Radiation for a power law distribution of 𝛾

As before, we assume a power-law distribution of electron energies
𝑑𝑁 = 𝛾%� 𝑑𝛾 over some wide range of Lorentz factors from  𝛾1 to 𝛾2

The power radiated by this collection of electrons is then

𝑑𝑃WXW
𝑑𝜖3

= 6
𝑑𝑃
𝑑𝜖3

𝑑𝑁 ∝ 6
Y#

Y"

𝑓(𝜖3/𝜖3,TUV) 𝛾,Z𝑑𝛾

Now let’s define 𝑥 ≡ 𝜖3/𝜖3,TUV = 𝜖3/(4𝜖𝛾<) ⇒ 𝛾 = 𝜖3/(4𝜖𝑥)

𝑑𝑃WXW
𝑑𝜖3

∝ 6
[#

["

𝑓 𝑥 (𝜖3/4𝜖𝑥),Z/< 𝑑( 𝜖3/4𝜖𝑥) ∝ 𝜖3(3,Z)/< 6
[#

["

𝑓 𝑥 𝑥(Z,=)/<𝑑𝑥

If 𝜖3,TUV for 𝛾3 ≪ 𝜖3 ≪ 𝜖3,TUV for 𝛾<, then 𝑥3 ≪ 1 and 𝑥< ≫ 1.  We can then take the 
integral from 0 to ∞, and the only frequency dependence is 𝜖3(3,Z)/<

Spectral index 𝑠 = (𝑝 − 1)/2 exactly as for synchrotron radiation!



Synchrotron self-Compton process

Not only can relativistic electrons scatter the CMB, they can also scatter 
the synchrotron radiation that they themselves emit.  This is known as
the synchrotron self-Compton (SSC) process 

The figure at the right shows the 
spectrum of the blazar Mrk 501
(from Konopelko et al. 2003, ApJ)

The peak around 1019 Hz (40 keV) 
is due to synchrotron radiation 

The peak around 1027 Hz (4 TeV) 
is due to SSC
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Aside: how are these TeV gamma-rays detected?

While lower energy gamma rays can be observed with satellite 
observatories, TeV gamma rays can be detected indirectly from the ground

They interact with nuclei in the atmosphere (at an altitude of 10 – 20 km) to 
produce highly relativistic electron-positron pairs.  These are travelling faster 
than the speed of light in air and give rise to Cherenkov radiation that can be 
detected from the ground è Cherenkov light pool of diameter ~ 250 m 
containing ~ 100 photons per m2 in a pulse of duration ~ few ns.

H.E.S.S. II telescope in Namibia



Scattering in hot (but non-relativistic) thermal plasmas

We now turn to another case that can be treated with our expression

Clusters of galaxies are typically filled with thermal electrons that are 
hot but non-relativistic.  But our expression above applies even for non-
relativistic electrons with 𝛾~1

Suppose we have 𝑛 photons of energy 𝜖 per unit volume.  The energy 
density is 𝑢 = 𝑛𝜖

The rate at which scattering occurs is 𝑆 = 𝑛 𝜎*𝑐 per electron

The mean energy imparted to each photon on a single scattering is 
therefore 

Δ𝜖 = 𝜖1 − 𝜖 =
𝑃𝐼𝐶
𝑆 =

4
3𝛽

-𝛾-𝑢 𝜎* 𝑐
𝑛 𝜎*𝑐

=
4
3𝛽

-𝛾-𝜖 ~
4
3𝛽

-𝜖

𝑃𝐼𝐶 =
-
=
𝛽<𝛾<𝑢 𝜎%𝑐



Scattering in hot (but non-relativistic) thermal plasmas

The increase in photon energy per scattering is Δ𝜖 = .o+�
+

, which implies 
a fractional increase

Δln𝜖 =
Δ𝜖
𝜖
=
4𝛽-

3
(≪ 1 for a nonrelativistic electron)

If there is a distribution of electron velocities (e.g. in a thermal plasma) 
then the average fractional increase per scattering is

Δln𝜖 =
4 𝛽-

3

For a Maxwell-Boltzmann distribution of electron densities at 
temperature 𝑇, the mean energy is  0-𝑚J 𝑣- = 0

-𝑚J𝑐- 𝛽- = +
-𝑘𝑇

implying 

𝛽- =
3𝑘𝑇
𝑚J𝑐-

and thus Δln𝜖 =
4𝑘𝑇
𝑚J𝑐-



Scattering in hot (but non-relativistic) thermal plasmas

For a single scattering, we had Δln𝜖 = .)*
cCL+

So if a photon suffers 𝑁 scatterings within a hot plasma, the total 
average increase in ln𝜖 is .)*cCL+

𝑁

This is called the Compton y-parameter: the mean energy of a photon 
after 𝑁 scatterings is therefore 𝜖 exp(𝑦)

Note that for large 𝑁,  𝑦 does not need to be < 1 even though .)*
cCL+

≪ 1

In clusters of galaxies, CMB photons can be upscattered in energy by this 
process, which is called the Sunyaev-Zeldovich effect. 



Lecture 20
SZ-effect, Propagation of EM waves through a plasma

Goals: understand

Sunyaev-Zeldovich effect

Currents driven when EM waves propagate through a 
conductive medium

The dispersion relation for a plasma and its astrophysical 
applications 

Faraday rotation



Number of scatterings

If the optical depth is small, 𝜏J� = ∫𝑛J𝜎*𝑑𝑠 ≪ 1, then almost all photons suffer 
0 or 1 scattering.  The mean number of scatterings (expectation value) is simply 
𝜏J�, and the Compton y-parameter is 

𝑦 = 3𝑛J𝜎*
4𝑘𝑇
𝑚J𝑐-

𝑑𝑠

On the other hand, if 𝜏J� ≫ 1, then photons suffer of order 𝜏J�- scatterings 
because they do a random walk.  

Recall, each step in the random walk has length 𝑙 = 1/(𝑛J𝜎*), and after 𝑁 steps 
the distance travelled is 𝑁0/-𝑙.  So to traverse a cloud of size ~𝐷 the number of 
required scatterings is given by 

𝑁0/-𝑙 ~ 𝐷 ⇒ 𝑁~ 𝐷2/𝑙- = 𝜏J�-

So a useful rough estimate is 𝑦 ~ .)*
cCL+

max(𝜏J�, 𝜏J�-) 

For a rich galaxy cluster, we might have 𝜏J�~10%+, 𝑇~10gK ⇒ 𝑦 ~10%.



The Sunyaev-Zeldovich effect

When CMB photons encounter a galaxy cluster filled with hot gas, their 
energies are increased by a typical factor 𝑒>

This increases the energy density 𝑢 without adding any photons, so the 
resultant spectrum is clearly no longer a blackbody.  

Proof: the peak of the spectrum shifts 
to a higher frequency 𝜈����′ = 𝑒>𝜈����
and the energy density shifts by the 
same factor to 𝑢′ = 𝑒>𝑢. But for a 
blackbody 𝜈����∝ 𝑇 whereas 𝑢 ∝ 𝑇.

http://www.astro.ucla.edu/~wright/SZ-spectrum.html



The Sunyaev-Zeldovich effect

http://www.astro.ucla.edu/~wright/SZ-spectrum.html

To first order, the change in intensity is found to be governed by

The lower frequency region is most typically observed, so the SZE shows up as 
a decrement in the intensity 

Maps of Virgo and Coma clusters from Planck collab. (2015)



Propagation of EM radiation in a plasma

Astrophysical gas containing free electrons (e.g. the interstellar medium) is 
conductive, leading to currents that modify Maxwell’s equations

Let’s consider the electron equation of motion with a plane-parallel EM wave 
𝑬 = 𝑬𝟎 exp 𝑖 𝒌. 𝒓− 𝜔𝑡 and assuming no external B-field and 𝑣 ≪ 𝑐:

𝑚J𝒗̇ = −𝑒𝑬 ~ − 𝑒𝑬𝟎exp(𝑖 𝒌. 𝒓− 𝜔𝑡 )

Writing 𝒗 = 𝒗𝟎 exp 𝑖 𝒌. 𝒓− 𝜔𝑡

we find 

Hence the current density is 𝒋 = 𝒋𝟎 exp 𝑖 𝒌. 𝒓− 𝜔𝑡 with

𝒋𝟎 = −𝑛J𝑒𝒗𝟎 =
𝑖𝑛J𝑒-

𝜔𝑚J
𝑬𝟎 = 𝜎𝑬𝟎

where 𝜎 is the conductivity (pure imaginary and positive multiple of i) è current 
lags E-field)

𝒗𝟎 =
𝑒

𝑖𝜔𝑚F
𝑬𝟎



Propagation of EM radiation in a plasma

Do these electron motions ever lead to a non-zero charge density, 𝜌

Let’s entertain the possibility by writing 𝜌 = 𝜌# exp 𝑖 𝒌. 𝒓− 𝜔𝑡

Then charge conservation tells us

=�
=F
+ 𝜵. 𝒋 = 0 ⇒ −𝑖𝜔𝜌#+ 𝑖𝒌. 𝒋𝟎 = 0

Multiplying by 𝜎, we obtain 𝑖𝜎𝒌. 𝒋𝟎 = 𝑖𝜔𝜎𝜌# ⇒ 𝑖𝒌. 𝑬𝟎 = 𝑖𝜔𝜎𝜌#

Moreover, 𝜵. 𝑬 = 4π𝜌 ⇒ 𝑖𝒌. 𝑬𝟎 = 4π𝜌#

Combining these two equations in red, we find that
𝜌# 4π − 𝑖𝜔𝜎 = 0 ⇒ 𝜌# = 0

This also implies that the wave is transverse, just as it was in a vacuum



Dispersion relation (i.e relationship between 𝜔 and 𝑘

Ampere’s law is modified by the presence of currents

𝜵2𝑨 − 0
L+
=+𝑨
=F+

= −4𝜋𝒋/c

Substituting the plane-wave solution 𝑨 = 𝑨𝟎𝑒M(𝒌.𝒙%`F) we obtain

−𝑘-𝑨𝟎 +
𝜔-

𝑐-
𝑨𝟎 = −

4𝜋
𝑐
𝒋𝟎 = −

4𝜋𝜎
𝑐
𝑬𝟎 = −

4𝜋𝜎
𝑐

𝑖𝜔
𝑐
𝑨𝟎 − 𝒌𝜙#

Hence, equating the components perpendicular to 𝒌

−𝑘- +
𝜔-

𝑐-
= −

4𝜋𝜎
𝑐

𝑖𝜔
𝑐

= −
4𝜋
𝑐

𝑖𝑛J𝑒-

𝜔𝑚J

𝑖𝜔
𝑐

=
4𝜋𝑛J𝑒-

𝑚J𝑐-

⇒ 𝜔- − 𝑘-𝑐- =
4𝜋𝑛J𝑒-

𝑚J
≡ 𝜔𝑝

-

where 𝜔𝑝 =
.8!CJ+

cC
is called the plasma frequency



Dispersion relation (i.e relationship between 𝜔 and 𝑘)

𝜔𝑝 =
4𝜋𝑛F𝑒<

𝑚F
= 5.64× 10-

𝑛F
cm,= rad s

,3

⇒ 𝜐𝑝 =
𝜔𝑝

2𝜋 =
𝑛F𝑒<

𝜋𝑚F
= 9.0

𝑛F
cm,= kHz

The dispersion relation 𝜔- − 𝑘-𝑐- = 𝜔𝑝
-

⇒ 𝑘 =
𝜔- − 𝜔𝑝

-

𝑐 𝜔 = 𝜔𝑝
- + 𝑘-𝑐-

𝑘 is only real above the plasma frequency, below which waves cannot propagate

For 𝜔 < 𝜔𝑝 , 𝑘 = 𝑖 `,
+%`+

L
, an we have an “evanescent” wave in which the 

amplitude declines exponentially.  This leads to reflection at the interface 
between a region with 𝜔 > 𝜔𝑝 and 𝜔 < 𝜔𝑝



Dispersion relation (i.e relationship between 𝜔 and 𝑘)

FM radio waves (87 – 107 MHz) are not reflected: need line-of-sight to transmitter

Example: Earth’s ionosphere
where 𝑛Ë~ 10w− 10á cmlÊ

⇒ 𝜐𝑝 = few MHz

AM radio waves (530 – 1600 kHz) are 
reflected off the ionosphere and can 
travel large distances bouncing between 
the Earth and the ionosphere

Sky & Telescope graphic

J. V. Evans and T. Hagfors, Radar Astronomy, 1968



Phase and group velocity

When waves travel in a “dispersive” medium (i.e. where 𝜔/𝑘 is a function of 𝜔), 
there are two key velocities

1) Phase velocity  

𝑣S =
𝜔
𝑘
=

𝑐𝜔

𝜔- − 𝜔𝑝
-
= 1 −

𝜔𝑝
-

𝜔-

%0/-

𝑐

This is the speed (> 𝑐) at which the peaks of a sine wave move through space

The index of refraction is 𝑛I ≡ 𝑐/ 𝑣S = 1 − `+

`,
+

0/-
< 1

2) Group velocity  

𝑣1 =
𝜕𝜔
𝜕𝑘 =

𝜕
𝜕𝑘 𝜔𝑝

- + 𝑘-𝑐- =
𝑘𝑐

𝜔𝑝
- + 𝑘-𝑐-

=
𝑘𝑐
ω =

𝑐2

𝑣S
= 1 −

𝜔𝑝
-

𝜔-

60/-

𝑐

This is the speed (< 𝑐) at which a wavepacket (pulse) will propagate, and is the 
speed at which information can travel through a plasma



Pulsar dispersion

The travel time for a pulse emitted by a pulsar at distance D is

𝜏 = 3
𝑑𝑠
𝑣1
= 3 1 −

𝜔𝑝
-

𝜔-

%0/- 𝑑𝑠
𝑐

~ 3 1 +
𝜔𝑝

-

2𝜔-
𝑑𝑠
𝑐

=
𝐷
𝑐
+ 3

𝜔𝑝
-

2𝑐𝜔-
𝑑𝑠, provided 𝜔 ≫ 𝜔𝑝

There is a frequency-dependent delay, 

∆𝜏 = 3
𝜔𝑝

-

2𝑐𝜔-
𝑑𝑠 =3

4𝜋𝑛J𝑒-

2𝑚J𝑐𝜔-
𝑑𝑠 =

2𝜋𝑒-

𝑚J𝑐𝜔-
3𝑛J 𝑑𝑠

We can also write this 

∆𝜏 =
𝑒-

2𝜋𝑚J𝑐3
𝜆-𝑁J = 4.6

𝑁J
cm%+pc

𝜆
cm

-
µs

where 𝑁J = ∫𝑛J 𝑑𝑠 is the electron column density (sometimes called the 
dispersion measure)



Pulsar dispersion

Measurements of pulsar dispersion measure are a key method for determining 
the electron density in the interstellar medium

Phillips and Wolszczan 1992

If the distances are known (e.g.
from trigonometric parallax), 
we can estimate then mean 
electron density along the sight 
line

𝑛F =
𝑁F
𝐷

Typical values are a few x 0.01 cm-3

(for sight-lines that do not intersect 
known HII regions)

“Warm ionized medium” (WIM)



Lecture 21
Plasma effects II / Atoms

Goals: understand

Faraday rotation and its astrophysical applications
Structure of atoms 



Effect of interstellar magnetic fields

as before

The dispersion effect we considered first is 
independent of the polarization state of the wave

But now let’s turn to circularly polarized radiation 
and reconsider the motion of an electron.  The 
electric field associated with the EM wave rotates 
in a circle:

The electron rotates at speed 𝑣 in a circle, with a 
centripetal acceleration of magnitude

𝑎 =
𝑣# -

𝑟
= 𝑣# 𝜔 =

−𝑒𝐸#
𝑚J

𝑣(𝑡) lags 𝑎 ⇒ 𝑣# =
%MJbS
cC`

⇒ 𝑗# = −𝑛J𝑒𝑣# =

𝐸 𝑡 = 𝐸_ ü𝒙 ± 𝑖ü𝒚 𝑒,5@A
𝑣 𝑡 = 𝑣_ ü𝒙 ± 𝑖ü𝒚 𝑒,5@A
𝑗 𝑡 = 𝑗_ ü𝒙 ± 𝑖ü𝒚 𝑒,5@A

ü𝒙

ü𝒚

𝐸 𝑡

𝑣 𝑡
-e

𝑖𝑛F𝑒<𝐸_
𝑚F𝜔

⇒ 𝜎 =
𝑖𝑛F𝑒<

𝜔𝑚F



Effect of interstellar magnetic fields

Suppose there is now a fixed interstellar magnetic field 𝐵∥ along the 
± z-axis.  We now have

𝑎 = 𝑣# 𝜔 = −
𝑒
𝑚J

𝐸# ±
𝑣# 𝐵∥
𝑐

= −
𝑒
𝑚J

𝐸# ± 𝑣# 𝜔2

Hence 

𝑣# =
−𝑖𝑒𝐸#

𝑚J(𝜔 ± 𝜔2)
⇒ 𝑗# =

𝑖𝑛J𝑒-𝐸#
𝑚J(𝜔 ± 𝜔2)

⇒ 𝜎 =
𝑖𝑛J𝑒-

𝑚J(𝜔 ± 𝜔2)

The dispersion relation becomes
−𝑘- + `+

L+ = − .8h
L

M`
L = `

`±``
𝜔�-/c2

𝑘 =
𝜔- − 𝜔𝑝

-/(1 ± 𝜔2/𝜔)
𝑐

~
𝜔
𝑐

1 −
𝜔𝑝

-

2𝜔-
1 ±

𝜔2
𝜔

provided 𝜔 ≫𝜔𝑝≫𝜔2



Effect of interstellar magnetic fields

𝑘 =
𝜔- − 𝜔𝑝

-/(1 ± 𝜔2/𝜔)
𝑐

~
𝜔
𝑐

1 −
𝜔𝑝

-

2𝜔-
1 ±

𝜔2
𝜔

The difference in wavevector for the two opposite circular polarizations is 
therefore 

∆𝑘 =
𝜔𝑝

-𝜔2
𝜔-𝑐

The difference in phase is ∆𝜙 = ∫∆𝑘 𝑑𝑠

Consider now the case of a linearly polarized wave (initially with E vertical), 
which can be considered the superposition of two circularly-polarized waves 
with opposite polarizations.

= + =+ ∆𝜙

∆𝜙/2

Polarization direction rotates through ∆𝜙/2

Phase shift
∆𝜙 during 
propagation



Faraday rotation

This phenomenon is called Faraday rotaxon

The rotaxon angle is

∆𝜃 =
∆𝜙
2
= 3

∆𝑘
2
𝑑𝑠 = 3

𝜔𝑝
-𝜔2

2𝜔-𝑐
𝑑𝑠

= 3
1

2𝜔-𝑐
4𝜋𝑛J𝑒-

𝑚J

𝑒𝐵
𝑚J𝑐

𝑑𝑠 =
𝜆-𝑒+

2𝜋𝑚J
-𝑐.

3𝑛J𝐵∥𝑑𝑠

= 8.1×10%.
𝜆
cm

- 𝑅𝑀
cm%+pc µG

rad

Where 𝑅𝑀 = ∫𝑛J𝐵∥𝑑𝑠 is called the “rotation measure”



Faraday rotation

∆𝜃 =
𝜆-𝑒+

2𝜋𝑚J
-𝑐.

3𝑛J𝐵∥𝑑𝑠 = 8.1×10%.
𝜆
cm

- 𝑅𝑀
cm%+pc µG

rad

Notes: 

(1) Faraday rotation is only sensitive to the component of 𝑩 along the 
line of sight.  The component in the “plane of the sky” is irrelevant 
since for that component the time-averaged 𝒗 × 𝑩 is zero

(2) The sign of the rotation angle depends on the sense of 𝐵∥ (whether 
towards or away from us).  A changing sense along the sight-line can 
lead to cancellation that reduces the rotation measure.

(3) The ratio of the rotation measure∫𝑛J𝐵∥𝑑𝑠 to the dispersion 
measure ∫𝑛J𝑑𝑠 yields an estimate of the typical magnetic field 
(although note point (2) above)



Faraday rotation

∆𝜃 =
𝜆-𝑒+

2𝜋𝑚J
-𝑐.

3𝑛J𝐵∥𝑑𝑠 = 8.1×10%.
𝜆
cm

- 𝑅𝑀
cm%+pc µG

rad

Notes: 

(4) If there is a significant RM from the front of a synchrotron emission 
to the back, Faraday rotation mixes radiation with different 
emergent polarization directions => decrease in overall polarization 
fraction

This effect is known as
Faraday depolarization

http://www.astro.ucla.edu/~wright/SZ-spectrum.html



Interaction of radiation with atoms: astrophysical motivation

A) Bound-bound transitions of atoms (and atomic ions) play a critical role 
in astrophysics as

1) coolants of gas (except at very high temperature)
2) a source of opacity in stars
3) diagnostics of abundances, redshifts, density, temperature

B) Bound-free/free-bound transitions determine the ionization state of 
astrophysical gas through

1) Photoionization: X6! + ℎ𝜈 → X6(!60) + 𝑒

Rate per unit volume

2) Radiative recombination: X6(!60) + 𝑒 → X6! + ℎ𝜈

Rate per unit volume  

= 6
4𝜋𝐽7
ℎ𝜈 𝜎7𝑝𝑖 𝑛 X`6 𝑑𝜈

= 𝛼a 𝑇 𝑛F𝑛 X`(6`3)



Energy levels for atoms: hydrogen (and H-like)

Simplest case: only one electron

The state of the electron is described by five quantum numbers:

𝑛 = principal quantum number, which ranges from 1 to ∞

𝑙 = orbital angular momentum (in units of ℏ), which ranges from 0 
to 𝑛 − 1 and is coded with the letters 𝑠, 𝑝, 𝑑, 𝑓, 𝑔, ℎ…

𝑚" = azimuthal quantum number, which ranges from −𝑙 to 𝑙
and is the projection of the orbital angular momentum onto some 
axis

𝑠 = ½ is the electronic spin

𝑚#= ± ½, is the projection of the spin onto some axis



Energy levels for atoms: hydrogen (and H-like)

The eigenstates are solutions to the time independent Schrodinger 
equation

𝐻𝜓 = 𝐸𝜓

For a simple Coulomb potential, the Hamiltonian 𝐻 is

𝐻 = −
ℏp

2𝑚Ë
∇p −

𝑍𝑒p

𝑟

And the energy of system depends only on 𝑛 (neglecting the effects 
of spin and quantum electrodynamics)

𝐸~ = −𝑍2
𝑅𝑦
𝑛p



Energy levels for atoms: hydrogen (and H-like)

𝐸6 = −𝑍2
𝑅𝑦
𝑛<

Here the 𝑅𝑦 = 𝑒2/2𝑎0 ~ 13.59 eV is called the “Rydberg” 

is the Bohr radius,

and α = J!

ℏL
~ 0
0+w

is the fine-structure constant

Note: if we measure length in units of 𝑎0, and energy in units of 𝑒2/𝑎0 (sometimes 
called atomic units), the Hamiltonian becomes dimensionless and can be written

𝐻 = −
1
2
∇$ −

𝑍
𝑟

Hence 𝑅𝑦 = cCJ#

-ℏ+
= 0

-
α2𝑚J𝑐2

Actually, this expression assumes that the nuclear mass 𝑚c ≫ 𝑚F so the center of the 
nuclear potential is coincident with the center of mass.  To be more precise, we need to 
replace 𝑚F with the “reduced mass” 𝜇 =𝑚F 𝑚c / (𝑚F +𝑚c)

𝑎0 =
ℏ<

𝑚F𝑒<
=

𝑒<

ℏ𝑐

,< 𝑒<

𝑚F𝑐<
= 𝛼,<𝑟_ = 0.529 ×10,dcm



Lecture 22
Atoms

Goals: understand

Multielectron atoms
Spin-orbit coupling



Multielectron atoms

The energy levels of multielectron atoms are far more complex.
The crudest description of a state involves simply specifying the 
number of electrons in each “orbital” (defined by specific values of 𝑛
and 𝑙.)

Example: the ground state of atomic carbon is 1𝑠2 2𝑠2 2𝑝2

This is called the electronic configuration

Pauli exclusion principle: maximum number of electrons in state 𝑛𝑙 is 
number of 𝑚# values × number of 𝑚" values 
= (2𝑠 + 1)(2𝑙 + 1) = 2(2𝑙 + 1)

i.e. 2, 6, 10, 14, …. for 𝑛𝑠, 𝑛𝑝, 𝑛𝑑, 𝑛𝑓



Multielectron atoms

C 1𝑠2 2𝑠2 2𝑝2

In this case, the 1𝑠2 electrons have zero orbital angular momentum 
are paired with opposite spins so their total spin and orbital angular 
momentum are both zero.  The same is true of the 2𝑠2 electrons.

But the 2𝑝2electrons each have 𝑙 = 1 and 𝑠 = v
p.			The total orbital 

angular momentum 𝐿 therefore ranges from zero to 2 (i.e. can be 0, 
1 or 2), and the total spin 𝑆 can be zero or 1.

A set of states with given values of 𝐿 and 𝑆 is called a term

Terms are represented with the notation p'�v𝐿 where 𝐿 is a capital
letter in the sequence 𝑆, 𝑃, 𝐷, 𝐹, 𝐺… for 𝐿 = 0, 1, 2, 3, 4… . .



Multielectron atoms

For carbon in the ground state configuration (1𝑠2 2𝑠2 2𝑝2) there are
three terms: Ê𝑃, v𝐷, and v𝑆.

In this particular case (both 𝑝 electrons in n = 2), not all possible 
combinations of 𝐿 and 𝑆 are permitted by the Pauli exclusion 
principle.  (Thus there are no v𝑃, 1𝐷, or Ê𝑆 terms for this 
configuration.)

The superscripted symbols 2𝑆 + 1 are the spin-degeneracies, so it is 
conventional when speaking to refer to Ê𝑃 as “triplet-P” not 
“three-P” and v𝑆 as “singlet-S” not “one-S”



Hamiltonian for multielectron atoms

Just including electrostatic energies (i.e. neglecting the effects of 
spin), the Hamiltonian 𝐻 is

𝐻 =Ï
|

−
ℏp

2𝑚Ë
∇𝑗p −

𝑍𝑒p

𝑟|
+Ï

¹(|

𝑒p

𝑟¹|

where the indices 𝑖 and 𝑗 number the electrons

Here 𝑟| is the distance of the 𝑗th electron from the nucleus and 𝑟¹| is 
the separation between the  𝑗th and 𝑖th electrons

Because of the              term, the different terms have significantly 

different energies by ~ 1 eV and transitions between them typically 
yield visible/near-IR photons

b
5ef

𝑒<

𝑟5f



Hamiltonian for multielectron atoms

Terms with larger spin 𝑆 have a greater degree of spin alignment.
The Pauli exclusion principle therefore tends to make the 
electrons stay further apart, which reduces 

è larger 𝑆 states have lower energy (Hund’s rule #1)

For this reason, the Ê𝑃 term is the ground state of atomic carbon 

The same is true of terms with larger 𝐿è larger 𝐿 states have 
lower energy (Hund’s rule #2)

Thus the v𝐷 state is next in energy, and then the v𝑆 state

b
5ef

𝑒<

𝑟5f



Spin-orbit coupling

Within a given term, there are various possible orientations 
of 𝐿 and 𝑆. These have slightly different energies, because 
the spin is associated with a magnetic dipole moment and 
the electron sees a magnetic field as it moves through the 
Coulomb potential.

This adds a small additional term to the Hamiltonian

𝐻 =Ï
|

−
ℏp

2𝑚Ë
∇𝑗p −

𝑍𝑒p

𝑟|
+Ï

¹(|

𝑒p

𝑟¹|
+𝐻#)

where 𝐻#) = 𝜉𝑳.𝑺



Spin-orbit coupling

If we define the total angular momentum 𝑱 = 𝑳 + 𝑺,
we find that 𝑱𝟐 = 𝑳𝟐 + 𝑺𝟐 + 𝟐𝑳. 𝑺

è 𝐻#) =𝜉𝑳.𝑺 = +
p (𝑱𝟐 − 𝑳𝟐 − 𝑺𝟐)

𝐻#) = 𝐶 𝐽 𝐽 + 1 − 𝐿 𝐿 + 1 − 𝑆 𝑆 + 1

For a given term, 𝐿 and 𝑆 are fixed but the energy depends 
on 𝐽.  Thus the term may be split into several of different 𝐽, 
which are indicated using the notation p'�v𝐿𝐽, where 𝐽
ranges from 𝐿 − 𝑆 to𝐿 + 𝑆

This splitting is called fine structure



Spin-orbit coupling

Example: ground state term of atomic carbon, Ê𝑃 , splits 

into Ê𝑃0 , Ê𝑃1 and Ê𝑃2

𝐻#) = 𝐶 𝐽 𝐽 + 1 − 𝐿 𝐿 + 1 − 𝑆 𝑆 + 1

𝐶 is positive when a shell (e.g. 2𝑝) is less than half-full 
(e.g. Carbon 1𝑠2 2𝑠2 2𝑝2),	but negative when a shell is 
more than half-full (e.g. Oxygen 1𝑠2 2𝑠2 2𝑝4)

For negative C, the energy is a decreasing function of 𝐽 and 
the term is called inverted (as opposed to “normal”)

(Hund’s rule #3)



Hierarchy of energy splittings

1
3
5

3
1,3,5
3,5,7

Degeneracy=2J+1

Sum = 36 = 6 x 6
if n and n’ differ

Each electron has 2 possible values of
𝑚g and 3 possible values of 𝑚h è 6 possible combinations



Astrophysical importance of fine structure

1) Optical line emission between terms can be split into 
multiple nearby lines

Example: [OIII] and [NII] lines observed from HII regions
(both 1𝑠2 2𝑠2 2𝑝2)

Forbidden lines of N+Forbidden lines of O++



Astrophysical importance of fine structure

88 µm

2) Transitions can 
occur between fine 
structure states, 
leading to far-
infrared radiation

52 µm



Lecture 23
Atoms II

Goals: understand

Parity
Hyperfine structure
Radiative transitions and selection rules



Parity

One final note about the electronic state of an atom

Every state has an overall wavefunction that is either symmetric or 
antisymmetric under mirror reflection

i.e. if we make the transformation 𝑥 → −𝑥,   𝑦 → −𝑦, 𝑧 → −𝑧
then either 𝜓 → −𝜓 (odd parity) or 𝜓 → +𝜓 (even parity)

The parity depends solely on whether ∑ 𝑙 is even (→ even parity) or 
odd (→ odd parity)

Thus all terms in a given configuration have the same parity.  An odd 
parity is indicated by a superscripted O after the term
e.g. the ground state term of N (1𝑠2 2𝑠2 2𝑝3) is t𝑆𝑂



Hyperfine splitting

When the nucleus has non-zero spin, 𝐼 ≠ 0 there is an additional 
splitting that occurs for electronic states with 𝐽 ≠ 0

Abundant nuclei with non-zero spin (in parentheses): 
1H (½), 2H (1), 14N (1), 23Na (3/2), 35Cl(3/2), 37Cl(3/2), 13C (½)

(dominant isotopes in black, others in purple)

NB: a-nuclei with even number of neutrons = number of protons are 
typically spinless (e.g. 4He, 12C, 16O, 20Ne, 24Mg, 28Si, 32S, 36Ar, 40Ca)

The vector sum of the nuclei spin and electronic angular momentum 
is given the quantum number 𝑭 = 𝑰 + 𝑱

The interaction between the nuclear magnetic dipole and the 
electronic magnetic dipole leads to a (very small) splitting



Fine structure of C+ ground state term

Example 1: ground state term of C+.  The configuration is 1𝑠2 2𝑠2 2𝑝

Question 1: what terms are possible with this configuration?



Fine structure of C+ ground state term

Example 1: ground state term of C+.  The configuration is 1𝑠2 2𝑠2 2𝑝

Question 1: what terms are possible with this configuration?
Answer: there only one term, with 𝑆 = v

p , 𝐿 = 1, i.e. p𝑃



Fine structure of C+ ground state term

Example 1: ground state term of C+.  The configuration is 1𝑠2 2𝑠2 2𝑝

Question 1: what terms are possible with this configuration?
Answer: there only one term, with 𝑆 = v

p , 𝐿 = 1, i.e. p𝑃

Question 2: what does spin-orbit coupling do to this term?



Fine structure of C+ ground state term

Example 1: ground state term of C+.  The configuration is 1𝑠2 2𝑠2 2𝑝

Question 1: what terms are possible with this configuration?
Answer: there only one term, with 𝑆 = v

p , 𝐿 = 1, i.e. p𝑃

Question 2: what does spin-orbit coupling do to this term?
Answer: it splits it into two fine-structure states p𝑃v/p and p𝑃Ê/p

These have an energy difference leading to a fine-structure transition 
near 158 µm.  This is typically the most luminous spectral line emitted 
by galaxies, because it dominates the cooling of cold interstellar gas



Fine structure of C+ ground state term

[CII] map of the face-on 
spiral galaxy M51, from 
Pineda et al. 2020

Obtained with the 
upGREAT instrument on 
the SOFIA airborne 
observatory



Hyperfine splitting

But suppose we now have 13C+, with nuclear spin ½ (relative 
isotopic abundance ~ 1%)

Each fine-structure state is split into two and there are three 
slightly-separated transitions  (F = 2 – 0 is forbidden)

(Graf et al. 2012, A&AL)



Hyperfine splitting

Example 2: ground state term of atomic hydrogen, p𝑆v/p, is split 
into two states: F = 1 and F = 0.  Transitions between these two 
states result in a photon at 1,420,405,751.7667 ± 0.0009 Hz, 
which is equivalent to 21.1061140542 cm

The key spectral line for studying cold neutral gas in the Universe



Radiative transitions

The rate of radiative transitions between any two states is related to the wavefunctions of 
the initial and final states, 𝜓5 and 𝜓f

In the dipole approximation, the Einstein-A coefficient for two non-degenerate states is 
given by

𝐴5f =
64𝜋-𝜐=

3ℎ𝑐= 𝜓5 |(−𝑒𝒓)|𝜓i
<

Here 𝜓5 |(−𝑒𝒓)|𝜓i ≡ ∫𝜓5 (−𝑒𝒓)𝜓f
∗ 𝑑=𝒓 is the transition dipole moment 𝒅𝒊𝒋

The dipole approximation, which is based on the approximation 𝑒5𝒌.𝒓~ 1, (i.e. 𝜆 ≫ 𝑎_) is 
generally very good provided 𝒅𝒊𝒋 ≠ 0. Transitions with 𝒅𝒊𝒋 ≠ 0 are called “dipole-allowed.” 

In the case of “forbidden” transitions with 𝒅𝒊𝒋 = 0, additional terms in the expansion of 
𝑒5𝒌.𝒓 must be included. 𝐴5f is not necessarily zero, but is typically much smaller than in a 
dipole-allowed transition.



Selection rules for dipole-allowed transitions

“Laporte’s rule”:

𝒅𝒊𝒋= ∫𝜓5 (−𝑒𝒓)𝜓f
∗ 𝑑=𝒓 can only be non-zero if the integrand has even parity.

𝒓 has odd parity, so the product 𝜓5 𝜓f ∗ needs to be odd

In other words, for non-zero 𝒅𝒊𝒋 , one of the wavefunctions must be odd and the other 
must be even è the parity has to change

The parity is the same for all states within a given configuration (since ∑ 𝑙 is the same)

è All transitions between different terms within a given configuration are forbidden 
by Laporte’s rule, as are all fine-structure transitions

This is indicated with the use of square brackets around the designation of the ion  
(e.g. [OIII] means a forbidden transition of the O++ ion)



Selection rules for dipole-allowed transitions

Selection rules related to angular momentum

For dipole-allowed transitions, the additional selection rules are
∆𝐽 = 0 or ± 1 (except that 𝐽 = 0 → 0 is forbidden)
∆𝐿 = 0 or ±1
∆𝑆 = 0 (or else the transition is called “spin-forbidden”)

The first rule can be understood in terms of angular momentum conservation

The angular momentum of the emitted photon is ℏ, since the photon is a spin 1 
particle.  There could also be a component due to the photon’s linear motion, but this 
is of order 𝑎_𝑝 = 𝑎_ℎ𝜐/𝑐 = (2𝜋𝑎_/𝜆)ℏ ≪ ℏ

Thus, the final angular momentum is the vector sum of ℏ and 𝐽iℏ, and this must equal 
the initial angular momentum of the atom, 𝐽5ℏ

For 𝐽i≠ 0, this final angular momentum ranges from (𝐽i − 1)ℏ to (𝐽i+1) ℏ, requiring 
∆𝐽 = 0 or ± 1

For 𝐽i= 0, the final angular momentum is just ℏ, requiring 𝐽5= 1 and disallowing   
𝐽 = 0 → 0



NIST database of atomic transitions (wavelengths and A-values)

https://www.nist.gov/pml/atomic-spectra-database

https://www.nist.gov/pml/atomic-spectra-database


NIST database of atomic transitions (wavelengths and A-values)

Allows searches by ion, wavelength range, upper and lower state energies

Lists quantum numbers and energies for the upper and lower states, wavelengths, 
and Einstein A-coefficients

Example search

The type of transition is listed with the following (conventional) coding

E1: electric dipole (i.e. dipole-allowed according to the selection rules discussed 
previously)

Typical Aij of 109 s–1 for visible wavelength transitions

M1: magnetic dipole (no parity change; otherwise the same selection rules as E1)
Typically five orders of magnitude lower Aij than E1

E2: electric quadrupole (no parity change, |∆𝐽| up to 2).  Even lower Aij ∝ 𝜐p
(Of little/no astrophysical importance)

https://physics.nist.gov/cgi-bin/ASD/lines1.pl?spectra=O+III&limits_type=0&low_w=500&upp_w=1000000&unit=0&de=0&format=0&line_out=0&en_unit=0&output=0&bibrefs=1&page_size=15&show_obs_wl=1&show_calc_wl=1&unc_out=1&order_out=0&max_low_enrg=10000&show_av=2&max_upp_enrg=&tsb_value=0&min_str=&A_out=0&intens_out=on&max_str=&allowed_out=1&forbid_out=1&min_accur=&min_intens=&conf_out=on&term_out=on&enrg_out=on&J_out=on&submit=Retrieve+Data


Lecture 24
Molecules

Goals: understand

Importance of molecules in astrophysics
Born-Oppenheimer approximation
Electronic, vibrational and rotational transitions



1) Molecules are ubiquitous

A wide variety of molecules are found in a wide variety  of 
astrophysical environments:

Interstellar medium – sites of star formation
Circumstellar outflows
Cometary comae
Accretion disks
High-z galaxies
Stellar and planetary atmospheres

List of  ~ 200 molecules detected in the ISM:  some familiar, some 
very exotic

Motivation for studying molecules



*vibrational spectra only     **electronic spectra only       (updated Aug. 2016)  

2 atoms FeO ? H2S 4 atoms 5 atoms 6 atoms 7 atoms 9 atoms 12 atoms
H2 O2 HNC c-C3H C5 * C5H C6H CH3C4H c-C6H6 *
AlF CF+ HNO l-C3H C4H l-H2C4 CH2CHCN CH3CH2CN n-C3H7CN
AlCl SiH ? MgCN C3N C4Si C2H4* CH3C2H (CH3)2O i-C3H7CN
C2** PO MgNC C3O l-C3H2 CH3CN HC5N CH3CH2OH C2H5OCH3 (?)
CH AlO N2H+ C3S c-C3H2 CH3NC CH3CHO HC7N
CH+ OH+ N2O C2H2* H2CCN CH3OH CH3NH2 C8H
CN CN– NaCN NH3 CH4 * CH3SH c-C2H4O CH3C(O)NH2
CO SH+ OCS HCCN HC3N HC3NH+ H2CCHOH C8H–

CO+ SH SO2 HCNH+ HC2NC HC2CHO C6H– C3H6
CP HCl+ c-SiC2 HNCO HCOOH NH2CHO CH3NCO CH3CH2SH (?)
SiC TiO CO2 * HNCS H2CNH C5N
HCl ArH+ NH2 HOCO+ H2C2O l-HC4H * 8 atoms 10 atoms > 12 atoms
KCl NO+ (?) H3

+ (*) H2CO H2NCN l-HC4N CH3C3N CH3C5N HC11N
NH SiCN H2CN HNC3 c-H2C3O HC(O)OCH3 (CH3)2CO C60 *
NO 3 atoms AlNC H2CS SiH4 * H2CCNH  CH3COOH (CH2OH)2 C70 *
NS C3 * SiNC H3O+ H2COH+ C5N– C7H CH3CH2CHO C60

+ *
NaCl C2H HCP c-SiC3 C4H– HNCHCN C6H2 CH3CHCH2O
OH C2O CCP CH3 * HC(O)CN CH2OHCHO
PN C2S AlOH C3N– HNCNH l-HC6H * 11 atoms
SO CH2 H2O+ PH3 CH3O CH2CHCHO (?) HC9N
SO+ HCN H2Cl+ HCNO NH4

+ CH2CCHCN CH3C6H
SiN HCO KCN HOCN H2NCO+ (?) H2NCH2CN C2H5OCHO
SiO HCO+ FeCN HSCN NCCNH+ CH3CHNH CH3OC(O)CH3
SiS HCS+ HO2 H2O2
CS HOC+ TiO2 C3H+

HF H2O C2N HMgNC
HD Si2C HCCO
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2) Molecules as probes

a) As a probe of excitation conditions:  thanks to the rich 
spectrum of rotational, vibrational and electronic 
transitions

b) As a kinematic probe: thanks to the high brightness 
temperature of maser spots

c) As a chemical probe
d) As a probe of isotopic abundances: thanks to the large 

isotopic shift
e) As a magnetic probe: thanks to the Zeeman shift

Motivation for studying molecules



Excitation conditions probed by observations of CO rotational lines 
(Watson et al. 1985, ApJ)



Masers as a kinematic probe of circumnuclear gas in AGN 
(Miyoshi et al. 1995, Nature)



Molecules as a probe of isotopic abundances
(from Kahane et al. 1992, ApJ)



Sarma et al. 2002, ApJ Crutcher 1999, ApJ: Umag ~ 25 Uthermal

Molecules as a probe of of magnetic fields



3) Molecules as coolants

In addition to serving as test particles that can be 
used as diagnostic probes, molecular emissions can 
dominate the thermal balance in astrophysical objects

Examples: Star-forming molecular clouds
Primordial gas in the Early Universe

Motivation for studying molecules



H2 played a key role as a coolant in the Early Universe before heavy 
elements had been created (from Lepp & Shull, 1984, ApJ)

Molecular cooling in the Early Universe



• Key realization: to very good approximation, the electron and 
nuclear motions can be treated separately
Particle momenta 𝑝 ~ℏ/𝑎0 for both nuclei and electrons

è electron velocities larger by a factor 
𝑚𝑁/𝑚𝑒 ~ few x 103 – 105

electron kinetic energies larger by the same factor

è initially neglect nuclear k.e. and assume 
that electronic wavefunction and k.e. energy 
responds instantly to slowly changing 
nuclear positions

Born-Oppenheimer approximation



Potential energy curve

The Born-Oppenheimer approximation underlies the concept of the PES

Potential energy curve

(Figure from Gasiorowicz)



• Electronic energy, 𝐸𝑒𝑙 ~ 𝑅𝑦 ~ ℏ2/𝑚𝑒𝑎02 =	few	eV

• Nuclear vibrational energies ~ ℏ𝜔

!"#$# 𝜔~ √(𝑘/𝑚𝑁) %&'("#')*+&&%)+*'+,-.*+$'/$#0.#,)1'
2/'2&)%**+(%2,'/2$'&3$%,-')2,&(+,('𝑘

4"%&'%&'$#*+(#5'(2'("#').$6+(.$#'2/'("#'32(#,(%+*'#,#$-1'
).$6#'+('%(&'7%,%7.78'&%,)#

𝐸 = 𝐸0 + ½ 𝑘(𝑅 –𝑅0) 2

Different energy scales



The spring constant, 𝑘, must be of order

𝑘 ~
𝐸0
𝑅02

~ (ℏ2/𝑚𝑒𝑎'2 ) /𝑎'2 =
ℏ2

𝑚𝑒𝑎'4

Hence 𝐸𝑣𝑖𝑏 ~ ℏ
ℏ!

c"�#c$
= c"

c$

,
+ 𝐸𝑒𝑙 ~ few × 10%- eV

• Rotational energies= 2$
p3 ~

2$
Él �A$

~ ℏ$
Él4("

è𝐸𝑟𝑜𝑡 ~
c"

c$
𝐸𝑒𝑙 ~ few × 10%. eV

Summary: 𝐸𝑒𝑙 ∶ 𝐸𝑣𝑖𝑏 ∶ 𝐸𝑟𝑜𝑡 = 1 ∶ (𝑚𝑒/𝑚𝑁)0/-: (𝑚𝑒/𝑚𝑁)

Different energy scales



Lecture 25
Molecules II

Goals: understand

The LCAO approximation
Molecular orbitals
Quantum numbers for molecules
Selection rules



Simplest example: H2
+  

(This is analytically tractable)

Electronic wavefunction, 𝜓(𝒓) – !"#$%&'()%")#"𝑅 = |𝑹𝑨 – 𝑹𝑩|

*!+(,')%(!%"-.(+/%0()%,/00"$%('012"

𝐻 = –
1
2Ñ

2 – |𝑹𝑨 – 𝒓| %0– |𝑹𝑩 – 𝒓| %0 + |𝑹𝑨 – 𝑹𝑩| %0

RBRA
r

Origin

Structure of molecules



• The wavefunction of a single electron is called a 
molecular orbital (MO)

• Approximate this as a linear combination of two atomic 
1s orbitals

LCAO – linear combination of atomic orbitals

𝜓𝐴(𝒓) = 𝜋lv/pexp(– | 𝑹𝑨 – 𝒓 |) 9&'2$:%(+*
𝜓𝑩(𝒓) = 𝜋lv/pexp(– | 𝑹𝑩 – 𝒓 |)

𝜓(𝒓) = 𝛼𝜓𝐴(𝒓) + 𝛽𝜓𝐵(𝒓) !"#$#

𝑅



4!2'*%,#+$')27:%,+(%2,&'+$#')2,&%&(#,('!%("
("#'&177#($1'2/'("#'32(#,(%+*
𝜓𝑢(𝒓) = 𝐶𝑢 (𝜓𝐴(𝒓) – 𝜓𝐵(𝒓)) odd parity
𝜓𝑔(𝒓) = 𝐶𝑔 (𝜓𝐴(𝒓) + 𝜓𝐵(𝒓)) even parity

with the normalization condition 

1 = á 𝜓𝑢(𝒓) |𝜓𝑢(𝒓) ñ = á𝜓𝑔(𝒓) |𝜓𝑔(𝒓) ñ

requiring   𝐶𝑢 = 2 – 2𝑆 lv/p and   𝐶𝑔 = 2 + 2𝑆 lv/p

where S = á 𝜓𝐴(𝒓) | 𝜓𝐵(𝒓) ñ is the “overlap integral”
(which is a function of the internuclear separation, R, 
of course)

LCAO – linear combination of atomic orbitals



Recall the Ritz variational principle:

If the ground state of any system has energy E0, 

then á y | H | y ñ ≥ E0 for any function y

So E0 must be smaller than the smaller of á y! | H | y! ñ
and á y" | H | y" ñ

Ritz variational principle



Results of the calculation (figure from Gasiorowicz)

Ritz variational principle



3)'/02""

41"56/"/7/%"-“8/9!./”1":;<=""6!0"'6/",)>/0'"/%/98?2
𝜓𝑔(𝒓) = 𝐶𝑔 (𝜓𝐴(𝒓) + 𝜓𝐵(𝒓))

This is called a bonding orbital.  The energy is the less than – 13.6 eV 
except when 𝑅 is very small

The electron probability density 𝜓𝑔(𝒓) 2 peaks in the midplane, where the 
electron can perform a bonding function

2) The odd (“ungerade”) LCAO has an energy that increases 
monotonically as R decreases

The electron density is zero in the midplane

… an antibonding orbital

LCAO – linear combination of atomic orbitals



3)'/02

@1"<0"'6/"(%'/9%$&,/!9"0/A!9!'()% B"à¥!"C)'6"/%/98(/0"'/%."')"'6/"
/%/98?")#"!"6?.9)8/%"!')+2"D"E"ￚ 4@FG/H

56/")7/9,!A"(%'/89!,"'/%.0"')"IJ"!%."'6/">!7/#$%&'()%0"'/%."')

y(r) =  [yA(r) ± yB(r)] / KL

50% of finding electron on either separated atom

4) As R à 0, electronic wavefunction for the exact solution
tends to that of an He+ ion (although our trial solution does not)

E à ￚ 54.4eV + e2/R

LCAO – linear combination of atomic orbitals



Nuclear and electronic contributions to the energy
(Figure from Gasiorowicz)



Next simplest example: H2

Two electrons can occupy the same MO.  
The Pauli Exclusion Principle requires that they 
have a wavefunction with an antisymmetric 
spin part 

è total spin = 0 (like in the ground state of He).

Structure of molecules



Multielectron diatomic molecules

An electric field points along the internuclear axis
and defines a special direction

The projection of angular momenta onto this special
axis must be quantized

For an individual electron, ml takes all integral values
between –l and l

Define l = 0, 1, 2, .. l as | ml |

Structure of molecules



Multielectron diatomic molecules: orbital angular 
momentum

For an individual electron, ml takes all integral values
between –l and l

Define l = 0, 1, 2, .. l as | ml |

An electron with l = 0, 1, 2, 3 is called a s, p, d, f
electron (by analogy with 𝑠, 𝑝, 𝑑, 𝑓)

For a collection of electrons, the sum of the l is 
denoted L. ;(+(#&'!%("'L = 0, 1, 2, 3 … are denoted
S, P, D, F ..

Structure of molecules



Multielectron diatomic molecules: electronic spin

For a collection of electrons, the total spin is S,
and its projection of the onto the internuclear axis 
is denoted S.  The spin degeneracy is 2S + 1,
because S takes integer spacing values between
– S and S

<,'#*#)($2,'&(+(#')+,'("#,':#')"+$+)(#$%=#5'+&

2#+1L 2$'''2#+1L$!%"&'/2$'+'"272,.)*#+$'72*#).*#

#>->''("#'-$2.,5'&(+(#'2/'?( %&'+'1S" &(+(#
("#'-$2.,5'&(+(#'2/'@?'%&'+'2P &(+(#

Structure of molecules



Total electronic angular momentum
The projection of the total electronic angular
momentum (spin plus orbital) onto the internuclear
axis is W = S + L

A#'!$%(#'("%&'%,'("#'/2$7'2#+1LW

#>-> &3%,B2$:%(')2.3*%,-'&3*%(&'("#'@?'-$2.,5'&(+(#'
%,(2'+'2P)*( &(+(#'+,5 +'2P+*( &(+(#

Structure of molecules



Electronic transitions (dipole rules) :

DL = 0, ±1
DS = 0

DW = 0, ±1 but 0 à 0 is forbidden
Homonuclear molecules (u « g required)

Example:  H2 Lyman (X1Sg à B1Su) and Werner (X1Sg à C 1Pu) bands

Selection rules



• Perfect harmonic oscillator
𝐸𝑣𝑖𝑏 = ℏ𝜔 (𝑣 + ½)

𝑣 (non-negative integer) is the “vibrational quantum number

• Rigid rotor
𝐸𝑟𝑜𝑡 = (ℏ2/2𝐼) 𝐾(𝐾 + 1) = 𝐵𝐾(𝐾 + 1)

Higher order terms arise because of anharmonicity and 
centrifugal distortion

Rovibrational splitting



Nomenclature: transition from 𝐽𝑢 à 𝐽𝑙 is denoted 

𝑆(𝐽𝑙) for ∆𝐽 = 𝐽𝑢 – 𝐽𝑙 = +2 Quadrupole allowed transition
𝑅 𝐽𝑙 for ∆𝐽 = 𝐽𝑢 – 𝐽𝑙 = +1
𝑄(𝐽𝑙) for ∆𝐽 = 𝐽𝑢 – 𝐽𝑙 = +0
𝑃 𝐽𝑙 for ∆𝐽 = 𝐽𝑢 – 𝐽𝑙 = – 1
𝑂(𝐽𝑙) for ∆𝐽 = 𝐽𝑢 – 𝐽𝑙 = – 2 Quadrupole allowed transition

Dipole allowed transitions
(except that DJ = 0 is forbidden
in S « S '9!%0('()%01

Rovibrational splitting



Example: FUV H2 absorption spectra obtained towards the AGN 
PG 1211+143 from FUSE 

(G
ill

m
on

et
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Wavelength (Angstrom)



Example: FUV H2 absorption spectra obtained towards the AGN 
PG 1211+143 from FUSE 

(Gillmon et al. 2006, ApJ) 

Zoom in to show rotational structure more clearly



• Lambda doubling (e.g. OH):
• For L ≠ 0, there are 2 states with a given value of L 
• C,'+',2,B"272,.)*#+$'72*#).*#'("#&#')+,'"+6#'
&*%-"(*1'5%//#$#,('#,#$-%#&

• !"#$%&'($)*#+',,'(-)(also OH)
• .(/$%*'0(),%1(*','0(*)2$3-3 4!!5)
• 60%*'0(1+)1(7)8$(7'(-)907$*)2$3-3 !":;5

Other splittings, transitions



• The classic text: Molecular spectra and molecular structure, 
by G. Herzberg, (4 volume series)

• Physics and Chemistry of the ISM, by Tielens: pages 21 – 45
• Rybicki and Lightman, Chapter 11

• Journals:
• Journal of Chemical Physics
• Journal of Physical Chemistry (A)
• Molecular Physics
• Journal of Quantitative Spectroscopy and Radiative Transfer
• Journal of Physics. B:  Atomic, molecular, and optical physics

References on molecular physics


