## Welcome to Radiative Astrophysics (171.613)!



## Radiative Astrophysics

Instructor: David Neufeld (he/him/his - feel free to call me David)
Email: neufeld@jhu.edu
Class meetings: MW 1:30-2:45 pm except 9/5 (Labor Day) Lecture notes will be posted on Canvas

Textbook: Radiative Processes in Astrophysics by Rybicki and Lightman
Available at the University bookstore or online (free, I think) https://onlinelibrary.wiley.com/doi/book/10.1002/9783527618170

## Course Requirements:

Homework: Problem sets will be handed out every week or two Final exam: take home

## Academic integrity:

The strength of the university depends on academic and personal integrity. In this course, you must be honest and truthful. Ethical violations include cheating on exams, plagiarism, reuse of assignments, improper use of the Internet and electronic devices, unauthorized collaboration, alteration of graded assignments, forgery and falsification, lying, facilitating academic dishonesty, and unfair competition.

## Learning goals

Almost everything we know about the astrophysical Universe comes from observing electromagnetic radiation.
(Exceptions: some spacecraft investigations of the solar system; gravitational wave astrophysics)

The goals of this course are to

1) Learn about those physical processes that involve emission, absorption, and scattering of electromagnetic radiation
2) Appreciate how radiative processes both affect the nature of astrophysical objects and provide us with information about the astrophysical Universe

## Multiwavelength views of the Galactic plane







(4.) Multiwavelength Milky Way

## Overall course structure

Part 1: Macroscopic description of radiation and of its propagation (R\&L, Chapter 1)

Part 2: Review and Extension of EM - the interaction of radiation with a point charge
(R\&L, Chapters 2-4)

Part 3: Radiative Processes in Astrophysical Gas: Ionized Media Bremsstrahlung, synchrotron radiation, Compton scattering, plasma effects (R\&L, Chapters 5-8)

Part 4: Radiative Processes in Astrophysical Gas: Atomic and Molecular Media (R\&L, Chapters 9-11)

## Radiative Astrophysics: schedule

| 1 | Mon Aug 29 | Introduction, Specific Intensity \& Moments | R\&L 1.1 - 1.3 |
| :--- | :--- | :--- | :--- |
| 2 | Wed Aug 31 | Radiative Transfer Equation \& Moments | R\&L 1.4 |
|  | Mon Sep 5 | Labor Day: NO CLASS |  |
| 3 | Wed Sep 7 | Blackbody and Thermal Radiation | R\&L 1.5 |
| 4 | Mon Sep 12 | Einstein Coefficients | R\&L 1.6 |
| 5 | Wed Sep 14 | Scattering | R\&L 1.7 |
| 6 | Mon Sep 19 | Radiative diffusion | R\&L 1.8 |
| 7 | Wed Sep 21 | Maxwell's Eqns., Fourier Transforms | R\&L 2.1 - 2.3 |
| 8 | Mon Sep 26 | Polarization | R\&L 2.4 |
| 9 | Wed Sep 28 | EM Potentials and the L-W Potentials | R\&L 2.5, 3.1 |
| 10 | Mon Oct 3 | Radiation fields, Dipole approx. | R\&L 3.2 |
| 11 | Wed Oct 5 | Thomson Scattering, Harmonic Oscillator | R\&L 3.4, 3.6 |
| 12 | Mon Oct 10 | Lorentz Transformations \& 4-vectors | R\&L 4.1, 4.2 |
| 13 | Wed Oct 12 | Emission from Relativistic Particles | R\&L 4.8 |

## Radiative Astrophysics: schedule

| 14 | Mon Oct 17 | Bremsstrahlung I | R\&L 5 |
| :--- | :--- | :--- | :--- |
| 15 | Wed Oct 19 | Bremsstrahlung II | R\&L 5 |
| 16 | Mon Oct 24 | Bremsstrahlung III | R\&L 5 |
| 17 | Wed Oct 26 | Synchrotron Radiation I | R\&L 6 |
| 18 | Mon Oct 31 | Synchrotron Radiation II | R\&L 6 |
| 19 | Wed Nov 2 | Synchrotron Radiation III / Compton Scattering I | R\&L 6 |
| 20 | Mon Nov 7 | Compton Scattering I | R\&L 7 |
| 21 | Wed Nov 9 | Compton Scattering II | R\&L 7 |
| 22 | Mon Nov 14 | Plasma Effects | R\&L 8 |
| 23 | Wed Nov 16 | Atoms | R\&L 9 |
|  | Mon Nov 21 | Thanksgiving break: NO CLASS |  |
|  | Wed Nov 23 | Thanksgiving break: NO CLASS |  |
| 24 | Mon Nov 28 | Atoms | R\&L 9 |
| 25 | Wed Nov 30 | Radiative transitions | R\&L 10 |
| 26 | Mon Dec 5 | Molecules | R\&L 11 |

## Lecture 1 Macroscopic description of radiation

Goal: understand the definitions of, and differences between

Radiative flux
Specific intensity

READING: R\&L 1.1-1.3

## Radiative flux

For an element of area, $d A$, the radiative flux (power per unit area) is defined by

$$
\frac{d E}{d A} \quad F=\frac{d E}{d A d t}
$$

and has units: $\mathrm{erg} \mathrm{cm}^{-2} \mathrm{~s}^{-1}$ (c.g.s.) $=10^{-3} \mathrm{~W} \mathrm{~m}^{-2}$ (SI)
Note that the flux passing through a given element depends on its orientation

For an isotropic source of luminosity (power) $L=d E / d t$, conservation of energy implies

Sphere of radius $r$


$$
F=\frac{L}{4 \pi r^{2}}
$$

## Monochromatic flux

The flux carried by radiation in the frequency range $v$ to $v+d v$ can be written $F_{v} d v$
where

$$
F_{v}=\frac{d E}{d A d t d v}
$$

is the monochromatic flux
The c.g.s unit is erg $\mathrm{cm}^{-2} \mathrm{~s}^{-1} \mathrm{~Hz}^{-1}$, and a commonly-used unit in astronomy is the Jansky (Jy)
$1 \mathrm{Jy}=10^{-23} \mathrm{erg} \mathrm{cm}^{-2} \mathrm{~s}^{-1} \mathrm{~Hz}^{-1}=10^{-26} \mathrm{~W} \mathrm{~m}^{-2} \mathrm{~Hz}^{-1}$
Of course, we can also use wavelength in place of frequency and compute

$$
F_{\lambda}=\frac{d E}{d A d t d \lambda}
$$

where $F_{\lambda}=F_{v}|d v / d \lambda|=v^{2} F_{v} / \operatorname{cor} \lambda F_{\lambda}=v F_{v}$

## $v F_{v}$

If you plot $v F_{v}$ versus $\ln v$ or $\ln \lambda$, the area under the curve is the total flux

Example: Galaxy SED models from Hayward and Smith (2015)


Two peaks at 1 and 100 micron indicate that stars and dust radiate roughly equal amounts of energy in this model

For a blackbody, $F=1.36\left[v F_{v}\right]_{\text {peak }}$

## Specific intensity

Flux measures the total amount of radiation in all directions passing through an element of area


We can also think about a single ray (in the normal direction) and define the specific intensity

$$
I_{v}=\frac{d E}{d A d t d v d \Omega}
$$



R\&L Figure 1.2 Geometry for normally incident rays.
with units $\mathrm{erg} \mathrm{cm}^{-2} \mathrm{~s}^{-1} \mathrm{~Hz}^{-1} \mathrm{sr}^{-1}$

This defines the amount of energy within a cone of (infinitesimal) solid angle $d \Omega$

## Relationship between flux and specific intensity

The flux can be considered an angular moment of the specific intensity, obtained from an integral over all directions


$$
F_{v} d A=\int I_{\nu} d A^{\prime} d \Omega
$$

where $d A^{\prime}=\cos \theta d A$ is the projected area of the element of area

$$
F_{v}=\int I_{v} \cos \theta d \Omega
$$

Convenient notation: $\mu=\cos \theta \rightarrow d \Omega=|\sin \theta \mathrm{d} \theta \mathrm{d} \phi|=|d \mu d \phi|$

$$
F_{v}=\int_{0}^{2 \pi} d \phi \int_{-1}^{1} I_{v} \mu d \mu
$$

Question 1 (in pairs; respond via Zoom poll): what is the flux for an isotropic radiation field ( $I_{v}$ the same in all directions)?

## Relationship between flux and specific intensity

If $I_{\nu}$ is independent of $\mu$ and $\phi$, then

$$
\begin{aligned}
F_{v} & =\int_{0}^{2 \pi} d \phi \int_{-1}^{1} I_{v} \mu d \mu \\
& =2 \pi I_{v}\left[\mu^{2} / 2\right]_{-1}^{1}=0
\end{aligned}
$$

Of course: the energy flow from top to bottom is exactly balanced by the flow from bottom to top

If uniformly bright radiation is incident over just one hemisphere ( $\mu>0$ ) then $F_{v}=2 \pi I_{v}\left[\mu^{2} / 2\right]_{0}^{1}=\pi I_{v}$

Example: small window in a hot kiln
This is a useful result that we'll return to later


## Lecture 2 <br> Angular moments of specific intensity, radiative transfer

Goals: understand the significance of

Momentum flux / pressure
Mean intensity and energy density
Angular moments
Constancy of specific intensity along a ray (in vacuo), and the inverse square law for flux

READING: R\&L 1.4, 1.5

## Momentum flux

So far, we have been considering the flow of energy. But photons also carry momentum of magnitude $E / C$

Momentum is, of course, is a vector, and the normal component of momentum is
$E / \mathrm{c} \cos \theta=\mathrm{E} \mu / \mathrm{c}$
The momentum flux is therefore
$\int\left(I_{v} \mu / c\right) \cos \theta d \Omega=\int_{0}^{2 \pi} d \phi \int_{-1}^{1}\left(I_{v} / c\right) \mu_{\uparrow}^{2} d \mu$
This quantity is proportional to the second angular moment of the intensity (whereas the flux is proportional to the first angular moment). This is the pressure (associated with radiation at frequency $v$ )

Question 1: for isotropic radiation, with intensity , $I_{v}$, what is the pressure?

## Momentum flux

So far, we have been considering the flow of energy. But photons also carry momentum of magnitude $E / C$

Momentum is, of course, is a vector, and the normal component of momentum is
$E / C \cos \theta=E \mu / c$
The momentum flux is therefore
$\int\left(I_{v} \mu / c\right) \cos \theta d \Omega=\int_{0}^{2 \pi} d \phi \int_{-1}^{1}\left(I_{\nu} / c\right) \mu_{\uparrow}^{2} d \mu$
This quantity is proportional to the second angular moment of the intensity (whereas the flux is proportional to the first angular moment). This is the pressure (associated with radiation at frequency $v$ )

Question 1: for isotropic radiation, with intensity , $I_{v}$, what is the pressure? Answer: $p_{v}=2 \pi I_{v}\left[\mu^{3} / 3\right]_{-1}^{1} / c=4 \pi I_{v} / 3 c$

## Mean intensity

The energy flux and pressure are proportional to the first and second angular moments. What about the zeroth angular moment? This is just the mean (angleaveraged) intensity

$$
J_{v}=\frac{1}{4 \pi} \int_{0}^{2 \pi} d \phi \int_{-1}^{1} I_{v} d \mu
$$

...note the $1 /(4 \pi)$
This has the same units as specific intensity, and is proportional to the energy density, $u_{v}$, of radiation at frequency $v$

Element of energy in cylinder at right

$$
\begin{aligned}
d E & =I_{\nu} d A d t d v d \Omega \\
& =I_{\nu} d A(d s / c) d v d \Omega \\
& =I_{\nu} d V d v d \Omega / c
\end{aligned}
$$



R\&L Figure 1.4 Electnomagnetic energy in a cylinder.
So, the element of energy density is given by $d u_{v}=d E / d V=I_{\nu} d v d \Omega / c$ Integrating over solid angle, we find

$$
u_{v}=d E / d V=4 \pi J_{v} / c
$$

## Angular moments of $I_{v}$

To make things more elegant, the $1 /(4 \pi)$ is typically used for all angular moments with the definitions

$$
\begin{array}{lll}
J_{v}=\frac{1}{4 \pi} \int I_{v} d \Omega & \text { "Mean intensity" } & c u_{v} / 4 \pi \\
H_{v}=\frac{1}{4 \pi} \int I_{\nu} \cos \theta d \Omega & \text { "Eddington flux" } & F_{v} / 4 \pi \\
K_{v}=\frac{1}{4 \pi} \int I_{\nu} \cos ^{2} \theta d \Omega & \text { "Second moment" } & c p_{v} / 4 \pi
\end{array}
$$

For isotropic radiation,

$$
H_{v}=0
$$

$$
K_{v}=\frac{1}{3} J_{v} \quad \rightarrow \text { pressure }=\frac{1}{3} \text { energy density }
$$

(relativistic ideal gas)

## Tensor representation

R\&L treat the angular moments as scalars that are defined for an element of area in a specific orientation.

A more sophisticated analysis treats radiative flux $\left(4 \pi H_{v}\right)$ as a vector and pressure ( $4 \pi K_{\nu} / c$ ) as a $2^{\text {nd }}$-rank tensor

We define $\boldsymbol{H}_{v}=\frac{1}{4 \pi} \int I_{v} \widehat{\boldsymbol{k}} d \Omega \quad$ and $\boldsymbol{K}_{\boldsymbol{v}}=\frac{1}{4 \pi} \int I_{v} \widehat{\boldsymbol{k}} \widehat{\boldsymbol{k}} d \Omega$
where $\widehat{\boldsymbol{k}}$ is a unit directional vector.
In Cartesian coordinates $\widehat{\boldsymbol{k}}=\left(\widehat{k}_{x}, \widehat{k}_{y}, \widehat{k}_{z}\right)$
$=(\sin \theta \cos \phi, \sin \theta \sin \phi, \cos \theta)$
So $\boldsymbol{H}_{\boldsymbol{v}}$ has 3 components, $H_{i}=\frac{1}{4 \pi} \int I_{v} \widehat{k}_{i} d \Omega$, where $i=1,2,3$ for $x, y$, and $z$
and $\boldsymbol{K}_{\boldsymbol{v}}$ has 9 components, $K_{i j}=\frac{1}{4 \pi} \int I_{v} \widehat{k}_{i} \widehat{k}_{j} d \Omega$


## Tensor representation

With these definitions, the radiative flux, $\boldsymbol{F}_{\boldsymbol{v}}=4 \pi \boldsymbol{H}_{\boldsymbol{v}}$, is a vector that shows the direction in which the radiation is travelling

If we define a vector element of area $d A$, where $d A$ is pointing in the normal direction, energy passes through that area at a rate $\boldsymbol{F}_{\boldsymbol{v}} \cdot d A$


$$
\boldsymbol{F}_{\boldsymbol{v}} \cdot d A=F_{v} d A \cos \theta
$$

We can also write this using the "summation convention" in which we sum over repeated indices: $\frac{d E}{d t d v}=F_{i} d A_{i}$

The pressure, $\boldsymbol{p}_{\boldsymbol{v}}=4 \pi \boldsymbol{K}_{\boldsymbol{v}} / c$, is a $2^{\text {nd }}$-rank tensor, and the rate at which $j$-momentum passes through the element is the $j$-component of $p_{i j} d A_{i}$

## Information content

Successive angular moments provide increasing amounts of information about the angular distribution of the radiation. This is similar to a spherical harmonics expansion, in which we write

$$
f(\theta, \phi)=\sum_{l=0}^{\infty} \sum_{m=-l}^{l} a_{l m} Y_{l m}(\theta, \phi)
$$

The coefficients $a_{l m}$ provide successive finer detail about the angular distribution as $l$ gets larger and larger

Aside: the spherical harmonics are related to the power spectrum (e.g. of the CMB), by the relation

$$
C_{l}=\frac{1}{2 l+1} \sum_{m=-l}^{l}\left|a_{l m}\right|^{2}
$$



## Information content

In a spherical harmonics expansion:

There is one term with $l=0$, corresponding to the one component of $J_{v}$

There are 3 terms with $l=1$, corresponding to the 3 components of $\boldsymbol{H}_{\boldsymbol{v}}$

There are 5 terms with $l=2$, but there are 9 components of $\boldsymbol{K}_{\boldsymbol{v}}$
Question 2: but how many new pieces of information are provided by $\boldsymbol{K}_{\boldsymbol{v}}$ ?

## Information content

There are only five new pieces of information
Note first that
$K_{i j}=\frac{1}{4 \pi} \int I_{v} \widehat{K}_{i} \widehat{k}_{j} d \Omega$ is symmetric, so there are only six independent components

Still, we haven't gotten to the five terms for $l=2$
There is one additional relationship, involving the trace of $K$
What is the trace of $K$ ?

$$
\operatorname{Tr}\left(K_{i j}\right)=K_{x X}+K_{y y}+K_{z z}=\frac{1}{4 \pi} \int I_{v}\left(\hat{k}_{x}^{2}+\hat{k}_{y}^{2}+\hat{k}_{z}^{2}\right) d \Omega=J_{v}
$$

So this reduces the new information content by 1
General result: the first $q$ angular moments provide the same directional information as the spherical harmonics expansion up to $l=q$

## Radiative transfer: constancy of $I_{v}$ along a ray

In a vacuum, and in steady-state, the specific intensity is constant along a ray
Proof:


R\&L Figure 1.5 Constancy of intensity along rays.
Consider the radiant energy that passes through both hoops shown above

$$
d E=I_{1} d A_{1} d t d v d \Omega_{2}=I_{2} d A_{2} d t d v d \Omega_{1}
$$

where $d \Omega_{1,2}=d A_{1,2} / R^{2}$ is the solid angle subtended by hoop 1,2 as viewed from hoop 2,1

Hence $d A_{1} d \Omega_{2}=d A_{2} d \Omega_{1} \rightarrow I_{1}=I_{2}$
If there's a time dependence, then $I_{2}(t+R / c)=I_{1}(t)$
How is this consistent with the inverse square law for flux?

## Radiative transfer: constancy of $I_{v}$ along a ray

Consider now a uniformly bright ("Lambertian" sphere) that is viewed from a distance $r$


R\&L Figure 1.6 Flux from a uniformly bright sphere.
The observed flux is $F=\int_{0}^{2 \pi} d \phi \int_{\cos \theta_{c}}^{1} \mu B d \mu$

$$
=2 \pi B\left[\mu^{2} / 2\right]_{\cos \theta_{c}}^{1}=\pi B\left(1-\cos ^{2} \theta_{c}\right)=\pi B \sin ^{2} \theta_{c}
$$

The intensity $B$ does not depend on $r$, but the angle $\theta_{c}$ does!
$\sin \theta_{c}=R / r \quad \rightarrow F=\pi B(R / r)^{2}$
Constant intensity along a ray $\boldsymbol{\rightarrow}$ inverse square law for flux

## Lecture 3 Radiative transfer

## Goals: understand

Radiative transfer with emission and absorption
Optical depth and the source function
The radiative transfer equation as a "relaxation equation"
Angular moments of the transfer equation
Thermodynamics of blackbody radiation

READING: R\&L 1.5

## Emission

We now want to consider what happens when radiation travels through a medium capable of emitting and absorbing radiation

Define the spontaneous emission coefficient as the power emitted per unit volume per unit solid angle

$$
\text { (units: erg cm }{ }^{-3} \mathrm{~s}^{-1} \mathrm{sr}^{-1} \text { ) }
$$

$$
j=\frac{d E}{d V d t d \Omega}
$$

and the monochromatic emission coefficient in a similar way per unit bandwidth

$$
j_{v}=\frac{d E}{d V d t d \Omega d v} \quad \text { (units: } \mathrm{erg} \mathrm{~cm}^{-3} \mathrm{~s}^{-1} \mathrm{sr}^{-1} \mathrm{~Hz}^{-1} \text { ) }
$$

In travelling a distance $d s$ along a ray, a beam of cross section $d A$ travels through a volume $d V=d A d s$, and the intensity therefore increases by $d I_{v}=j_{v} d s$

Other related quantity often used in stellar astrophysics:
$\epsilon_{v}=$ total monochromatic power per unit mass $\left(\operatorname{erg~s}^{-1} \mathrm{~g}^{-1} \mathrm{~Hz}^{-1}\right)=4 \pi j_{v} / \rho$

## Absorption

Absorption removes power from a ray in proportion to the intensity that is already present
Define absorption coefficient, $\alpha_{v}$, by the equation

$$
\frac{d I_{v}}{d s}=-\alpha_{v} I_{v}
$$

so $\alpha_{v}$ has units $\mathrm{cm}^{-1}$
Microscopic description: suppose we have $n$ absorbing particles per unit volume, each of which presents a cross-section $\sigma_{v}$ to radiation at frequency $v$

Number of particles in cylinder $=n d A d s$
Total cross-section presented $=n d A d s \sigma_{v}$
Fraction of radiation removed $=n d s \sigma_{v}$ (covering factor in lower panel at right)

This fraction must equal $-d I_{v} / I_{v}=\alpha_{v} d s$
which implies $\alpha_{v}=n \sigma_{v}$

(a)

Figure 1.7a Ray passing through a medium of absorbers.

(b)

Figure 1.7b Cross sectional view of 7 a.
(check dimensions: $\mathrm{cm}^{-1}=\mathrm{cm}^{-3} \mathrm{~cm}^{2}$ as required)

## Sign conventions and stimulated emission

The absorption coefficient, $\alpha_{v}$, is defined to be positive if the medium removes radiation in proportion to the amount already present

As we'll see later, there is an opposite process known as stimulated emission which adds radiation in proportion to the amount already present. This makes a negative contribution to the absorption coefficient.

Under ordinary circumstances, absorption beats stimulated emission and the combined effect yields a positive value of $\alpha_{v}$, leading to an exponential decay in the intensity:

$$
\frac{d I_{v}}{d s}=-\alpha_{v} I_{v}<0
$$

But under special circumstances sometimes achieved in astrophysical media, stimulated emission can dominate absorption.

Then $\alpha_{v}$ is negative and the intensity can increase exponentially (e.g. in maser = "microwave amplification by the stimulated emission of radiation")

$$
\frac{d I_{v}}{d s}=-\alpha_{v} I_{v}>0
$$

## Radiative transfer equation and optical depth

With both processes present, our equation becomes

$$
\frac{d I_{v}}{d s}=j_{v}-\alpha_{v} I_{v}
$$

Pure emission $\left(\alpha_{v}=0\right)$ solution: $\quad I_{v}(s)=I_{v}(0)+\int_{0}^{s} j_{v}\left(s^{\prime}\right) d s^{\prime}$
Pure absorption $\left(j_{v}=0\right)$ solution: $\quad I_{v}(s)=I_{v}(0) \exp \left[-\int_{0}^{s} \alpha_{v}\left(s^{\prime}\right) d s^{\prime}\right]$
With both processes present, it is convenient to define the "optical depth," $\tau_{v}=\int_{0}^{s} \alpha_{v}\left(s^{\prime}\right) d s^{\prime}$. This is a dimensionless quantity.

The optical depth measures distance along the ray in units of the mean-free-path (i.e. the mean distance travelled before a photon gets absorbed)
$l_{\mathrm{mfp}}=1 / \alpha_{v}$

## Radiative transfer equation and source function

Noting that $\alpha_{v} d s=d \tau_{v}$, we may divide the transfer equation by $\alpha_{v}$ to obtain

$$
\frac{d I_{v}}{d \tau_{v}}=\frac{j_{v}}{\alpha_{v}}-I_{v}
$$

We introduce the source function $S_{v}=j_{v} / \alpha_{v}$ to obtain

$$
\frac{d I_{v}}{d \tau_{v}}=S_{v}-I_{v}
$$

This is a relaxation equation, in that the intensity is relaxing towards $S_{v}$ as it moves along the ray (although it may never reach $S_{v}$ )

In other words, if $I_{v}<S_{v}$ it will increase whereas if $I_{v}>S_{v}$ it will decrease The formal solution is $\quad I_{\nu}\left(\tau_{\nu}\right)=I_{\nu}(0) e^{-\tau_{\nu}}+\int_{0}^{\tau_{\nu}} e^{-\left(\tau_{\nu}-\tau_{\nu}^{\prime}\right)} S_{\nu}\left(\tau_{\nu}^{\prime}\right) d \tau_{\nu}^{\prime}$.
In an optically-thick medium with $\tau_{v} \gg 1$, the first term is very small and there is no "memory" of $I_{v}(0) . I_{v}$ gets very close to the local source function

## Angular moments of the transfer equation

So far we've written the radiative transfer equation for a single ray

$$
\frac{d I_{v}}{d s}=j_{v}-\alpha_{v} I_{v}
$$

where $s$ is the distance along that ray
We can easily write this for all rays at once

$$
\widehat{\boldsymbol{k}} \cdot \nabla I_{v}(\widehat{\boldsymbol{k}})=j_{v}-\alpha_{v} I_{v}(\widehat{\boldsymbol{k}})
$$

And add in time dependence if needed (rarely)

$$
\frac{1}{c} \frac{\partial I_{v}}{\partial t}+\widehat{\boldsymbol{k}} \cdot \nabla I_{v}(\widehat{\boldsymbol{k}})=j_{v}-\alpha_{v} I_{v}(\widehat{\boldsymbol{k}})
$$

Later: look back at Lecture 2 and convince yourself I did this right

## Angular moments of the transfer equation

Let's take angular moments of this equation, i.e. multiply by $\mu^{n}$ and integrate $d \Omega$

$$
\frac{1}{c} \frac{\partial I_{v}}{\partial t}+\widehat{\boldsymbol{k}} \cdot \nabla I_{v}(\widehat{\boldsymbol{k}})=j_{v}-\alpha_{v} I_{v}(\widehat{\boldsymbol{k}})
$$

Zeroth moment ( $n=0$ ):

$$
\frac{4 \pi}{c} \frac{\partial J_{v}}{\partial t}+\nabla \cdot \boldsymbol{F}_{v}=4 \pi j_{v}-4 \pi \alpha_{v} J_{v}
$$

where I've assumed that $\alpha_{v}$ is isotropic and noted

$$
\int \widehat{\boldsymbol{k}} \cdot \nabla I_{v}(\widehat{\boldsymbol{k}}) d \Omega=\int \hat{k}_{i} \frac{\partial I_{v}}{\partial \hat{k}_{i}} d \Omega=\frac{\partial}{\partial \hat{k}_{i}} \int \hat{k}_{i} I_{v} d \Omega=\frac{\partial F_{v i}}{\partial \hat{k}_{i}}=\nabla \cdot \boldsymbol{F}_{\boldsymbol{v}}
$$

Above, we are using the summation convention in which we sum over repeated indices, i.e. we abbreviate $\sum_{i} x_{i} x_{i}$ as $x_{i} x_{i}$

Question: what physical principle does this differential equation encapsulate? Explain your answer briefly.

## Angular moments of the transfer equation

The zeroth moment of the transfer equation is a statement of energy conservation

Time derivative of the density Divergence of the flux of that quantity of a conserved quantity


Rate of production per unit volume ("sources")


## Angular moments of the transfer equation

Let's take angular moments of this equation, i.e. multiply by $\mu^{n}$ and integrate $d \Omega$

$$
\frac{1}{c} \frac{\partial I_{v}}{\partial t}+\widehat{\boldsymbol{k}} \cdot \nabla I_{v}(\widehat{\boldsymbol{k}})=j_{v}-\alpha_{v} I_{v}(\widehat{\boldsymbol{k}})
$$

First moment ( $n=1$ ):

$$
\frac{1}{c} \frac{\partial \boldsymbol{F}_{\boldsymbol{v}}}{\partial t}+4 \pi \boldsymbol{\nabla} \cdot \boldsymbol{K}_{v}=0-\alpha_{v} \boldsymbol{F}_{\boldsymbol{v}}
$$

where we note that

$$
\int \widehat{\boldsymbol{k}} \cdot \nabla I_{v}(\widehat{\boldsymbol{k}}) \widehat{\boldsymbol{k}} d \Omega=\int \widehat{k}_{i} \frac{\partial I_{v}}{\partial \hat{k}_{i}} \widehat{k}_{j} d \Omega=4 \pi \frac{\partial K_{v i j}}{\partial \hat{k}_{i}}=4 \pi \nabla \cdot \boldsymbol{K}_{v}
$$

Divergence of a $2^{\text {nd }}-$ rank tensor is a vector Question: what physical principle does this differential equation encapsulate? Explain your answer briefly.

## Angular moments of the transfer equation

Dividing through by $c$, we see that first moment of the transfer equation is a statement of momentum conservation

Time derivative of the momentum density

Divergence of the momentum flux


Rate of "destruction" per unit volume = force per unit volume exerted by the radiation field on the gas

## Blackbody radiation: thermodynamic considerations

Blackbody radiation is radiation in thermal equilibrium
Allow an isolated enclosure to reach TE, i.e. a state of maximum entropy

$$
I_{v}=B_{v}(T)
$$

Theorem: $I_{v}$ is a universal function, of $v$ and $T$, which is independent of direction and the nature of the enclosure (shape, material...). This we call the Planck function, $B_{v}(T)$

## Blackbody radiation: thermodynamic considerations

Proof: Join the enclosure to another enclosure at the same temperature, with a filter that reflects all radiation except at frequency $v$. Radiation at frequency $v$ can pass between the enclosures through a hole.


Figure 1.8 Two containers at temperature $T$, separated by a filter. (R\&L)
Unless $I_{v}=I_{v}{ }^{\prime}$ at all frequencies (see Figure) and angles, energy could pass from one enclosure to the other, violating the $2^{\text {nd }}$ Law of Thermodynamics

## Blackbody radiation: thermodynamic considerations

Corollary: The universal function, $B_{v}$, must be a monotonically increasing function of $T$ at every frequency


Two containers at different temperatures
Unless $I_{v}^{\prime} \geq I_{v}$ heat could pass from the cooler container (left) to the hotter, violating the $2^{\text {nd }}$ Law of Thermodynamics. (Condition must be satisfied at every frequency)

## Kirchhoff's Law for material in TE

Suppose we have a blob of material inside the enclosure (in equilibrium, so at temperature, $T$ )

$$
I_{v}=B_{v}(T)
$$



In thermal equilibrium, $I_{v}=B_{v}(T)$, so

$$
0=\frac{d I_{v}}{d s}=S_{v}-I_{v}=S_{v}-B_{v}
$$

$\rightarrow S_{v}=B_{v}(T)$ in TE, or $j_{v}=\alpha_{v} B_{v}(T)$
This is Kirchhoff's Law, which relates the absorption and emission coefficients in TE

## Kirchhoff's Law

Kirchhoff's Law applies to any material, under TE conditions. The latter means that the material at temperature $T$ is surrounded by blackbody radiation at the same temperature.

However, in many circumstances, the material properties are not affected by the radiation that it is exposed to. In that case, Kirchhoff's Law may still apply, and the material is said to be in local thermodynamic equilibrium (LTE)

Example: glass rod heated with a Bunsen burner (but not inside a furnace). To a good approximation, $j_{v}=\alpha_{v} B_{v}(T)$

Kirchhoff's law implies that good absorbers are good emitters, and poor absorbers are
 poor emitters. This is why stainless steel makes a good teapot material (low absorptivity in the thermal IR)

## Lecture 4 Blackbody radiation, Einstein coefficients

## Goals: understand

The statistical mechanics of blackbody radiation
The Planck function
The Einstein coefficients
The equations of statistical equilibrium

Alternative textbook:
The Physics of Astrophysics Volume 1: Radiation by Frank Shu ISBN: 978-1891389764

## Statistical mechanics and the Planck function

To derive the Planck function, $B_{v}(T)$, we start with four basic principles concerning photons

1) Each photon has energy $h v$
2) There's a finite density of quantum states in phase space, $d N_{q} /\left(d^{3} p d^{3} x\right)=1 / h^{3}$
When we account for the fact that photons have spin $=1$ and two possible helicities, this becomes $2 / h^{3}$
3) Since photons are bosons, there is no limit on the number of photons that can occupy a given quantum state. This number is called the photon occupation number, $\mathfrak{N}$
4) In thermal equilibrium, the probability of finding $n$ photons in any given state is proportional to the Boltzmann factor $\exp \left(-E_{n} / k T\right)$, where $E_{n}=n h v$

## Statistical mechanics: photon occupation number, $\mathfrak{N}$

The probability that a given quantum state contains $n$ photons is therefore

$$
\operatorname{Pr}(n)=\frac{e^{-n h v / k T}}{Z}
$$

where the "partition function," $Z$, is the quantity needed to normalize the probabilities so they sum to unity

$$
Z=\sum_{n=0}^{\infty} e^{-n h v / k T}=\frac{1}{1-e^{-h v / k T}}
$$

The mean occupation number is therefore

$$
\begin{gathered}
\mathcal{N}=\sum_{n=0}^{\infty} n \operatorname{Pr}(n)=\frac{1}{Z} \sum_{n=0}^{\infty} n e^{-n h v / k T}=\frac{1}{Z} \frac{d Z}{d\left(\frac{h v}{k T}\right)} \\
\mathcal{N}=\left(1-e^{-h v / k T}\right) \frac{e^{-h v / k T}}{\left(1-e^{-h v / k T}\right)^{2}}=\frac{1}{e^{h v / k T}-1}
\end{gathered}
$$

## Energy density and Planck function

We're now ready to compute the energy density of radiation at frequency $v$ to $v+d v$

$$
u_{v} d v=h v\left(\frac{2}{h^{3}}\right) \mathcal{N} d^{3} p=h v\left(\frac{2}{h^{3}}\right) \mathcal{N} 4 \pi p^{2} d p
$$

Energy per photon Density of photons in phase space
The momentum of a photon has magnitude $\mathrm{p}=h v / c$, so this becomes $u_{v} d v=8 \pi h v\left(\frac{v^{2}}{c^{3}}\right) \mathfrak{N} d v$

$$
\begin{aligned}
& \Rightarrow \quad J_{v}=c u_{v} / 4 \pi=\left(\frac{2 h v^{3}}{c^{2}}\right) \mathfrak{N} \\
& \Rightarrow \quad B_{v}=\left(\frac{2 h v^{3}}{c^{2}}\right) \frac{1}{e^{h v / k T}-1}
\end{aligned}
$$

## The Cosmic Microwave Background

The CMB provides a beautiful example of a Planck function, and is the most accurately measured in any experiment

Cosmic microwave background spectrum (from COBE)


## Significance of energy quantization

Note that we cannot derive the Planck function without discussing photons, i.e. the fact that radiant energy at frequency $v$ is quantized in multiples of $h v$

Without this (i.e. in the limit $h \rightarrow 0$ ), we obtain the "classical result," which diverges in the limit of large $v$ (the "ultraviolet catastrophe")

$$
B_{v}=\left(\frac{2 h v^{3}}{c^{2}}\right) \frac{1}{e^{h v / k T}-1} \rightarrow\left(\frac{2 k T v^{2}}{c^{2}}\right)=\frac{2 k T}{\lambda^{2}}
$$

This limit does indeed apply in the limit of low frequency ( $h v / k T \ll 1$ ) and is called the Rayleigh-Jeans Law

In the opposite limit, $B_{v}$ is well approximated by $\frac{2 h v^{3}}{c^{2}} e^{-h v / k T}$ ("Wien's Law")

## Properties of the Planck function: derivatives

$$
B_{v}=\left(\frac{2 h v^{3}}{c^{2}}\right) \frac{1}{e^{h v / k T}-1} \quad \text { or } \quad B_{\lambda}=\left(\frac{2 h c^{2}}{\lambda^{5}}\right) \frac{1}{e^{h c / \lambda k T}-1}
$$

Clearly $\partial B_{v} / \partial T>0$ for all $T$ and $v$, as required by the Second Law of Thermodynamics

Solving for $\partial B_{v} / \partial v=0$ (yields a transcendental eqn.), we may determine where the Planck function peaks

$$
\frac{v_{\text {peak }}}{T}=\frac{2.81 k}{h}=58.8 \mathrm{GHz} / \mathrm{K}
$$

Solving for $\partial B_{\lambda} / \partial \lambda=0$, we get the Wien displacement law

$$
\lambda_{\text {peak }} T=\frac{4.97 h c}{k}=0.290 \mathrm{~cm} \mathrm{~K}
$$

## Wien displacement law

| Source | Temperature | $\lambda_{\text {peak }}$ | Waveband |
| :--- | :---: | :---: | :--- |
| CMB | 2.73 K | 1.1 mm | mm-wave |
| Pluto | 44 K | $66 \mu \mathrm{~m}$ | Far-IR |
| Earth | 287 K | $10 \mu \mathrm{~m}$ | Mid-IR |
| $0.1 \mathrm{M}_{\odot}$ main sequence star | 2900 K | $1.0 \mu \mathrm{~m}$ | Near-IR |
| Sun | 5800 K | $500 \mathrm{~nm}(5000 \AA ̊)$ | Visible |
| $10 \mathrm{M}_{\odot}$ main sequence star | 20000 K | $145 \mathrm{~nm}(1450 \AA ̊)$ | Far-UV |
| Youngest white dwarfs | $250,000 \mathrm{~K}$ | $12 \mathrm{~nm}(120 \AA ̊)$ | Extreme UV / soft X-ray |

## Properties of the Planck function: integrals

$$
B_{v}=\left(\frac{2 h v^{3}}{c^{2}}\right) \frac{1}{e^{h v / k T}-1}
$$

Integrating over frequency with the change of variable $x=h v / k T$, we obtain

$$
\begin{aligned}
B=\int_{0}^{\infty} B_{v} d v & =\left(\frac{2 h}{c^{2}}\right)\left(\frac{k T}{h}\right)^{4} \int_{0}^{\infty} \frac{x^{3}}{e^{x}-1} d x \\
& =\left(\frac{2 h}{c^{2}}\right)\left(\frac{k T}{h}\right)^{4}\left(\frac{\pi^{4}}{15}\right)
\end{aligned}
$$

For blackbody radiation leaving a surface isotropically, the flux is $F=\pi B=\sigma_{\mathrm{sb}} T^{4}$ (the "Stefan-Boltzmann Law")
where $\sigma_{\mathrm{sb}}=\left(\frac{2 h}{c^{2}}\right)\left(\frac{k}{h}\right)^{4}\left(\frac{\pi^{5}}{15}\right)=5.67 \times 10^{-5} \mathrm{erg} \mathrm{cm}^{-2} \mathrm{~s}^{-1} \mathrm{~K}^{-4}$

## Properties of the Planck function: integrals

The total energy density is

$$
u=\frac{4 \pi B}{c}=\frac{4 \sigma_{\mathrm{sb}} T^{4}}{c}=a T^{4}
$$

where $a=7.57 \times 10^{-15} \mathrm{erg} \mathrm{cm}^{-3} \mathrm{~K}^{-4}$ is called the "radiation constant"

The pressure associated with blackbody radiation can dominate in the interiors of high-mass stars

$$
p=\frac{a T^{4}}{3}
$$

## The Einstein coefficients

We consider an atom or molecule with two states, 1 and 2


R\&L Figure 1.12a Emission and absorption from a two level atom.


Figure 1.12b Line profile for 12a.

## Spontaneous emission

$$
\begin{aligned}
A_{21}= & \text { transition probability per unit time } \\
& \text { for spontaneous emission }\left(\mathrm{sec}^{-1}\right) .
\end{aligned}
$$

Atoms per unit volume in state 2

$$
j_{\nu}=\frac{h \nu_{0}}{4 \pi} n_{2} A_{21} \phi(\nu)
$$

Line profile function (units $\mathrm{Hz}^{-1}$ ), normalized such that

$$
\int_{0}^{\infty} \phi(\nu) d \nu=1 .
$$

$\phi(v)$ is not quite a delta function, because various processes (natural linewidth, Doppler motions) give the line a finite width, but typically $\Delta v \ll v_{0}$

## The Einstein coefficients

We consider an atom or molecule with two states, 1 and 2


R\&L Figure 1.12a Emission and absorption from a two level atom.


Figure 1.12b Line profile for 12a.

## Absorption

$B_{12} \vec{J}=$ transition probability per unit time for absorption

$$
\bar{J} \equiv \int_{0}^{\infty} J_{\nu} \phi(\nu) d \nu
$$

If $J_{v}$ varies slowly with $v$ and $\Delta v \ll \nu_{0}$, then we can treat $\phi(v)$ as a delta function and write $\bar{J}=J_{v}\left(v_{0}\right)$

## The Einstein coefficients

## We consider an atom or molecule with two states, 1 and 2



R\&L Figure 1.12a Emission and absorption from a two level atom.


Figure 1.12b Line profile for 12a.

## Stimulated emission

## $B_{21} \bar{J}=$ transition probability per unit time

 for stimulated emission.The process is the reverse of absorption

Unlike spontaneous emission, its rate is proportional to the radiation field

As we'll see (and as Einstein found), this process has to be present on thermodynamic grounds

## Equation of statistical equilbrium

In steady-state, the rate of transitions from 2 to 1 will be exactly balanced by the rate from 1 to 2

$$
n_{2} A_{21}+n_{2} B_{21} \bar{J}=n_{1} B_{12} \bar{J}
$$

which implies

$$
\tilde{J}=\frac{A_{21} / B_{21}}{\left(n_{1} / n_{2}\right)\left(B_{12} / B_{21}\right)-1}
$$

Now, suppose we are in thermal equilibrium
Then $\bar{J}=B_{v} \quad$ (Planck function)
and $\frac{n_{1}}{n_{2}}=\frac{g_{1} \exp (-E / k T)}{g_{2} \exp \left[-\left(E+h \nu_{0}\right) / k T\right]}=\frac{g_{1}}{g_{2}} \exp \left(h v_{0} / k T\right)$ ) $\underset{\text { factor) }}{\text { (Boltzmann }}$

## Equation of statistical equilibrium

Given the Boltzmann factor for $n_{2} / n_{1}$, we then have

$$
\bar{J}=\frac{A_{21} / B_{21}}{\left(g_{1} B_{12} / g_{2} B_{21}\right) \exp \left(h \nu_{0} / k T\right)-1}
$$

If $\bar{J}$ is to equal the Planck function, $\left(\frac{2 h v^{3}}{c^{2}}\right) \frac{1}{e^{h v / k T}-1}$
we require

$$
\begin{aligned}
& g_{1} B_{12}=g_{2} B_{21} \\
& A_{21}=\frac{2 h v^{3}}{c^{2}} B_{21}
\end{aligned}
$$

## Emission and absorption coefficients

As noted previously, $j_{\nu}=\frac{h \nu_{0}}{4 \pi} n_{2} A_{21} \phi(\nu)$.
This is the rate at which energy is added by spontaneous emission (per unit bandwidth, per unit volume, per unit solid angle)

The combined effect of absorption and stimulated emission is to remove energy at a rate proportional to the mean intensity, $\left[n_{1} B_{12}-n_{2} B_{21}\right] h v \phi(v) J_{v}$ (per unit bandwidth, per unit volume)

This has to equal $\int \alpha_{v} I_{v} d \Omega=4 \pi \alpha_{v} J_{v}$
so $\alpha_{v}=\frac{h v}{4 \pi}\left[n_{1} B_{12}-n_{2} B_{21}\right] \phi(v)$

## The source function

Given these expressions for $\alpha_{v}$ and $j_{v}$, and using the relationship between the Einstein coefficients, we may compute the source function
$S_{v}=\frac{j_{v}}{\alpha_{v}}=\frac{n_{2} A_{21}}{n_{1} B_{12}-n_{2} B_{21}}=\frac{2 h v^{3}}{c^{2}} \frac{1}{\frac{n, g_{2}}{n_{2} g_{1}}-1}$
In thermal equilibrium, $\frac{n_{1} g_{2}}{n_{2} g_{1}}=e^{h v / k T}$ (Boltzmann factor)
and we recover the Kirchhoff's Law, $S_{v}=B_{v}$
The condition for "local thermodynamic equilibrium" (LTE) is clearly just that $n_{1} / n_{2}$ is given by the Boltzmann factor
This typically holds at sufficiently high density, regardless of whether $J_{v}=B_{v}$

Example: the surface of the Sun, where $J_{v} \sim \frac{1}{2} B_{v}$ but $n_{1} / n_{2}$ is typically close to LTE

## Lecture 5

## Goals: understand

Different types of "temperature"
Effects of collisional excitation
The kinetic and excitation temperatures
Maser amplification and its astrophysical applications

## The excitation temperature

Regardless of whether a system is in LTE, we can always define some temperature, such that

$$
\frac{n_{1} g_{2}}{n_{2} g_{1}} \equiv e^{h v / k T_{\mathrm{ex}}}
$$

We call this the "excitation temperature," $T_{\mathrm{ex}}$

The condition for LTE is then that $T_{\mathrm{ex}}$ equals the temperature of the gas

Either way, $S_{v}=B_{v}\left(T_{\mathrm{ex}}\right)$

## Other temperatures astronomers like to define

We can also define several other temperatures that are equal to each other in TE but could differ in other circumstances. These definitions are used regardless of whether we are in TE

Kinetic temperature, $T_{\text {kin }}$, characterizes the distribution of particle velocities (Maxwell-Boltzmann distribution at temperature $T_{\text {kin }}$ )

Radiation temperature, $T_{\text {rad }}(v)$ characterizes the mean intensity through the definition $J_{v} \equiv B_{v}\left(T_{\text {rad }}\right)$

Brightness temperature, $T_{B}(v)$, characterizes the specific intensity along a given ray through the definition $I_{V} \equiv B_{V}\left(T_{B}\right)$

Rayleigh-Jeans brightness temperature, $T_{B, R J}$, characterizes the specific intensity along a given ray through the definition $I_{V} \equiv 2 k T_{B, R J} / \lambda^{2}$. This is used whether or not the RJ limit applies.

## Other temperatures

Effective temperature, $T_{\text {eff, }}$, is a measure of total (i.e. frequency integrated) flux, through the definition $F \equiv \sigma_{S B} T_{\text {eff }}{ }^{4}$ )

This is widely used in describing stars, for which the luminosity may be written $L=4 \pi R^{2} \sigma_{S B} T_{\text {eff }}{ }^{4}$

In LTE, $T_{\text {ex }}=T_{\text {kin }} \rightarrow$ Kirchhoff's Law holds since

$$
S_{v}=B_{v}\left(T_{e x}\right)=B_{v}\left(T_{\text {kin }}\right)
$$

In complete thermal equilibrium, $T_{e x}=T_{\text {kin }}=T_{\text {rad }}$

For isotropic radiation $T_{B}$ (along any ray) $=T_{\text {rad }}$
But note that $T_{B, R J}$ differs from $T_{B}$ unless $h v \ll k T_{B}$

## Effect of collisions on the excitation temperature

With radiative processes alone, we had

$$
n_{2} A_{21}+n_{2} B_{21} J=n_{1} B_{12} \Gamma
$$

But inelastic/superelastic collisions with another particle can also induce a transition from one state to another

These are characterized by a collision rate that depends on the kinetic temperature
$C_{12}=$ rate of inelastic collisions from state 1 to 2
$C_{21}=$ rate of superelastic collisions from state 2 to 1
We now have

$$
n_{2} C_{21}+n_{2} A_{21}+n_{2} B_{21} \Gamma=n_{1} C_{12}+n_{1} B_{12} \Gamma
$$

## Effect of collisions on the excitation temperature

We now have

$$
\frac{g_{2}}{g_{1}} \exp \left(-h v / k T_{\mathrm{ex}}\right) \equiv \frac{n_{2}}{n_{1}}=\frac{C_{12}+B_{12} \bar{J}}{C_{21}+A_{21}+B_{21} \bar{J}}
$$

Let's consider first the case where collisions are absent (say because the density is very low) and we are in thermal equilibrium at temperature, $T$

In thermal equilibrium at temperature $T$, we know that radiative processes alone give us

$$
\frac{g_{2}}{g_{1}} \exp (-h v / k T)=\frac{B_{12} \bar{J}}{A_{21}+B_{21} \bar{J}}
$$

The right hand side depends only on the radiation field, so this must mean

$$
\frac{B_{12} \bar{J}}{A_{21}+B_{21} \bar{J}}=\frac{g_{2}}{g_{1}} \exp \left(-h v / k T_{\mathrm{rad}}\right)
$$

whether or not we are in TE

## Effect of collisions on the excitation temperature

Now suppose we are in TE and collisions are significant
If $\frac{g_{2}}{g_{1}} \exp (-h v / k T)$ is to equal $\frac{C_{12}+B_{12} \bar{J}}{C_{21}+A_{21}+B_{21} \bar{J}}$, then we must also have

$$
\frac{C_{12}}{C_{21}}=\frac{g_{2}}{g_{1}} \exp (-h v / k T)
$$

Since collisions are controlled by the kinetic temperature of the gas, this must mean $\frac{C_{12}}{C_{21}}=\frac{g_{2}}{g_{1}} \exp \left(-h v / k T_{\text {kin }}\right)$ whether or not we are in $T E$

In general, $T_{\text {kin }} \neq T_{\text {rad }}$, then

$$
\frac{n_{2}}{n_{1}}=\frac{C_{12}+B_{12} \bar{J}}{C_{21}+A_{21}+B_{21} \bar{J}}
$$

will lie somewhere between $\frac{g_{2}}{g_{1}} \exp \left(-h v / k T_{\text {kin }}\right)$ and $\frac{g_{2}}{g_{1}} \exp \left(-h v / k T_{\text {rad }}\right)$

## "Critical density"

The collision rates, $C_{21}$ and $C_{12}$, are proportional to the volume density of particles, $n$, with which our atom can collide, e.g. $C_{21}=q_{21} n$

We define the critical density, $n_{\mathrm{cr}}=A_{21} / q_{21}$, as the particle density at which $C_{21}$ is equal to $A_{21}$

In the high-density limit, $n \gg n_{c r}$, the collisional terms dominate and

$$
\frac{n_{2}}{n_{1}}=\frac{C_{12}+B_{12} J}{C_{21}+A_{21}+B_{21} J} \sim \frac{C_{12}}{C_{21}}=\frac{g_{2}}{g_{1}} \exp \left(-h v / k T_{\text {kin }}\right) \text { which implies } T_{\text {ex }}=T_{\text {kin }}
$$

In the low-density limit, $n \ll n_{c r}$, the radiative terms dominate and
$\frac{n_{2}}{n_{1}}=\frac{C_{12}+B_{12} J}{C_{21}+A_{21}+B_{21} J} \sim \frac{B_{12} \Gamma}{A_{21}+B_{21} \Gamma}=\frac{g_{2}}{g_{1}} \exp \left(-h v / k T_{\text {rad }}\right)$ which implies $T_{\text {ex }}=T_{\text {rad }}$
You'll work this out more fully in the homework

## Maser emission

Under some conditions actually attained in the interstellar gas, certain transitions of specific molecules
can have a "population inversion" in which

$$
\frac{n_{u}}{n_{l}}>\frac{g_{u}}{g_{l}}
$$

This implies a negative excitation temperature and a negative absorption coefficient $\frac{h v}{4 \pi}\left[n_{l} B_{l u}-n_{u} B_{u l}\right] \phi(v)$

Leading to the exponential amplification of radiation in accord with $\frac{d I_{v}}{d s}=j_{v}-\alpha_{v} I_{v}$

## Maser emission

## Most notable example: the 22 GHz transition of $\mathrm{H}_{2} \mathrm{O}$



Neufeld et al. (2021) ApJ

## Maser emission

Most notable example: the 22 GHz transition of $\mathrm{H}_{2} \mathrm{O}$
In warm environments ( $T_{\text {kin }}>300-400 \mathrm{~K}$ ), we see small spots of maser radiation with brightness temperatures $T_{\mathrm{B}}$ up to $10^{14} \mathrm{~K}$

A fascinating phenomenon in its own right, but also a fantastic "tool", because emission that bright can be observed using the techniques of radio interferometry

## VLBI (Very Long Baseline Interferometry)

## 100 m single dish (e.g. GBT)

Angular resolution is approximately
$\theta \sim \lambda / D=1.4 \times 10^{-4} \mathrm{rad}=28^{\prime \prime}$
(only slightly better than human eye, for which $\theta \sim 40^{\prime \prime}$ )

Interferometer (e.g. VLA)
$\theta \sim \lambda / D_{\max }=4.3 \times 10^{-7} \mathrm{rad}=0.09^{\prime \prime}$
Maximum separation (not individual dish size) $=36 \mathrm{~km}$
(only slightly better than HST, for which $\theta \sim 0.05$ ")

Very Long Baseline Interferometer
$\theta \sim \lambda / D_{\max }=1.4 \times 10^{-9} \mathrm{rad}=0.00028^{\prime \prime}=280 \mu \mathrm{as}$
Maximum separation (not individual dish size) up to $10,000 \mathrm{~km}$


## Maser emission: example application

VLBI observations of the 22 GHz water maser towards the active galaxy NGC 4258 reveal a warped circumnuclear disk viewed nearly edge-on


Herrnstein et al. 1999

## Maser emission: example application

Each maser spot is tagged with its Doppler velocity along the line-of-sight, revealing a disk in Keplerian rotation



Central mass $=3.6 \times 10^{7} \mathrm{M}_{\odot}$ within 0.13 pc
$\rightarrow$ black hole, not star cluster
Miyoshi et al. 1993

## Maser emission: example application

## Over a period of years, the Doppler motions associated with the radially beamed spots are observed to march redward



Herrnstein et al. 1999

Acceleration, $a=v^{2} / r=9.5 \mathrm{~km} / \mathrm{s}$ per yr
They measured $a$ and $v$, so they could determine $r$

This defines that actual physical scale of the system (in pc), not the angular size

We have a standard ruler for something that is spatially-resolved, so we have a distance indicator, $d=r / \theta$

Latest determination (Pesce et al 2020): $d=7.58 \pm 0.11 \mathrm{Mpc}$ (1.5\% uncertainty)

## Other applications include parallax measurements




Distance to Galactic Center
$R_{0}=8150 \pm 150 \mathrm{pc}$
(but not as good as a determination using IR interferometry of stars)
$R_{0}=8178 \pm 13_{\text {stat }} \pm 22_{\text {sys }} \mathrm{pc}$
from the GRAVITY collaboration (2019)
Structure of the Milky Way, based on trigonometric parallaxes from water and methanol masers in regions of star formation (Reid et al. 2019: BeSSel and VERA surveys)

## Lecture 6 Scattering

## Goals: understand

Scattering
Radiative transfer with scattering
The radiative diffusion approximation

READING: R\&L 1.6, 1.7

## Scattering

There's another important radiative process that we have not yet considered: the scattering of radiation

Here, photons are redirected but neither absorbed or emitted

Key example: scattering by electrons (a.k.a. Thomson scattering)

As we'll see later, if $h v \ll m_{e} c^{2}$, the scattering is coherent in the electron rest frame with $v^{\prime}=v$


Electron scattering is not exactly isotropic (we'll see that later too), but has a forward-backward symmetry and can be approximated as isotropic

## Scattering

To account for scattering that is coherent and isotropic, we can just add two terms to the transfer equation for a given ray:

$$
\frac{d I_{v}}{d s}=j_{v}+\sigma_{v} J_{v}-\alpha_{v} I_{v}-\sigma_{v} I_{v}
$$

where $\sigma_{v}$ is a scattering coefficient with dimensions length ${ }^{-1}$ (just like the absorption coefficient $\alpha_{\nu}$ ). The mean distance travelled by a photon before is scattered is $1 / \sigma_{v}$.

Annoying aside: R\&L and most other texts use the same symbol for the scattering coefficient as for the cross-section.
$\sigma_{v} I_{v}$ is the rate (per unit distance along the ray) at which intensity is removed from this ray by scattering out of this direction
$\sigma_{v} J_{v}$ is the rate (per unit distance along the ray) at which energy is added to this ray by scattering of radiation originally moving in other directions

## Scattering

To account for scattering that is coherent and isotropic, we can just add two terms to the transfer equation for a given ray:

$$
\frac{d I_{v}}{d s}=j_{v}+\sigma_{v} J_{v}-\alpha_{v} I_{v}-\sigma_{v} I_{v}
$$

This change to our equation is deceptively simple. In reality, it complicates the situation greatly by coupling the radiative transfer equations we solve for different rays


Without scattering I could solve the transfer equation separately for each ray With scattering, I have to solve for all rays simultaneously

## Scattering in LTE

To keep things (relatively) simple, let's assume that we are in LTE with $j_{v}=\alpha_{v} B_{v}(T)$

$$
\frac{d I_{v}}{d s}=\alpha_{v} B_{v}+\sigma_{v} J_{v}-\alpha_{v} I_{v}-\sigma_{v} I_{v}
$$

We can extend our definition of optical depth by writing $d \tau_{v} \equiv\left(\alpha_{v}+\sigma_{v}\right) d s$ to obtain

$$
\frac{d I_{v}}{d \tau_{v}}=\frac{\alpha_{v}}{\alpha_{v}+\sigma_{v}} B_{v}+\frac{\sigma_{v}}{\alpha_{v}+\sigma_{v}} J_{v}-I_{v}=S_{v}-I_{v}
$$

With the inclusion of scattering, our source function becomes
$S_{v}=\epsilon_{v} B_{v}+\left(1-\epsilon_{v}\right) J_{v}$
where $\epsilon_{v} \equiv \frac{\alpha_{v}}{\alpha_{v}+\sigma_{v}}$

## Physical meaning

Photons can interact with matter by being absorbed or getting scattered

The mean distance between interaction events is

$$
l_{\mathrm{mfp}}=\frac{1}{\alpha_{v}+\sigma_{v}}
$$

In any such interaction, the probability of absorption is $\epsilon_{v}=\frac{\alpha_{v}}{\alpha_{v}+\sigma_{v}}$
and the probability of scattering is $1-\epsilon_{v}=\frac{\sigma_{v}}{\alpha_{v}+\sigma_{v}}$
$1-\epsilon_{v}$ is called the single-scattering albedo (recall the definition of planetary albedos)

## Random walk

In the presence of scattering, photons do a random walk where the mean step size is $l_{\text {mfp }}$

Q1 (poll, individually) On average, how many steps will a photon take before it is absorbed?

Choices: a,b,c,d,e

a) $1 / \epsilon_{v}{ }^{2}$
b) $1 / \epsilon_{v}$
c) $1 /\left(1-\epsilon_{v}\right)$
d) $\epsilon_{v}$
e) $\left(1-\epsilon_{v}\right)$

## Random walk

In the presence of scattering, photons do a random walk where the mean step size is $l_{\text {mfp }}$

Q1 (poll, individually) On average, how many steps will a photon take before it is absorbed?

A The average number of steps, $N$, is $1 / \epsilon_{v}$


Q2 (poll, in groups) After N steps, what is the r.m.s. displacement in the x-direction (or any other direction)?

## Random walk

In the presence of scattering, photons do a random walk where the mean step size is $l_{\text {mfp }}$

Q1 (poll, individually) On average, how many steps will a photon take before it is absorbed?

A The average number of steps, $N$, is $1 / \epsilon_{v}$


Q2 (poll, in groups) After N steps, what is the r.m.s. displacement in the $x$-direction (or any other direction)?

After $N$ random steps, the mean square displacement is

$$
\left\langle(\Delta x)^{2}+(\Delta y)^{2}+(\Delta z)^{2}\right\rangle=N l_{\mathrm{mfp}}^{2}
$$

The mean distance travelled (r.m.s. displacement) is

$$
N^{1 / 2} l_{\mathrm{mfp}}=\left(\frac{\alpha_{v}+\sigma_{v}}{\alpha_{v}}\right)^{1 / 2} \frac{1}{\alpha_{v}+\sigma_{v}}=\left(\frac{1}{\alpha_{v}\left(\alpha_{v}+\sigma_{v}\right)}\right)^{1 / 2}
$$

In any one direction (e.g. the x-direction) it is $\mathcal{C}_{*}=\left\langle(\Delta x)^{2}\right\rangle^{1 / 2}=\left(\frac{1}{3 \alpha_{\nu}\left(\alpha_{v}+\sigma_{\nu}\right)}\right)^{1 / 2}$

## Angular moments of the transfer equation

Previously, we noted that the radiative transfer equation for a single ray (without scattering)

$$
\frac{d I_{v}}{d s}=j_{v}-\alpha_{v} I_{v}
$$

could be written for all rays at once

$$
\widehat{\boldsymbol{k}} \cdot \nabla I_{v}(\widehat{\boldsymbol{k}})=j_{v}-\alpha_{v} I_{v}(\widehat{\boldsymbol{k}})
$$

Taking the zeroth and first moments, we got
$\boldsymbol{\nabla} . \boldsymbol{F}_{\boldsymbol{v}}=4 \pi j_{v}-4 \pi \alpha_{v} J_{v} \quad$ Energy conservation
$4 \pi \boldsymbol{\nabla} \cdot \boldsymbol{K}_{v}=-\alpha_{v} \boldsymbol{F}_{\boldsymbol{v}} \quad$ Momentum conservation
Now let's add scattering

## Angular moments of the transfer equation

Our transfer equation becomes

$$
\frac{d I_{v}}{d s}=j_{v}+\sigma_{v} J_{v}-\alpha_{v} I_{v}-\sigma_{v} I_{v}
$$

could be written for all rays at once

$$
\widehat{\boldsymbol{k}} \cdot \boldsymbol{\nabla} I_{v}(\widehat{\boldsymbol{k}})=j_{v}+\sigma_{v} J_{v}-\alpha_{v} I_{v}(\widehat{\boldsymbol{k}})-\sigma_{v} I_{v}(\widehat{\boldsymbol{k}})
$$

Taking the zeroth and first moments, we got
$\boldsymbol{\nabla} . \boldsymbol{F}_{\boldsymbol{v}}=4 \pi j_{v}+4 \pi \sigma_{v} J_{v}-4 \pi \alpha_{v} J_{v}-4 \pi \sigma_{v} J_{v}=4 \pi j_{v}-4 \pi \alpha_{v} J_{v}$
Energy conservation unchanged (scattering conserves photons)

$$
4 \pi \boldsymbol{\nabla} \cdot \boldsymbol{K}_{v}=-\left(\alpha_{v}+\sigma_{v}\right) \boldsymbol{F}_{\boldsymbol{v}}
$$

Momentum conservation modified because of additional momentum transfer to gas

## Plane parallel geometry

Now let's suppose we have plane-parallel geometry, again in LTE, with the z-axis along the direction where the intensity changes

In other words, we are assuming $\frac{\partial}{\partial x}=\frac{\partial}{\partial y}=0$
And the only non-zero components of $\boldsymbol{F}$ and $\boldsymbol{K}$ are $\boldsymbol{F}_{z}$ and $K_{z z}$
The moment equations become

$$
\begin{gathered}
\frac{d F_{v z}}{d z}=4 \pi j_{v}-4 \pi \alpha_{v} J_{v}=-4 \pi \alpha_{v}\left(J_{v}-B_{v}\right) \\
\frac{d K_{v z z}}{d z}=-\left(\alpha_{v}+\sigma_{v}\right) F_{v z}
\end{gathered}
$$

## Plane parallel geometry

The moment equations relate the derivative of one moment to the value of the previous one.

$$
\begin{gathered}
\frac{d F_{v z}}{d z}=4 \pi j_{v}-4 \pi \alpha_{v} J_{v}=-4 \pi \alpha_{v}\left(J_{v}-B_{v}\right) \\
\frac{d K_{v z z}}{d z}=-\left(\alpha_{v}+\sigma_{v}\right) F_{v z} / 4 \pi
\end{gathered}
$$

To "close" the system of equations, we need something else
For isotropic radiation, we found previously that $K_{v Z Z}=\frac{1}{3} J_{v}$, and we'll see that this turns out to be a reasonable approximation more generally

If we make this "Eddington approximation," we can derive a $2^{\text {nd }}$ order ODE for $J_{v}$ (differentiating the second equation again and substituting for $d F_{v} / \mathrm{dz}$ to obtain)

$$
\frac{d^{2} J_{v}}{d z^{2}} \sim 3 \frac{d^{2} K_{v z z}}{d z^{2}}=3\left(\alpha_{v}+\sigma_{v}\right) \alpha_{v}\left(J_{v}-B_{v}\right)
$$

## Eddington approximation

The Eddington approximation is generally good when the radiation is nearlyisotropic as in stellar interiors

It is also exactly true in two special cases

1) For "semi-isotropic radiation" (travelling in one hemisphere),
i.e. if

$$
I_{v}=a \text { for } \mu>0
$$

$$
I_{v}=0 \text { for } \mu<0 \quad \text { where } \mu=\cos \theta \text { as before }
$$

2) When $I_{v}$ is a linear function of $\mu, I_{v}=a+b \mu$,
for which $J_{v}=\frac{1}{4 \pi} \int_{0}^{2 \pi} d \phi \int_{-1}^{1} I_{v} d \mu=\frac{1}{2} \int_{-1}^{1}(a+b \mu) d \mu=a+0 b$
and $K_{v z Z}=\frac{1}{4 \pi} \int_{0}^{2 \pi} d \phi \int_{-1}^{1} I_{\nu} \mu^{2} d \mu=\frac{1}{2} \int_{-1}^{1}\left(a \mu^{2}+b \mu^{3}\right) d \mu=\frac{1}{3} a+0 b$

## Application to an irradiated semi-infinite slab

Let's solve our second order ODE for the case of a "semi-infinite," isothermal slab of material irradiated by semi-isotropic radiation at its surface
$\frac{d^{2} J_{v}}{d z^{2}}=3\left(\alpha_{v}+\sigma_{v}\right) \alpha_{v}\left(J_{v}-B_{v}\right)$
We can introduce a special optical depth, $\tau_{*}=d z / \delta_{*}$, and rewrite this

$$
J_{v}(0) \longrightarrow
$$



$$
\frac{d^{2} J_{v}}{d \tau_{*}^{2}}=\left(J_{v}-B_{v}\right)
$$

$$
Z \longrightarrow
$$

$\tau_{*}$ measures $z$ distance in units of the mean distance between absorption events
The solution is $\left(J_{v}-B_{v}\right)=a \mathrm{e}^{-\tau *}+b \mathrm{e}^{+\tau *}$
Boundary conditions

1) finite $J_{v}$ at large $\tau_{*} \rightarrow b=0$
2) $J_{v}=J_{v}(0)$ at the irradiated surface

## Application to an irradiated semi-infinite slab

Hence $\left(J_{v}-B_{v}\right)=\left(J_{v}(0)-B_{v}\right) \mathrm{e}^{-\tau *}$
$\rightarrow J_{v}\left(\tau_{*}\right)=J_{v}(0) \mathrm{e}^{-\tau *}+B_{v}\left(1-\mathrm{e}^{-\tau *}\right)$


$$
Z \longrightarrow
$$

Near the surface $\left(\tau_{*} \ll 1\right.$ or equivalently $\left.\mathrm{z} \ll \tau_{*}\right)$, $J_{v}$ is determined by the incident radiation, $J_{v} \sim J_{v}(0)$

In the interior ( $\tau_{*} \gg 1$ or equivalently $\mathrm{z} \gg \tau_{*}$ ), $J_{v}$ reaches thermal equilibrium with the matter $J_{v} \sim B_{v}$

Another relaxation equation. The distance $l_{*}$ is often termed the thermalization length. In the homework, you'll solve a similar problem but with a source of luminosity at the center of a finite slab

## Lecture 7 Review of EM theory

## Goals:

Understand the radiative diffusion approximation

Review:
Lorentz force
Maxwell's Equations
EM potentials

READING: R\&L 2.1,2.5,2.3

## The radiative diffusion (Rosseland) approximation

If we are in the deep interior of a medium where the temperature changes slowly on the scale of the thermalization length
(i.e. if $d T / d z \ll T / \Gamma_{*}$ ),
we can approximate $J_{v}$ very accurately by $B_{v}(\mathrm{~T})$

Moreover, the radiation is very nearly isotropic, so that $J_{v}=3 K_{v}$

These are extraordinarily good approximations in stellar interiors

We can then compute the flux, using the first moment of the transfer equation

$$
\frac{d K_{v}}{d z}=-\left(\alpha_{v}+\sigma_{v}\right) F_{v} / 4 \pi
$$

## The radiative diffusion (Rosseland) approximation

$$
\begin{aligned}
F_{v} & =-\frac{4 \pi}{\sigma_{v}+\alpha_{v}} \frac{d K_{v}}{d z}=-\frac{4 \pi}{3\left(\sigma_{v}+\alpha_{v}\right)} \frac{d J_{v}}{d z} \\
& =-\frac{4 \pi}{3\left(\sigma_{v}+\alpha_{v}\right)} \frac{d B_{v}(T)}{d z}=-\frac{4 \pi}{3\left(\sigma_{v}+\alpha_{v}\right)} \frac{\partial B_{v}}{\partial T} \frac{d T}{d z}
\end{aligned}
$$

The energy flux is proportional to the temperature gradient, as we might have expected

To determine the total (frequency-integrated flux), we can write

$$
F=-\frac{4 \pi}{3 \alpha_{R}} \frac{d B(T)}{d z}=-\frac{c}{3 \alpha_{R}} \frac{\partial u}{\partial T} \frac{d T}{d z}=--\frac{4 a c T^{3}}{3 \alpha_{R}} \frac{d T}{d z}
$$

where $\alpha_{R}$ is the average value of $\sigma_{v}+\alpha_{v}$ and using $u=4 \pi B / c=a T^{4}$

## The Rosseland mean "opacity"

For a "grey" medium with $\sigma_{v}+\alpha_{v}$ independent of $v$, the Rosseland mean opacity $\alpha_{R}$ is simply $\sigma_{v}+\alpha_{v}$

In general, the appropriate average is a weighted harmonic mean

$$
\frac{1}{\alpha_{R}}=\frac{\int\left(\sigma_{v}+\alpha_{v}\right)^{-1} \frac{\partial B_{v}}{\partial T} d v}{\int \frac{\partial B_{v}}{\partial T} d v}
$$

The integral in the numerator is dominated by the frequencies where $\left(\sigma_{v}+\alpha_{v}\right)$ is smallest. This is where the flux is transported most rapidly

## The radiative diffusion equation

This is called the radiative diffusion (or Rosseland) equation

$$
F=-\frac{4 \pi}{3 \alpha_{R}} \frac{B(T)}{d z}=-\frac{c}{3 \alpha_{R}} \frac{d u(T)}{d z}=-\frac{c}{3 \alpha_{R}} \frac{\partial u}{\partial T} \frac{d T}{d z}=-\frac{4 a c T^{3}}{3 \alpha_{R}} \frac{d T}{d z}
$$

It has the classic form of a diffusion equation for some quantity $Q$
(in this case energy)

Flux of $Q=$ diffusion coefficient $\times$ gradient in the density of $Q$

And the diffusion coefficient is always of order

Speed of the carrier of $Q \times$ mean distance travelled

## Definitions of the electric and magnetic fields

Operational definition of $E, B$ and $q$ :
Lorentz force on a charged particle, $\boldsymbol{F}=q(\boldsymbol{E}+\boldsymbol{v} \times \boldsymbol{B} / c)$
$\rightarrow$ Rate of work done on particle $=\boldsymbol{v} . \boldsymbol{F}=q \boldsymbol{v} \cdot \boldsymbol{E}$

Continuum description, $f=\rho \boldsymbol{E}+j \times \boldsymbol{B} / c$


Current density
(flux of charge)
Charge density
Rate of work done per unit volume $=\boldsymbol{j} . \boldsymbol{E}$

## Note on units

$R \& L$ use Gaussian-c.g.s units, which are widely used in theoretical physics and astronomy

- In this system, unlike in the SI system, there are no dimensional constants, $\mu_{0}$ and $\epsilon_{0}$, and the speed of light appears explicitly in Maxwell's equations.
- Coulomb's Law becomes $F=q_{1} q_{2} / r^{2}$
- The unit of charge is the statCoulomb ( 1 statC $=1 \mathrm{~cm}^{3 / 2} \mathrm{~g}^{1 / 2} \mathrm{~s}^{-1}$ ) also known at the electrostatic unit (esu) or (rarely) the Franklin The electronic charge, $\mathrm{e}=4.803204 \times 10^{-10}$ stat $C$
- The unit of magnetic field is the Gauss ( $1 \mathrm{G}=\mathrm{cm}^{-1 / 2} \mathrm{~g}^{1 / 2} \mathrm{~s}^{-1}=10^{-4} \mathrm{~T}$ )
- Lorentz force on a charged particle, $\boldsymbol{F}=q(\boldsymbol{E}+\boldsymbol{v} \times \boldsymbol{B} / C)$
so $E$ and $B$ have the same unit


## Maxwell's Equations

Gauss's Law:

No magnetic monopoles:

Faraday's Law:

Ampere's Law:

$$
\boldsymbol{\nabla} . \boldsymbol{E}=4 \pi \rho
$$

$\boldsymbol{\nabla} . \boldsymbol{B}=0$

$$
\nabla \times \boldsymbol{E}=-\frac{1}{c} \frac{\partial B}{d t}
$$

$$
\nabla \times \boldsymbol{B}=\frac{1}{c} \frac{\partial \boldsymbol{E}}{d t}+\frac{4 \pi}{c} \boldsymbol{j}
$$

## Implications of Maxwell's equations



## Implications of Maxwell's equations

$$
\begin{array}{lc}
0=\frac{\partial}{d t}\left(\frac{\boldsymbol{E}^{2}+B^{2}}{8 \pi}\right)+\boldsymbol{\nabla} \cdot\left(\frac{\boldsymbol{c}}{4 \pi} \boldsymbol{E} \times \boldsymbol{B}\right)+\boldsymbol{j} \cdot \boldsymbol{E} \\
\text { Energy density, u } & \text { Energy flux, } F
\end{array}
$$

Conservation of energy

## Electromagnetic potentials

Making use of the vector identities
$\nabla .(\nabla \times V)=0$ and $\nabla \times \nabla \psi=0$
we can automatically enforce $\nabla . B=0$ by writing
$B=\nabla \times A$
and automatically enforce Faraday's Law
$0=\nabla \times \boldsymbol{E}+\frac{1}{c} \frac{\partial B}{d t}=\nabla \times\left(\boldsymbol{E}+\frac{1}{c} \frac{\partial A}{d t}\right)$
by writing
$\left(E+\frac{1}{c} \frac{\partial A}{d t}\right)=-\nabla \phi$

## Gauge transformation

When we write
$B=\boldsymbol{\nabla} \times \boldsymbol{A} \quad\left(E+\frac{1}{c} \frac{\partial A}{d t}\right)=-\nabla \phi$
We have some flexibility in choosing $\boldsymbol{A}$ and $\phi$
In particular, because $\nabla \times \nabla \psi=0$,
we can add the gradient of any scalar function $\psi$ to A , provided we also subtract ( $1 / c$ ) $d \psi / d t$ from $\phi$

This "gauge transformation" leaves $E$ and $B$ unchanged $A \rightarrow A+\nabla \psi$
$\phi \rightarrow \phi-(1 / c) \partial \psi / \partial t$

## Lecture 8 EM waves and polarization

Goals: understand

Maxwell's equations in the Lorentz gauge
Polarization: astrophysical context

READING: R\&L 2.4

## Lorentz gauge

For a suitable choice of $\psi(\boldsymbol{x}, t)$, we can always arrange things so that $\boldsymbol{\nabla} . \boldsymbol{A}=-(1 / c) \partial \phi / \partial t$

This is called the Lorentz gauge

With this choice, the two remaining Maxwell's equations become
$\nabla^{2} \phi-\frac{1}{c^{2}} \frac{\partial^{2} \phi}{\partial^{2} t}=-4 \pi \rho \quad$ Gauss's Law
$\boldsymbol{\nabla}^{2} \boldsymbol{A}-\frac{1}{c^{2}} \frac{\partial^{2} \boldsymbol{A}}{\partial^{2} t}=-4 \pi \boldsymbol{j} / \mathrm{c}$ Ampere's Law

## Wave solution

$\nabla^{2} \phi-\frac{1}{c^{2}} \frac{\partial^{2} \phi}{\partial^{2} t}=-4 \pi \rho \quad$ Gauss' Law
$\boldsymbol{\nabla}^{2} \boldsymbol{A}-\frac{1}{c^{2}} \frac{\partial^{2} \boldsymbol{A}}{\partial^{2} t}=-4 \pi \boldsymbol{j} / \mathrm{c}$ Ampere's Law

In a vacuum, $\rho=0$ and $\boldsymbol{j}=0$ and the solution is

$$
\begin{aligned}
& \phi=\phi_{0} e^{i(\boldsymbol{k} \cdot \boldsymbol{x}-k c t)} \\
& \boldsymbol{A}=\boldsymbol{A}_{\mathbf{0}} e^{i(\boldsymbol{k} \cdot \boldsymbol{x}-k c t)}
\end{aligned}
$$

As usual, $\phi_{0}$ and $\boldsymbol{A}_{\mathbf{0}}$ are complex, with the argument representing phase, and we take the real part of the RHS

## Wave solution: relation between $\boldsymbol{A}_{\mathbf{0}}$ and $\boldsymbol{\phi}_{0}$

$$
\begin{aligned}
& \phi=\phi_{0} e^{i(\boldsymbol{k} \cdot \boldsymbol{x}-k c t)} \\
& \boldsymbol{A}=\boldsymbol{A}_{\mathbf{0}} e^{i(\boldsymbol{k} \cdot \boldsymbol{x}-k c t)}
\end{aligned}
$$

This solution is premised on the Lorentz Gauge, which relates $\boldsymbol{A}_{\mathbf{0}}$ to $\phi_{0}$
$\boldsymbol{\nabla} \cdot \boldsymbol{A}=-(1 / c) \partial \phi / \partial t \rightarrow i k . \boldsymbol{A}_{\mathbf{0}}=-(1 / c)\left(-i k c \phi_{0}\right)$
$\phi_{0}=\widehat{\boldsymbol{k}} \cdot \boldsymbol{A}_{\mathbf{0}}$ is the projection of $\boldsymbol{A}_{\mathbf{0}}$ onto the direction of propagation

## Wave solution: $E$ and $B$ fields

$$
\begin{aligned}
\boldsymbol{A}= & \boldsymbol{A}_{\mathbf{0}} e^{i(\boldsymbol{k} \cdot \boldsymbol{x}-k c t)} \\
& \boldsymbol{\rightarrow} \boldsymbol{B}=\boldsymbol{\nabla} \times \boldsymbol{A}=\left(i \boldsymbol{A}_{0} \times \boldsymbol{k}\right) e^{i(\boldsymbol{k} \cdot \boldsymbol{x}-k c t)} \\
\phi= & \phi_{0} e^{i(\boldsymbol{k} \cdot \boldsymbol{x}-k c t)} \\
& \rightarrow \boldsymbol{Z}=-\boldsymbol{\nabla} \phi-\frac{1}{c} \frac{\partial \boldsymbol{A}}{d t}=\left(-i \boldsymbol{k} \phi_{0}+i k A_{0}\right) e^{i(\boldsymbol{k} \cdot \boldsymbol{x}-k c t)}
\end{aligned}
$$

Note that $\boldsymbol{E} \times \widehat{\boldsymbol{k}}=\left(0+i k \boldsymbol{A}_{\mathbf{0}} \times \widehat{\boldsymbol{k}}\right) e^{i(\boldsymbol{k} \cdot \boldsymbol{x}-k c t)}=\boldsymbol{B}$
$\rightarrow B$ and $E$ are mutually perpendicular and vary in phase

## Wave solution: $E$ and $B$ fields

Waves are transverse

$$
\begin{aligned}
& \boldsymbol{B}_{\mathbf{0}} \cdot \boldsymbol{k}=i \boldsymbol{A}_{\mathbf{0}} \times \boldsymbol{k} \cdot \boldsymbol{k}=0 \\
& \boldsymbol{E}_{\mathbf{0}} \cdot \boldsymbol{k}=i\left(\boldsymbol{A}_{\mathbf{0}} \cdot \widehat{\boldsymbol{k}}-\phi_{0}\right) k^{2}=0
\end{aligned}
$$

Thus, $\boldsymbol{B}=\boldsymbol{E} \times \widehat{\boldsymbol{k}}$ has the same magnitude as $\boldsymbol{E}$

The flux is $\boldsymbol{S}=\frac{\boldsymbol{c}}{4 \pi} \boldsymbol{E} \times \boldsymbol{B}=\frac{\boldsymbol{c}}{4 \pi} \boldsymbol{E}(t) B(t) \widehat{\boldsymbol{k}}=\frac{\boldsymbol{c}}{4 \pi} E^{2}(t) \widehat{\boldsymbol{k}}=\frac{\boldsymbol{c}}{4 \pi} B^{2}(t) \widehat{\boldsymbol{k}}$

Averaged over one cycle, we get
$\langle\boldsymbol{S}\rangle=\frac{\boldsymbol{c}}{8 \pi} \boldsymbol{E}_{\mathbf{0}} \cdot \boldsymbol{E}_{\mathbf{0}}{ }^{*} \widehat{\boldsymbol{k}}=\frac{\boldsymbol{c}}{8 \pi} \boldsymbol{B}_{\mathbf{0}} \cdot \boldsymbol{B}_{\mathbf{0}}{ }^{*} \widehat{\boldsymbol{k}}$

## Spectral analysis

Let's now consider the Fourier transform of $E(t)$, computed over some period T
$\tilde{E}_{T}(\omega)=\frac{1}{2 \pi} \int_{0}^{T} e^{i \omega t} E(t) d t$
(complex)
Parseval's theorem tells us that

$$
\int_{0}^{T} E^{2}(t) d t=4 \pi \int_{0}^{\infty}\left|\tilde{E}_{T}(\omega)\right|^{2} d \omega
$$

But $\int_{0}^{T} E^{2}(t) d t=\frac{4 \pi T}{c}\langle S\rangle_{T}$, so the average (frequencyintegrated) flux over this period is
$\langle\boldsymbol{S}\rangle_{T}=\frac{c}{T} \int_{0}^{\infty}\left|\tilde{E}_{T}(\omega)\right|^{2} d \omega$

## Spectral analysis

$\langle S\rangle_{T}=\frac{c}{T} \int_{0}^{\infty}\left|\tilde{E}_{T}(\omega)\right|^{2} d \omega$
is an expression for the total flux
$F=\int_{0}^{\infty} F_{v} d v=\int_{0}^{\infty}\left(F_{v} / 2 \pi\right) d \omega$

Hence, we may equate the integrands in these two equations and obtain

$$
F_{v}=\frac{2 \pi c}{T}\left|\tilde{E}_{T}(\omega)\right|^{2}
$$

## Polarization: astrophysical context

## Polarization provides key astrophysical information

## Examples:

Scattered radiation and the "unified AGN model"
Probing $\mu \mathrm{G}$ magnetic fields with
Polarized synchrotron radiation
Polarized dust emission
Starlight transmitted through the ISM
Faraday rotation within a magnetized plasma

## Polarization: unified AGN model



## Key supporting evidence

If you look at the polarized component of the light emitted by Seyfert 2 galaxy, it is more similar to that of a Seyfert 1 galaxy

Polarization is imparted by scattering off gas and dust
(Opposite example: seeing fish in a lake when wearing polarizing sunglasses)

## Polarization as a probe of magnetic fields, which show large scale Galactic structure

Swirls show B-field direction (Line integral convolution map*) 30 GHz synchrotron radiation


Polarized emission from cosmic-rays in our Galaxy as measured by Planck at 30 GHz Charged particles orbit magnetic field lines and emit radiation with with its E-field perpendicular to the interstellar B-field

## Polarization as a probe of magnetic fields, which show large scale Galactic structure

Swirls show B-field direction (Line integral convolution map*) 353 GHz dust emission


Polarized emission from dust grains in our Galaxy as measured by Planck at 353 GHz
Grains are elongated and preferentially aligned perpendicular to the interstellar B-field
$\rightarrow$ they emit thermal radiation with its E-field perpendicular to the IS B-field
.... and as probe of magnetic fields

## in individual interstellar gas clouds



## Faraday rotation

All-sky map from Oppermann+ 2012


As polarized radiation propagates through a magnetized plasma, the polarization direction is rotated through an angle proportional to $\lambda^{2} \int B_{\|} n_{e} d s$

B-fields along our line of sight causes "Faraday rotation"

# Lecture 9 <br> Polarization 

Goals: understand

Stokes parameters

READING: R\&L 2.4

## Polarization of a monochromatic wave

The electric field is written $\boldsymbol{E}=\boldsymbol{E}_{\mathbf{0}} e^{i(\boldsymbol{k} \cdot \boldsymbol{x}-k c t)}$ with the understanding that this really means $\boldsymbol{E}=\operatorname{Re}\left\{\boldsymbol{E}_{\mathbf{0}} e^{i(\boldsymbol{k} \cdot \boldsymbol{x}-k c t)}\right\}$
$\boldsymbol{E}_{\mathbf{0}}$ is a complex vector, which is perpendicular to the propagation direction, $\widehat{\boldsymbol{k}}$. Let's orient the $z$-axis along the propagation direction, so $\boldsymbol{E}_{\mathbf{0}}$ is in the xy-plane $\boldsymbol{E}_{\mathbf{0}}=\widehat{\boldsymbol{x}} E_{0 x}+\widehat{\boldsymbol{y}} E_{0 y}$, where $E_{0 x}$ and $E_{0 y}$ are complex

Note we never need to treat the B field separately, since $\boldsymbol{B}=\boldsymbol{E} \times \widehat{\boldsymbol{k}}$ has the same magnitude and phase

## Polarization of a monochromatic wave

We can write the complex numbers $E_{0 x}$ and $E_{0 y}$ as follows
$E_{0 x}=\varepsilon_{x} e^{i \phi_{x}} \quad E_{0 y}=\varepsilon_{y} e^{i \phi_{y}}$ with $\varepsilon_{x}, \varepsilon_{y}, \phi_{x}, \phi_{y} \in \Re$

At $z=0$, we then get

$$
\boldsymbol{E}=\widehat{\boldsymbol{x}} \varepsilon_{x} \cos \left(\omega t-\phi_{x}\right)+\widehat{\boldsymbol{y}} \varepsilon_{y} \cos \left(\omega t-\phi_{y}\right)
$$

## Polarization of a monochromatic plane wave

Case 1: $E_{0 x} / E_{0 y}$ is real
$\rightarrow \phi_{x}=\phi_{y}=\phi$
$\rightarrow$ The $x$ and $y$ components of $E$ vary in phase
$\boldsymbol{\rightarrow} \boldsymbol{E}=\left(\widehat{\boldsymbol{x}} \varepsilon_{x}+\widehat{\boldsymbol{y}} \varepsilon_{y}\right) \cos (\omega t-\phi)$
$\rightarrow$ Linearly polarized radiation

Case 2: $E_{0 x} / E_{0 y}$ is $\pm i$
$\rightarrow \phi_{x}=\phi_{y} \pm \frac{\pi}{2}$ and $\varepsilon_{x}=\varepsilon_{y}=\varepsilon$
$\rightarrow$ The $x$ and $y$ components are $90^{\circ}$ out of phase
$\rightarrow E=\varepsilon \widehat{\boldsymbol{x}} \cos \left(\omega t-\phi_{x}\right) \pm \varepsilon \widehat{\boldsymbol{y}} \sin \left(\omega t-\phi_{x}\right)$
$\rightarrow$ Circularly polarized radiation


## Polarization of a monochromatic plane wave

Case 3: $E_{0 x} / E_{0 y}$ is complex (or imaginary but $\neq \pm i$ )
$\rightarrow \phi_{x}=\phi_{y}-\Delta \phi$
$\rightarrow$ The E-field rotates around an ellipse
$\rightarrow$ Elliptically polarized radiation


Most generally, the polarization of a monochromatic wave is characterized by three parameters: $\Delta \phi, \varepsilon_{x}, \varepsilon_{y}$

This makes sense, because three parameters are needed to describe an ellipse: semi-major axis, axial ratio, and orientation

## Stokes parameters

We define the Stokes parameters as follows

$$
\begin{array}{ll}
I \equiv E_{0 x} E_{0 x}{ }^{*}+E_{0 y} E_{0 y}{ }^{*} & =\varepsilon_{x}{ }^{2}+\varepsilon_{y}{ }^{2} \\
Q \equiv E_{0 x} E_{0 x}{ }^{*}-E_{0 y} E_{0 y}{ }^{*} & =\varepsilon_{x}{ }^{2}-\varepsilon_{y}{ }^{2} \\
U \equiv E_{0 x} E_{0 y}{ }^{*}+E_{0 y} E_{0 x}{ }^{*} & =2 \varepsilon_{x} \varepsilon_{y} \cos \Delta \phi \\
V \equiv i\left(E_{0 y} E_{0 x}{ }^{*}+E_{0 x} E_{0 y}{ }^{*}\right) & =2 \varepsilon_{x} \varepsilon_{y} \sin \Delta \phi
\end{array}
$$

There are 4 parameters, but only 3 are needed to define an ellipse
So for this case of monochromatic radiation, there is a redundant information $\rightarrow$ there must be a relationship between them, and indeed

$$
\begin{aligned}
Q^{2}+U^{2}+V^{2} & =\left(\varepsilon_{x}{ }^{2}-\varepsilon_{y}{ }^{2}\right)^{2}+4 \varepsilon_{x}{ }^{2} \varepsilon_{y}{ }^{2} \cos ^{2} \Delta \phi+4 \varepsilon_{x}{ }^{2} \varepsilon_{y}{ }^{2} \sin ^{2} \Delta \phi \\
& =\left(\varepsilon_{x}{ }^{2}+\varepsilon_{y}{ }^{2}\right)^{2}=I^{2}
\end{aligned}
$$

As we'll see, this relationship need not apply when we superpose waves at slightly different frequencies or take a time average when the Stokes parameters are varying

## Stokes parameters: meaning

$$
\begin{array}{ll}
I \equiv E_{0 x} E_{0 x}{ }^{*}+E_{0 y} E_{0 y}{ }^{*} & =\varepsilon_{x}{ }^{2}+\varepsilon_{y}{ }^{2} \\
Q \equiv E_{0 x} E_{0 x}{ }^{*}-E_{0 y} E_{0 y}{ }^{*} & =\varepsilon_{x}{ }^{2}-\varepsilon_{y}{ }^{2} \\
U \equiv E_{0 x} E_{0 y}{ }^{*}+E_{0 y} E_{0 x}{ }^{*} & =2 \varepsilon_{x} \varepsilon_{y} \cos \Delta \phi \\
V \equiv i\left(E_{0 y} E_{0 x}{ }^{*}+E_{0 x} E_{0 y}{ }^{*}\right) & =2 \varepsilon_{x} \varepsilon_{y} \sin \Delta \phi
\end{array}
$$

$I=\frac{8 \pi}{c}\langle S\rangle$ is proportional to the total flux
$V \propto \sin \Delta \phi$ is called the "circularity parameter"
$V=0$ for linear polarized radiation
$V= \pm I$ for circularly polarized radiation
$V / I$ determines the axial ratio
$U$ and $Q$ determine the orientation of the ellipse

## Partially-polarized radiation

So far, we have considered radiation in which the polarization state is unchanging and the Stokes parameters are constant.

For simplicity, let's assume the flux is constant but the polarization state changes on some timescale $\Delta t$ that is much smaller than the observation period, $T$, but larger than the period of oscillation, $2 \pi / \omega$.

We will observe time averaged values of the Stokes parameters, $\langle I\rangle_{T},\langle Q\rangle_{T},\langle U\rangle_{T}$, and $\langle V\rangle_{T}$

For constant $I,\langle I\rangle_{T}{ }^{2}=\left\langle I^{2}\right\rangle_{T}$
But for the parameters that vary, we have
$\langle U\rangle_{T}{ }^{2} \leq\left\langle U^{2}\right\rangle_{T}$,
$\langle Q\rangle_{T}{ }^{2} \leq\left\langle Q^{2}\right\rangle_{T}$,
$\langle V\rangle_{T}{ }^{2} \leq\left\langle V^{2}\right\rangle_{T}$

Hence, $\langle I\rangle_{T}{ }^{2} \geq\langle U\rangle_{T}{ }^{2}+\langle Q\rangle_{T}{ }^{2}+\langle V\rangle_{T}{ }^{2}$

## Partially-polarized radiation

We can also think of this graphically by drawing 3D-vectors to represent ( $U, Q, V$ ) So long as $U, Q$, and $V$ are constant, $I=\sqrt{U^{2}+Q^{2}+V^{2}}$ is the length of such a vector


Suppose we have two such vectors, $\boldsymbol{p}_{1}$ and $\boldsymbol{p}_{2}$ representing the Stokes parameters during two equal time periods.
The time-averaged $I$ is $1 / 2\left(\left|p_{1}\right|+\left|p_{2}\right|\right)$
The time averaged $(U, Q, V)$ is simply $1 / 2\left(\boldsymbol{p}_{1}+\boldsymbol{p}_{2}\right)$, and thus the time-averaged quantity $\sqrt{\langle Q\rangle^{2}+\langle U\rangle^{2}+\langle V\rangle^{2}}$ is $\frac{1}{2}\left|\boldsymbol{p}_{1}+\boldsymbol{p}_{\mathbf{2}}\right|$

The triangle inequality, $\left|\boldsymbol{p}_{\mathbf{1}}+\boldsymbol{p}_{\mathbf{2}}\right| \leq\left|\boldsymbol{p}_{\mathbf{1}}\right|+\left|\boldsymbol{p}_{\mathbf{2}}\right|$, tells us $\sqrt{\langle Q\rangle^{2}+\langle U\rangle^{2}+\langle V\rangle^{2}} \leq\langle I\rangle$
The same argument applies to the superposition of two monochromatic waves of similar frequency but different polarization state

## Fractional polarization, $\Pi$

We define the fractional polarization, $\Pi$, as follows

$$
\Pi \equiv \frac{\sqrt{U^{2}+Q^{2}+V^{2}}}{I}
$$

If the polarization state is constant, $\Pi=1$
If the polarization state varies completely randomly, $\Pi=0$

In general, $\Pi$ can lie anywhere between 0 and 1

# Lecture 10 

Goals: understand

The retarded potentials
The L-W potentials for a point charge Potentials for a collection of charges
Potential for a collection of charges
The wave zone

READING: R\&L 3.1, 3.2

## Solution to Maxwell's equation with charges and currents

We wish to solve Maxwell's equations for non-zero $\rho$ and $\boldsymbol{j}$

$$
\left(\nabla^{2}-\frac{1}{c^{2}} \frac{\partial^{2}}{\partial^{2} t}\right)_{\boldsymbol{A}}^{\phi}=-4 \pi \underset{\boldsymbol{j} / c}{\rho}
$$

Let's focus first on the equation for $\phi$
To solve this inhomogenous equation, we first determine the Green's function i.e. the solution for the case of a delta function at location $\boldsymbol{x}^{\prime}$

$$
\nabla^{2} \phi-\frac{1}{c^{2}} \frac{\partial^{2} \phi}{\partial^{2} t}=-4 \pi Q(t) \delta\left(x-x^{\prime}\right)
$$

The solution must be a spherical wave centered on $\boldsymbol{x}^{\prime}$ $\phi(x, t)=\frac{1}{R} f(t-R / c)$, where $R=\left|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right|$

Check: $\nabla^{2} \phi=\frac{1}{R^{2}} \frac{\partial}{\partial R}\left(R^{2} \frac{\partial \phi}{\partial R}\right)=\frac{1}{R^{2}} \frac{\partial}{\partial R}\left(R^{2}\left[-\frac{f}{R^{2}}-\frac{f \prime}{R c}\right]\right)=\frac{1}{R^{2}}\left[\frac{f \prime}{c}-\frac{f^{\prime}}{c}+\frac{R f \prime \prime}{c^{2}}\right]=\frac{1}{c^{2}} \frac{\partial^{2} \phi}{\partial^{2} t}$

## Solution to Maxwell's equation with charges and currents

$$
\phi(\boldsymbol{x}, t)=\frac{1}{R} f(t-R / c)
$$

But how do we determine $f$ ?

Consider the limit of small $R$. Then the spatial derivatives dominate those with respect to time, and the equation becomes $\nabla^{2} \phi=-4 \pi Q(t) \delta\left(\boldsymbol{x}-\boldsymbol{x}^{\prime}\right)$

But we know the solution to that from electrostatics: $\phi=\frac{Q(t)}{R}$

$$
\lim _{R \rightarrow 0}\left(\frac{1}{R} f(t-R / c)\right)=\frac{Q(t)}{R} \Rightarrow f=Q
$$

The exact solution for all $R$ is therefore $\phi(\boldsymbol{x}, t)=\frac{1}{R} Q(t-R / c)=\frac{1}{R} Q\left(t_{\text {ret }}\right)$ where the "retarded time" $t_{r e t} \equiv t-R / c$

## Solution to Maxwell's equation with charges and currents

Because Maxwells' equations are linear, this implies that the general solution is

$$
\begin{gathered}
\phi(x, t)=\int \frac{\rho\left(x^{\prime}, t-\left|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right| / \boldsymbol{c}\right)}{\left|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right|} d V^{\prime} \\
\phi(x, t)=\int \frac{[\rho]}{\left|x-x^{\prime}\right|} d V^{\prime}
\end{gathered}
$$

where [ ] indicates a retarded value (evaluated at the $t_{r e t}$ appropriate to each location in $V^{\prime}$ )

An identical argument yields

$$
A(x, t)=\frac{1}{c} \int \frac{[j]}{\left|x-x^{\prime}\right|} d V^{\prime}
$$

These are called the retarded potentials

## Solution to Maxwell's equation with charges and currents

$$
\begin{aligned}
\phi(x, t) & =\int \frac{[\rho]}{\left|\boldsymbol{x}-x^{\prime}\right|} d V^{\prime} \\
\boldsymbol{A}(\boldsymbol{x}, t) & =\frac{1}{c} \int \frac{[j]}{\left|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right|} d V^{\prime}
\end{aligned}
$$

Interpretation: there is a time lag in the propagation of information about $\rho$ and $\boldsymbol{j}$
The information only propagates at the speed of light

Note: the equations allow a solution where $\rho$ and $\boldsymbol{j}$ are to be evaluated at $t+\left|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right| / \mathrm{c}$, i.e at some future time. [The outgoing spherical wave solution we adopted could be replaced by an incoming wave $\frac{1}{R} f(t+R / c)$ ]
But this can be rejected on the grounds of causality, because it would be inconsistent with the notion that charges and currents cause electric and magnetic fields

## The potential for a moving point charge

There's a clever trick for enforcing the retarded time within the integrals for the retarded potentials. We can write

$$
\phi(x, t)=\int \frac{\rho\left(\boldsymbol{x}^{\prime}, t_{r e t}\right)}{\left|\boldsymbol{x}^{\prime}-\boldsymbol{x}\right|} d V^{\prime}=\int \frac{\rho\left(\boldsymbol{x}^{\prime}, t^{\prime}\right)}{\left|\boldsymbol{x}^{\prime}-\boldsymbol{x}\right|} \delta\left(t^{\prime}-t_{r e t}\right) d V^{\prime} d t^{\prime}
$$

We are now ready consider the potentials associated with a moving point charge $q$ which is located at position $\boldsymbol{x}^{\prime}=\boldsymbol{r}(t)$ )

For this charge, we have

$$
\begin{aligned}
& \rho\left(\boldsymbol{x}^{\prime}, t\right)=q \delta\left(\boldsymbol{x}^{\prime}-\boldsymbol{r}(t)\right) \\
& \boldsymbol{j}\left(\boldsymbol{x}^{\prime}, t\right)=q \boldsymbol{v}(t) \delta\left(\boldsymbol{x}^{\prime}-\boldsymbol{r}(t)\right)
\end{aligned}
$$

where $\boldsymbol{v}(t)=\dot{\boldsymbol{r}}(t)$

For the point charge, we then find

$$
\phi(\boldsymbol{x}, t)=\int \frac{q \delta\left(\boldsymbol{x}^{\prime}-\boldsymbol{r}\left(t^{\prime}\right)\right)}{\left|\boldsymbol{x}^{\prime}-\boldsymbol{x}\right|} \delta\left(t^{\prime}-t_{r e t}\right) d V^{\prime} d t^{\prime}
$$

## The potential for a moving point charge

We can first perform the integration $d V^{\prime}$ to obtain

$$
\begin{gathered}
\phi(\boldsymbol{x}, t)=\int \frac{q \delta\left(\boldsymbol{x}^{\prime}-\boldsymbol{r}\left(t^{\prime}\right)\right)}{\left|\boldsymbol{x}^{\prime}-\boldsymbol{x}\right|} \delta\left(t^{\prime}-t_{r e t}\right) d V^{\prime} d t^{\prime}=\int \frac{q}{\left|\boldsymbol{r}\left(t^{\prime}\right)-\boldsymbol{x}\right|} \delta\left(t^{\prime}-t_{r e t}\right) d t^{\prime} \\
=\frac{q}{\left|\boldsymbol{r}\left(t_{r e t}\right)-\boldsymbol{x}\right|} \int \delta\left(t^{\prime}-t+\left|\boldsymbol{r}\left(t^{\prime}\right)-\boldsymbol{x}\right| / c\right) d t^{\prime} \\
=\frac{q}{R\left(t_{r e t}\right)} \int \delta\left(t^{\prime}-t+R\left(t^{\prime}\right) / c\right) d t^{\prime}
\end{gathered}
$$

where $\boldsymbol{R}=\boldsymbol{r}-\boldsymbol{x}$ and $R=|\boldsymbol{R}|$

Subtle but very important point: this integral of a delta function is not unity:

$$
\int \delta(y) d x=\frac{\int \delta(x) d x}{\kappa}=\frac{1}{\kappa}
$$

where

$$
\kappa=\left(\frac{d y}{d x}\right)_{y=0}=\left(1+\frac{\dot{R}\left(t^{\prime}\right)}{c}\right)_{t^{\prime}=t_{r e t}}=\left(1+\frac{\dot{R}\left(t_{r e t}\right)}{c}\right)
$$

## The potential for a moving point charge

Picture:

$$
v=\dot{\boldsymbol{r}}(t)
$$

Hence, $\kappa=\left(1+\frac{\dot{R}\left(t_{r e t}\right)}{c}\right)$ with $\dot{R}\left(t_{r e t}\right)=-v . \hat{R}$

$$
\begin{aligned}
& \phi(\boldsymbol{x}, t)=\frac{q}{\kappa\left(t_{\text {ret }}\right) R\left(t_{r e t}\right)}=\left[\frac{q}{\kappa R}\right] \\
& \boldsymbol{A}(\boldsymbol{x}, t)=\frac{q \boldsymbol{v}}{\kappa\left(t_{\text {ret }}\right) R\left(t_{r e t}\right)}=\left[\frac{q \boldsymbol{v}}{c \kappa R}\right]
\end{aligned}
$$

And, by an identical argument

$$
\text { with } \kappa=(1-v \cdot \hat{R} / c)
$$

These are called the Lienard-Weichart potentials

## Notes on the Lienard Wiechert potentials

$$
\phi(\boldsymbol{x}, \mathrm{t})=\frac{q}{\kappa\left(t_{r e t}\right) R\left(t_{r e t}\right)}=\left[\frac{q}{\kappa R}\right] \quad \boldsymbol{A}(\boldsymbol{x}, t)=\frac{q}{\kappa\left(t_{r e t}\right) R\left(t_{r e t}\right)}=\left[\frac{q \boldsymbol{v}}{c \kappa R}\right]
$$

$$
\text { with } \kappa=(1-v . \widehat{\boldsymbol{R}} / c)
$$

1) For a stationary charge, $\kappa=1$ and $R\left(t_{r e t}\right)=R$ is constant

We get the familiar electrostatic result: $\phi=q / R \quad A=0$
2) For moving charges, there are two additional effects
i) everything is evaluated at the retarded time
ii) the factor $\kappa \neq 1$ (unless the motion is perpendicular to $\hat{R}$ )

This arises because $\int[\rho] d V^{\prime} \neq \int \rho d V^{\prime}=q$
3) The $\kappa$ factor is extremely important for relativistic particles, where $v$ is close to $c$ and $1 / \kappa$ becomes very large when $\boldsymbol{v}$ is in the direction $\widehat{\boldsymbol{R}}$ (i.e. moving towards us)

## Potential due to collection of non-relativistic charges: the wave zone



Let's choose the origin $\star$ of our coordinate system within the charge collection of assumed size $L$. The observer is located at position $\boldsymbol{x}$, as always, and the charges are at location $x^{\prime}$ with $x^{\prime}<L / 2$

The observer is said to be in the "wave zone" if $x \gg L$ and $x \gg \lambda$, where $\lambda$ is the characteristic wavelength of any radiation that these charges emit In the "wave zone", we may make two approximations because $x \gg L$

$$
\begin{aligned}
\boldsymbol{A}(\boldsymbol{x}, t)= & \frac{1}{c} \int \frac{\boldsymbol{j}\left(\boldsymbol{x}^{\prime}, t_{r e t}\right)}{\left|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right|} d V^{\prime} \approx \frac{1}{c|\boldsymbol{x}|} \int \boldsymbol{j}\left(\boldsymbol{x}^{\prime}, t_{r e t}\right) d V^{\prime} \\
& t_{r e t}=t-R / \mathrm{c} \approx t-\left(x-\widehat{\boldsymbol{k}} \cdot x^{\prime}\right)
\end{aligned}
$$

Here, $\widehat{\boldsymbol{k}}=\widehat{x}$ is the unit vector pointing in the direction that waves would propagate from the source to the observer

## Potential due to a collection of charges

Given the "wave zone" approximation, $\quad A(x, t)=\frac{1}{c x} \int j\left(x^{\prime}, t_{\text {ret }}\right) d V^{\prime}$

Let's consider the spatial derivatives of $\boldsymbol{A}$ at the observer's location

$$
\frac{\partial A_{i}}{\partial x_{j}}=-\frac{1}{c x^{2}} \frac{\partial x}{\partial x_{j}} \int j_{i} d V^{\prime}+\frac{1}{c x} \int \frac{\partial j_{i}}{\partial t} \frac{\partial t_{r e t}}{\partial x_{j}} d V^{\prime}
$$

We can also determine that

$$
\frac{\partial x}{\partial x_{j}}=\frac{\partial}{\partial x_{j}} \sqrt{x_{k} x_{k}}=\frac{x_{j}}{x}=\widehat{k_{j}}
$$

and

$$
\frac{\partial t_{r e t}}{\partial x_{j}}=\frac{\partial}{\partial x_{j}}\left(t-\frac{1}{c}\left(x-\widehat{\boldsymbol{k}} \cdot x^{\prime}\right)\right)=-\frac{1}{c} \frac{x_{j}}{x}=-\frac{\widehat{k_{j}}}{c}
$$

so

$$
\frac{\partial A_{i}}{\partial x_{j}}=-\left(\frac{A_{i}}{x}+\frac{\mathbf{1}}{c} \frac{\partial A_{i}}{\partial t}\right) \widehat{k_{j}}
$$

## Potential due to a collection of charges

To get this equation $\frac{\partial A_{i}}{\partial x_{j}}=-\left(\frac{A_{i}}{x}+\frac{\mathbf{1}}{c} \frac{\partial A_{i}}{\partial t}\right) \widehat{k}_{j}$ we have so far only assumed $x \gg L$
Note the two terms have different dependences on our distance from the source
First term is $\propto \frac{A_{i}}{R} \propto \frac{1}{R^{2}}$ and $B \propto \frac{1}{R^{2}} \rightarrow u \propto \frac{1}{R^{4}}$
This is the standard result from electro/magnetostatics

However, the second term is $\propto \frac{A_{i}}{R^{0}} \propto \frac{1}{R^{1}}$ and $B \propto \frac{1}{R^{1}} \rightarrow u \propto \frac{1}{R^{2}}$
Electrodynamics, with time-varying $A_{i}$ caused by time-varying currents (i.e. accelerating charges), can transport energy over large distances

In the wave zone, where $x \gg 2 \pi \lambda$, the second term has a magnitude >> first term $\frac{1}{c} \frac{\partial A_{i}}{\partial t} \sim \frac{\omega}{c} A_{i}=\frac{1}{2 \pi \lambda} A_{i} \gg \frac{A_{i}}{x}$

Thus, we find $\frac{\partial A_{i}}{\partial x_{j}}=-\frac{\hat{k}_{j}}{c} \frac{\partial A_{i}}{\partial t}$. Similar reasoning $\rightarrow \frac{\partial \phi}{\partial x_{j}}=-\frac{\hat{k}_{j}}{c} \frac{\partial \phi}{\partial t}$.

Goals: understand

The dipole approximation
Larmor's formula
Thomson scattering READING: R\&L 3.3, 3.4

## In the wave zone, the solution is a spherical transverse wave

$$
\begin{aligned}
& \frac{\partial A_{i}}{\partial x_{j}}=-\frac{\hat{k}_{j}}{c} \frac{\partial A_{i}}{\partial t} \rightarrow \boldsymbol{B}=\boldsymbol{\nabla} \times \boldsymbol{A}=-\frac{\widehat{k}}{c} \times \frac{\partial \boldsymbol{A}}{\partial t} \\
& \frac{\partial \phi}{\partial x_{j}}=-\frac{\hat{k}_{j}}{c} \frac{\partial \phi}{\partial t} \rightarrow \boldsymbol{E}=-\boldsymbol{\nabla} \phi-\frac{1}{c} \frac{\partial \boldsymbol{A}}{\partial t}=\frac{1}{c} \frac{\partial \phi}{\partial t} \widehat{\boldsymbol{k}}-\frac{1}{c} \frac{\partial \boldsymbol{A}}{\partial t}
\end{aligned}
$$

$$
\text { But, } \frac{1}{c} \frac{\partial \phi}{\partial t}=-\nabla \cdot A=\frac{\widehat{k}}{c} \cdot \frac{\partial A}{\partial t}
$$

(Lorentz Gauge)

## Fancy way of writing 1

$\boldsymbol{E}=\frac{1}{c} \frac{\partial \phi}{\partial t} \widehat{\boldsymbol{k}}-\frac{1}{c} \frac{\partial \boldsymbol{A}}{\partial t}=\frac{\widehat{k}}{c} \cdot \frac{\partial A}{\partial t} \widehat{\boldsymbol{k}}-(\widehat{\boldsymbol{k}} . \widehat{\boldsymbol{k}}) \frac{1}{c} \frac{\partial \boldsymbol{A}}{\partial t}=\left(\frac{\partial A}{\partial t} \times \frac{\widehat{\boldsymbol{k}}}{c}\right) \times \widehat{\boldsymbol{k}}=\boldsymbol{B} \times \widehat{\boldsymbol{k}}$

$$
\text { Triple-product rule: }(\boldsymbol{a} \times \boldsymbol{b}) \times \boldsymbol{c}=\boldsymbol{b}(\boldsymbol{a} . \boldsymbol{c})-\boldsymbol{a}(\boldsymbol{b} . \boldsymbol{c})
$$

So, as before, $\boldsymbol{E}, \boldsymbol{B}$ and $\widehat{\boldsymbol{k}}$ are mutually perpendicular and $E=B$

The Poynting vector is $S=\frac{c}{4 \pi} \boldsymbol{E} \times \boldsymbol{B}=\frac{c}{4 \pi} B^{2} \widehat{\boldsymbol{k}}$

## Differential power



Let's consider an element of area, $d A$, at position $\boldsymbol{x}$
Energy passes through it at a rate $d P=S d A$
The solid angle subtended at the source is $d \Omega=d A / x^{2}$
So $\frac{d P}{d \Omega}=S x^{2}=\frac{c}{4 \pi} B^{2} x^{2}=\frac{c}{4 \pi}\left|\frac{\partial A}{\partial t} \times \frac{\widehat{k}}{c}\right|^{2} x^{2}=\frac{\sin ^{2} \Theta}{4 \pi c}\left|\frac{\partial A}{\partial t}\right|^{2} x^{2}$
where $\Theta$ is the angle between $\frac{\partial \boldsymbol{A}}{\partial t}$ and $\widehat{\boldsymbol{k}}$
$\frac{d P}{d \Omega}$ is called the differential power ( $\mathrm{erg} \mathrm{s}^{-1} \mathrm{sr}^{-1}$ ) and depends on the direction $\widehat{\boldsymbol{k}}$

## Differential power and the dipole approximation

Given our expression for the vector potential $\quad A(\boldsymbol{x}, t)=\frac{1}{c|\boldsymbol{x}|} \int \boldsymbol{j}\left(\boldsymbol{x}^{\prime}, t_{r e t}\right) d V^{\prime}$
We find that $\quad \frac{d P}{d \Omega}=\frac{\sin ^{2} \Theta}{4 \pi c^{3}}\left|\frac{\partial \boldsymbol{A}}{\partial t}\right|^{2}=\frac{\sin ^{2} \Theta}{4 \pi c^{3}}\left|\frac{\partial}{\partial t} \int \boldsymbol{j}\left(\boldsymbol{x}^{\prime}, t_{r e t}\right) d V^{\prime}\right|^{2}$
For the system to radiate, we clearly need time-varying currents

A considerably simplification occurs in the size of the emission region, $L$, is much smaller than the characteristic wavelength $\lambda$
In that limit, the "dipole approximation" is said to apply and phase differences across the source are negligible. Thus, we can assume the same retarded time for the entire emission region, and write

$$
\frac{d P}{d \Omega}=\frac{\sin ^{2} \Theta}{4 \pi c^{3}}\left|\frac{\partial}{\partial t} \int \boldsymbol{j}\left(\boldsymbol{x}^{\prime}\right) d V^{\prime}\right|^{2}
$$

## Dipole approximation

Suppose we have a collection of $N$ charges, with individual charges $q_{i}$ located at positions $\boldsymbol{x}_{i}(\mathrm{t})$, where $i$ ranges from 1 to $N$

In that case, $\boldsymbol{j}\left(\boldsymbol{x}^{\prime}\right)=\sum_{1}^{N} q_{i} \boldsymbol{v}_{i} \boldsymbol{\delta}\left(\boldsymbol{x}_{i}-\boldsymbol{x}^{\prime}\right)$ where $\boldsymbol{v}_{i}=\dot{\boldsymbol{x}}_{i}$

Hence, $\int \boldsymbol{j}\left(\boldsymbol{x}^{\prime}\right) d V^{\prime}=\sum_{1}^{N} q_{i} \dot{\boldsymbol{x}}_{i}$
and thus $\frac{d P}{d \Omega}=\frac{\sin ^{2} \Theta}{4 \pi c^{3}}\left|\frac{\partial \boldsymbol{A}}{\partial t}\right|^{2}=\frac{\sin ^{2} \Theta}{4 \pi c^{3}}\left|\frac{\partial}{\partial t} \int \boldsymbol{j}\left(\boldsymbol{x}^{\prime}\right) d V^{\prime}\right|^{2}=\frac{\sin ^{2} \Theta}{4 \pi c^{3}}\left|\sum_{1}^{N} q_{i} \ddot{x}_{i}\right|^{2}$
Defining the dipole moment $\quad d=\sum_{1}^{N} q_{i} x_{i}$
We obtain $\frac{d P}{d \Omega}=\frac{|\ddot{a}|^{2} \sin ^{2} \Theta}{4 \pi c^{3}} \quad$ or $\quad \frac{d P}{d \Omega}=\frac{|\ddot{\boldsymbol{a}} \times \widehat{\boldsymbol{k}}|^{2}}{4 \pi c^{3}}$

## Dipole approximation

$\frac{d P}{d \Omega}=\frac{|\ddot{d}|^{2} \sin ^{2} \Theta}{4 \pi c^{3}}$ or $\frac{d P}{d \Omega}=\frac{|\ddot{\boldsymbol{d}} \times \widehat{\boldsymbol{k}}|^{2}}{4 \pi c^{3}}$

Integrating over solid angle, we obtain Larmor's formula for the total power

$$
P=\int \frac{|\ddot{a}|^{2} \sin ^{2} \Theta}{4 \pi c^{3}} d \Omega=\frac{|\ddot{\mid}|^{2}}{4 \pi c^{3}} \int_{-1}^{1} 2 \pi\left(1-\mu^{2}\right) d \mu=\frac{2|\ddot{d}|^{2}}{3 c^{3}}
$$

Comment about the various approximations

1) In the wave zone approximation, we assume $x \gg L$ and $x \gg \lambda$ but make no assumption about the relative magnitudes of $L$ and $\lambda$
2) In the dipole approximation, we also assume $L \ll \lambda$

This is generally a good approximation for light atoms/molecules, which have typical size $L \sim a_{0}$ (Bohr radius) and electronic transitions with $\lambda \sim h c / \Delta E \sim h c a_{0} / Z e^{2}$ Hence $L / \lambda \sim Z e^{2} / h c \sim Z / 137$

## Thomson scattering

We are now ready to consider the scattering of radiation by an electron (or other point charge)

We suppose a polarized EM wave is incident along the $z$-axis, causing the electron to move in simple harmonic motion along the $x$-axis


Figure 3.6 Scattering of polarized radiation by a charged particle.

## Thomson scattering: scattered power

If $\boldsymbol{E}=\widehat{\boldsymbol{x}} \varepsilon_{x} \cos \omega t$
then $\boldsymbol{F}=q\left(\boldsymbol{E}+\frac{v}{c} \times \boldsymbol{B}\right) \sim \widehat{\boldsymbol{x}} q \varepsilon_{x} \cos \omega t$

$$
\text { typically << } 1
$$

and $\ddot{\boldsymbol{x}}=\widehat{\boldsymbol{x}} \frac{q}{m} \varepsilon_{x} \cos \omega t$

Hence $\ddot{\boldsymbol{d}}=q \ddot{\boldsymbol{x}}=\widehat{\boldsymbol{x}} \frac{q^{2}}{m} \varepsilon_{x} \cos \omega t$

The power this electron radiates by virtue of its acceleration is

$$
P=\frac{2|\ddot{d}|^{2}}{3 c^{3}}=\frac{2 q^{4}}{3 m^{2} c^{3}} \varepsilon_{x}{ }^{2} \cos ^{2} \omega t=\frac{8 \pi q^{4}}{3 m^{2} c^{4}} \frac{c}{4 \pi} \varepsilon_{x}{ }^{2} \cos ^{2} \omega t
$$

## Thomson scattering: total cross-section

$$
P=\frac{8 \pi q^{4}}{3 m^{2} c^{4}} S
$$

The power radiated represents scattering, and thus the scattering cross-section for an electron is

$$
\sigma_{T}=\frac{8 \pi e^{4}}{3 m e^{2} c^{4}}=\frac{8 \pi}{3}\left(\frac{e^{2}}{m_{e} c^{2}}\right)^{2}=\frac{8 \pi r_{0}{ }^{2}}{3}=6.65 \times 10^{-25} \mathrm{~cm}^{2}
$$

$\sigma_{T}$ is called the Thomson cross-section and $r_{0}=2.82 \times 10^{-13} \mathrm{~cm}$ is the "classical radius" of the electron

Protons also scatter radiation, but the cross-section is a factor $\left(m_{p} / m_{e}\right)^{2}=1837^{2}$ smaller

Note that $\sigma_{T}$ is independent of $v$ (although this classical treatment breaks down for $h v$ greater than $\sim m_{e} c^{2}$ )

## Thomson scattering: angular distribution

$\frac{d P}{d \Omega}=\frac{|\ddot{\boldsymbol{d}} \times \widehat{\boldsymbol{k}}|^{2}}{4 \pi c^{3}}$, so the angular distribution has a $\sin ^{2} \Theta$ dependence

Very important point: the relevant angle is with the $x$-axis (polarization direction) not the $z$-axis (incoming wave direction)


Figure 3.6 Scattering of polarized radiation by a charged particle.

## Thomson scattering: differential cross-section

We may write the differential power of the scattered radiation
$\frac{d P}{d \Omega}=\frac{|\ddot{\boldsymbol{d}}|^{2}}{4 \pi c^{3}} \sin ^{2} \Theta=\frac{e^{4}}{m_{e}{ }^{2} c^{4}} \frac{c}{4 \pi} \varepsilon_{x}{ }^{2} \cos ^{2} \omega t \sin ^{2} \Theta=S r_{0}^{2} \sin ^{2} \Theta$
terms of a differential cross-section

$$
\frac{d P}{d \Omega}=\frac{d \sigma}{d \Omega} S
$$

with $\frac{d \sigma}{d \Omega}=r_{0}^{2} \sin ^{2} \Theta$

## Thomson scattering: angular distribution

Notes on the scattering of linearly-polarized radiation

1) The scattered radiation has a forward-backwards symmetry because $\sin ^{2} \Theta=\sin ^{2}(-\Theta)$
2) The scattered radiation is polarized with the $\boldsymbol{E}$ field in the $x z$ plane


## Thomson scattering: unpolarized radiation

So far, we have consider scattering of linearly-polarized radiation

With unpolarized radiation, the dipole moment has a $y$-component (in-and-out of the plane of the "paper")

We now have $\left\langle\ddot{d}_{y}^{2}\right\rangle=\left\langle\ddot{d}_{x}^{2}\right\rangle=\frac{1}{2}\left\langle\ddot{\boldsymbol{d}}^{2}\right\rangle$ by symmetry because $x$ and $y$ are equivalent


## Thomson scattering: unpolarized radiation

The (time-averaged) differential power emitted is now
$\left\langle\frac{d P}{d \Omega}\right\rangle=\frac{\left\langle\ddot{d}_{x}^{2}\right\rangle}{4 \pi c^{3}} \sin ^{2} \Theta+\frac{\left\langle\ddot{d}_{y}^{2}\right\rangle}{4 \pi c^{3}} \sin ^{2} \frac{\pi}{2}=\frac{\left\langle\ddot{d}^{2}\right\rangle}{4 \pi c^{3}}\left(\frac{1}{2} \sin ^{2} \Theta+\frac{1}{2}\right)$
and the differential scattering cross-section is $\frac{d \sigma}{d \Omega}=\frac{1}{2} r_{0}^{2}\left(1+\sin ^{2} \Theta\right)$

Incoming unpolarized wave

## Thomson scattering: unpolarized radiation

Subtle point: the $x$ axis is no longer a special axis. Any rotational symmetry has to exist about the $z$-axis.
The relevant angle is therefore $\theta$, not $\Theta$
(i.e. the angle to the $z$ axis)

Thus, $\frac{d \sigma}{d \Omega}=\frac{1}{2} r_{0}^{2}\left(1+\cos ^{2} \theta\right)$

Incoming unpolarized wave


## Thomson scattering: unpolarized radiation

The total scattering cross-section is the same as for polarized radiation,

$$
\sigma=\frac{1}{2} r_{0}^{2} \int\left(1+\cos ^{2} \theta\right) d \Omega=\frac{1}{2} r_{0}^{2} \int_{-1}^{1} 2 \pi\left(1+\mu^{2}\right) d \mu=\frac{8 \pi r_{0}^{2}}{3}=\sigma_{T}
$$

As we shall see, the scattered radiation can be partiallypolarized, even when the incoming radiation is unpolarized

## Lecture 12 <br> Thomson scattering, charge in a harmonic potential

Goals: understand

Finish up Thomson scattering of unpolarized radiation
Scattering by a charge in a harmonic potential Begin review of Special Relativity

## Thomson scattering: unpolarized radiation



Define the $x^{\prime}$ axis as being rotated at angle $\theta$, so it remains perpendicular to the $y$ axis while also being perpendicular to $\hat{k}$
The time averaged value of $\varepsilon_{x^{\prime}}{ }^{2}$ is reduced by a factor $\cos ^{2} \theta$ relative to the average value of $\varepsilon_{y^{\prime}}{ }^{2}$
$\rightarrow$ The scattered radiation has $\frac{I+Q}{I-Q}=\frac{\varepsilon_{x^{\prime}}{ }^{2}}{\varepsilon_{y^{\prime}}{ }^{2}}=\cos ^{2} \theta$
$\rightarrow$ The degree of polarization $\Pi=\frac{Q}{I}=\frac{1-\cos ^{2} \theta}{1+\cos ^{2} \theta} \quad$ is zero for $\theta=0$ and 1 for $\theta=\pi / 2$

## Radiation from a harmonic oscillator

So far, we have considered the motion of a free electron upon which an EM wave is incident

Suppose the electron is bound in a harmonic potential (relevant to the case of atoms and molecules) and has a natural angular frequency of oscillation $\omega_{0}$

Equation of motion: $m \ddot{x}+m \omega_{0}^{2} x+$ damping term $=q E_{x}$

The damping term is small but represents the energy loss due to radiation. We can usually treat this as a perturbation.

Let's consider first an undriven oscillator $\left(E_{x}=0\right)$ without damping
$m \ddot{x}+m \omega_{0}^{2} x=0 \quad \rightarrow x=x_{0} e^{i \omega_{0} t}$
where $x_{0}$ is the complex amplitude of the oscillator

## Radiation from a harmonic oscillator

$x=x_{0} e^{i \omega_{0} t} \rightarrow$ dipole moment, $d=q x_{0} e^{i \omega_{0} t}$

And thus $\ddot{d}=-q \omega_{0}{ }^{2} x_{0} e^{i \omega_{0} t} \quad$ (sinusoidal oscillation with amplitude $\left|x_{0}\right|$ )
$\rightarrow\left\langle\ddot{d}^{2}\right\rangle=\frac{1}{2} q^{2} \omega_{0}{ }^{4}\left|x_{0}\right|^{2}$

$$
\left\langle\cos ^{2} \omega_{0} t\right\rangle
$$

Mean power radiated $\langle P\rangle=\frac{2\left\langle\ddot{d}^{2}\right\rangle}{3 c^{3}}=\frac{q^{2} \omega_{0}{ }^{4}\left|x_{0}\right|^{2}}{3 c^{3}}$
The particle energy, $E$, is the maximum value of $\frac{1}{2} m \dot{x}^{2}$, which is $\frac{1}{2} m \omega_{0}{ }^{2}\left|x_{0}\right|^{2}$ Hence, $\frac{d E}{d t}=-\frac{q^{2} \omega_{0}{ }^{4}\left|x_{0}\right|^{2}}{3 c^{3}}=-\frac{2 \omega_{0}{ }^{2} q^{2}}{3 m c^{3}} E=\frac{E}{\tau_{r a d}}$
where the energy loss timescale $\tau_{r a d} \equiv \frac{3 m c^{3}}{2 \omega_{0}{ }^{2} q^{2}}=\frac{3 c}{r_{0} \omega_{0}{ }^{2}}$

## Radiation from a harmonic oscillator: energy loss

Key point:
$\tau_{r a d} \equiv-\frac{3 m c^{3}}{2 \omega_{0}{ }^{2} q^{2}}=\frac{3 c}{2 r_{0} \omega_{0}{ }^{2}}$
$\omega_{0} \tau_{r a d}=\frac{3 c}{2 r_{0} \omega_{0}}=\frac{3 \lambda_{0}}{4 \pi r_{0}} \gg 1$ unless we are considering high-energy gamma-rays
$\rightarrow$ Fraction of energy lost per oscillation period is $\ll 1$
Can treat radiation as a perturbation

Energy decreases as $e^{-t / \tau_{r a d}}$, so amplitude decreases as $e^{-t /\left(2 \tau_{r a d}\right)}$
In other words, $x=x_{0} e^{-\Gamma t / 2} e^{i \omega_{0} t}$
where the "damping constant," $\Gamma=1 / \tau_{\text {rad }}$

## Equation of motion for a damped harmonic oscillator

As you probably remember from a sophomore course on waves, $x=x_{0} e^{-\Gamma t / 2} e^{i \omega_{0} t}$ is the solution to the equation of motion for the (undriven) damped harmonic oscillator

$$
m\left(\ddot{x}+\Gamma \dot{x}+\omega_{0}^{2} x\right)=0
$$

Note: It is shown in R\&L 3.4 that the effect of radiation is to yield a reaction force that is proportional to $\dddot{x}$, the third time derivative of position.

This in only true in an average sense anyway, and since the damping term is a small perturbation, we have $\dddot{x}=-\omega_{0}^{2} \dot{x}$

So $m\left(\ddot{x}+\Gamma \dot{x}+\omega_{0}^{2} x\right)=0$ is a very good approximation that is easy to work with

## Equation of motion for a damped harmonic oscillator

We may now compute what happens when an EM wave is incident on the bound electron. We just add a "driving term" on the right-hand-side

$$
\left(\ddot{x}+\Gamma \dot{x}+\omega_{0}^{2} x\right)=\frac{F}{m}=-\frac{e}{m} E_{o x} e^{-i \omega t}
$$

Here $\omega$ is the angular frequency of the incident wave, which (in general) differs from the natural frequency of oscillation $\omega_{0}$

The solution is $x=x_{0} e^{-i \omega t}+$ (the decaying solution we obtained before)

Here, $E_{o x}$ and $x_{0}$ are complex as before, and the actual E field and displacement are given by the real parts of $E_{o x} e^{-i \omega t}$ and $x_{0} e^{-i \omega t}$
i.e.

$$
E_{x}=\left|E_{o x}\right| \cos \left(\omega t-\delta_{E}\right)
$$

$$
\text { and } x=\left|x_{o}\right| \cos \left(\omega t-\delta_{x}\right)
$$

## Equation of motion for a damped harmonic oscillator

Substituting $x=x_{0} e^{-i \omega t}$ into the equation of motion, we get

$$
\begin{gathered}
\left(-\omega^{2} x_{0}-i \Gamma \omega x_{0}+\omega_{0}^{2} x_{0}\right) e^{-i \omega t}=-\frac{e E_{o x}}{m} e^{-i \omega t} \\
\Rightarrow x_{0}=\left(\frac{e E_{o x}}{m}\right) \frac{1}{\left(\omega_{0}^{2}-\omega^{2}\right)-i \Gamma \omega} \\
\Rightarrow\left|x_{0}\right|^{2}=\left(\frac{e^{2}\left|E_{o x}\right|^{2}}{m^{2}}\right) \frac{1}{\left(\omega_{0}^{2}-\omega^{2}\right)^{2}+\Gamma^{2} \omega^{2}}
\end{gathered}
$$

and

$$
\delta_{x}=\delta_{E}-\tan ^{-1}\left(\frac{\Gamma \omega}{\omega^{2}-\omega_{0}^{2}}\right)
$$

In resonance $\left(\omega=\omega_{0}\right)$, there's a $\frac{\pi}{2}$ phase difference between force and position
$(\rightarrow$ force in phase with velocity, maximizing the energy input to the system)

## Scattering cross-section for a damped harmonic oscillator

We can now use the Larmor formula, as before, to determine the frequency dependence of the cross-section. The time-averaged power radiated is

$$
\langle P\rangle=\frac{2\langle\ddot{d}\rangle^{2}}{3 c^{3}}=\frac{2\langle e \ddot{x}\rangle^{2}}{3 c^{3}}=\frac{e^{2}\left|x_{0}\right|^{2} \omega^{4}}{3 c^{3}} \quad \text { using } \ddot{x}=-\omega^{2} x_{0} e^{-i \omega t}
$$

Substituting for $\left|x_{0}\right|^{2}$ from the previous slide, we find

$$
\langle P\rangle=\frac{e^{2}\left|x_{0}\right|^{2} \omega^{4}}{3 c^{3}}=\left(\frac{e^{4}\left|E_{o x}\right|^{2}}{3 c^{3} m^{2}}\right) \frac{\omega^{4}}{\left(\omega_{0}^{2}-\omega^{2}\right)^{2}+\Gamma^{2} \omega^{2}}
$$

and dividing finally by $\langle S\rangle=\frac{c}{8 \pi}\left|E_{o x}\right|^{2}$ we obtain the scattering cross-section

$$
\sigma=\frac{\langle P\rangle}{\langle S\rangle}=\left(\frac{8 \pi e^{4}}{3 m^{2} c^{2}}\right) \frac{\omega^{4}}{\left(\omega_{0}^{2}-\omega^{2}\right)^{2}+\Gamma^{2} \omega^{2}}=\frac{\sigma_{T} \omega^{4}}{\left(\omega_{0}^{2}-\omega^{2}\right)^{2}+\Gamma^{2} \omega^{2}}
$$

## Frequency dependence

$$
\sigma=\frac{\sigma_{T} \omega^{4}}{\left(\omega_{0}^{2}-\omega^{2}\right)^{2}+\Gamma^{2} \omega^{2}}=\frac{\sigma_{T} \omega^{4}}{\left(\omega-\omega_{0}\right)^{2}\left(\omega+\omega_{0}\right)^{2}+\Gamma^{2} \omega^{2}}
$$

1) High frequency limit $\left(\omega \gg \omega_{0}\right): \sigma \sim \sigma_{T}$

Same behavior as the unbound particle because the restoring force is negligible
2) Low-frequency limit $\left(\omega \ll \omega_{0}\right): \sigma \sim \frac{\omega^{4}}{\omega_{0}^{4}} \sigma_{T} \sim \frac{1}{\lambda^{4}}$
"Rayleigh scattering"
3) Near resonance $\left(\omega \sim \omega_{0}\right): \sigma \sim \frac{\sigma_{T} \omega_{0}{ }^{4}}{4 \omega_{0}^{2}\left(\omega-\omega_{0}\right)^{2}+\Gamma^{2} \omega_{0}{ }^{2}}$

As you are asked to demonstrate in the next homework
$\sigma\left(\omega_{0}\right)=c_{1} \lambda_{0}^{2}$ and $\int \sigma(v) d v=c_{2}\left(\frac{e^{2}}{m c}\right)$ where $c_{1}$ and $c_{2}$ are constants (involving integers and $\pi$ )

## Review of SR: goals of the discussion

Our discussion of SR is motivated by the fact that relativistic charged particles are widespread in the Universe.

They are inevitably involved in two of the three emission processes we'll consider: synchrotron radiation and inverse Compton radiation.

So we'll need to understand

1) How the differential power $d P / d \Omega$ transforms as we go from one inertial reference frame to another
2) The dynamics of relativistic particles in a magnetic field

## The fundamental postulates of SR

These are usually expressed as

1) The laws of physics are the same in any inertial reference frame (IRF)
2) The speed of light is the same in any inertial reference frame

The fundamental object in SR is the "event," which occurs at a particular spatial position $(x, y, z)$ and at a particular time, $t$.
If we take two events, the emission and reception of a radio signal, the second postulate implies that
$c^{2} \Delta t^{2}-\left(\Delta x^{2}+\Delta y^{2}+\Delta z^{2}\right)=c^{2} \Delta t^{\prime 2}-\left(\Delta x^{\prime 2}+\Delta y^{\prime 2}+\Delta z^{\prime 2}\right)$
where ( $x, y, z, t$ ) are the values measured in one IRF (call it $S$ ) and and ( $x^{\prime}, y^{\prime}, z^{\prime}, t^{\prime}$ ) are those measured in another ( $S^{\prime}$ )

## Four-vectors

Apart from the - sign, the "invariant" quantity $c^{2} \Delta t^{2}-\left(\Delta x^{2}+\Delta y^{2}+\Delta z^{2}\right)$ looks a lot like the square of the length of a 4-D vector

The location of an event in spacetime may be expressed in two ways using the 4-vectors
$x^{\mu}=\left[\begin{array}{c}c t \\ x \\ y \\ z\end{array}\right] \quad$ or $\quad x_{\mu}=\left[\begin{array}{c}-c t \\ x \\ y \\ z\end{array}\right]$
Here, $\mu$ can take 4 values, conventionally $0,1,2,3$
and $c^{2} \Delta t^{2}-\left(\Delta x^{2}+\Delta y^{2}+\Delta z^{2}\right)$ may be written $\Delta x_{\mu} \Delta x^{\mu}$ using the summation convention. To obey Lorentz invariance, we only ever sum over one subscripted index and one superscripted

Goals: review SR

4-vectors
Aberration and Doppler shift
Differential power received from a relativistic source Relativistic beaming

## Four-vectors

$x^{\mu}=\left[\begin{array}{c}c t \\ x \\ y \\ z\end{array}\right] \quad$ or $\quad x_{\mu}=\left[\begin{array}{c}-c t \\ x \\ y \\ z\end{array}\right]$
In this notation, a superscripted Greek letter index indicates a contravariant 4-vector, the meaning of which will be explained later, while a subscripted index indicates a covariant 4-vector
The contravariant and covariant forms differ only in the sign of the $0^{\text {th }}$ element
$x_{\mu}=\left[\begin{array}{rrrr}-1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]\left[\begin{array}{c}c t \\ x \\ y \\ z\end{array}\right]=\eta_{\mu \nu} x^{\nu}$
("lowering the index")
where $\eta_{\mu \nu}$ is the Minkowski metric

The inverse transformation is $x^{v}=\eta^{\mu \nu} x_{\mu}$
("raising the index")

## Invariance: 3-vectors

We are familiar with the invariant properties of 3-vectors when we rotate the coordinate system

Angles and lengths are preserved under rotations, and therefore dot products are invariant

If $\boldsymbol{a}^{\prime}=\boldsymbol{R} \boldsymbol{a}=\left[\begin{array}{ccc}\cos \theta & \sin \theta & 0 \\ -\sin \theta & \cos \theta & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{l}a_{x} \\ a_{y} \\ a_{z}\end{array}\right] \quad$ (and $\boldsymbol{b}^{\prime}=\boldsymbol{R} \boldsymbol{b}$ )
(rotation about z axis through angle $\theta$ )
then $a^{\prime} . b^{\prime}=a_{x}^{\prime} b^{\prime}{ }_{x}+a_{y}^{\prime}{ }_{y} b_{y}^{\prime}+a_{z}^{\prime} b_{z}^{\prime}=a_{x} b_{x}+a_{y} b_{y}+a_{z} b_{z}=a . b$
and $\left|\boldsymbol{a}^{\prime}\right|=\sqrt{\boldsymbol{a}^{\prime} \cdot \boldsymbol{a}^{\prime}}=\sqrt{\boldsymbol{a} \cdot \boldsymbol{a}}=|\boldsymbol{a}|$

## Invariance: 3-vectors

The invariance of $\boldsymbol{a} . \boldsymbol{b}$ under rotation is linked to a mathematical property of $\boldsymbol{R}$. In the summation convention
$\boldsymbol{a}^{\prime} \cdot \boldsymbol{b}^{\prime}=a_{i}^{\prime} b_{i}^{\prime}=R_{i j} R_{i k} a_{j} b_{k}$

The right hand side is equal to $a_{j} b_{j}$ because $R_{i j} R_{i k}=\delta_{j k}$ where $\delta_{j k}$ is the "Kronecker delta" (equals 1 when $j=k$ and 0 otherwise)

In matrix notation, this is saying $\boldsymbol{R} \boldsymbol{R}^{\boldsymbol{T}}=\boldsymbol{I}$
( $R$ is said to be orthogonal: the transpose of $R$ is equal to the inverse)

## Invariance: 4-vectors

In SR, the analog of rotation is a "velocity boost" from one frame to another. The rotation matrix, $\boldsymbol{R}$, is replaced by the Lorentz transformation, so $x^{\prime \mu}=\Lambda^{\mu}{ }_{v} x^{v}$
with $\Lambda^{\mu}{ }_{v}=\left[\begin{array}{rrrr}\gamma & -\beta \gamma & 0 & 0 \\ -\beta \gamma & \gamma & 0 & 0 \\ 0 & 0 & 1 & 0\end{array}\right] \quad$ representing a velocity boost $\beta c$ along the $x$-axis
and where $\gamma=\frac{1}{\sqrt{1-\beta^{2}}}$

Now, $\Delta x^{\prime \mu} \Delta x^{\prime}{ }_{\mu}=\Lambda^{\mu}{ }_{v} \Delta x^{v} \eta_{\mu \rho} \Lambda^{\rho}{ }_{\tau} \eta^{\tau \sigma} \Delta x_{\sigma}=\Delta x_{\mu} \Delta x^{\mu}$
because $\Lambda^{\mu}{ }_{v} \eta_{\mu \rho} \Lambda^{\rho}{ }_{\tau}=\eta_{\tau \rho}$ or equivalently $\boldsymbol{\Lambda}^{\boldsymbol{T}} \boldsymbol{\eta} \boldsymbol{\Lambda}=\boldsymbol{\eta}$

## 4-vectors

More generally, a 4-vector is any vector that transforms in accord with the Lorentz transformation, $V^{\prime \mu}=\Lambda_{v}^{\mu} V^{v}$

And the scalar product of any two 4-vectors, $V^{\mu} W_{\mu}$, is a Lorentzinvariant scalar. The postulates of SR then imply that the equations of physics can be written as 4 -vector equations

Example: we may define the 4-velocity $U^{\mu} \equiv \frac{d x^{\mu}}{d \tau}$
where $d \tau=\sqrt{-d x^{\mu} d x_{\mu} / c^{2}}$ is the element of proper time
$d \tau$ is a Lorentz invariant scalar, so $U^{\mu}$ must clearly transform the way $x^{\mu}$ does (i.e. as a four-vector)

## 4-velocity

How does the 4-velocity relate to the three-velocity $\boldsymbol{u}$ ?

Well, $\quad d \tau^{2}=-d x^{\mu} d x_{\mu} / c^{2}=d t^{2}-\left(d x^{2}+d y^{2}+d z^{2}\right) / c^{2}$
$=d t^{2}\left(1-u^{2} / c^{2}\right)=d t^{2} / \gamma^{2} \Rightarrow d \tau=d t / \gamma$

Hence, $U^{\mu}=\frac{d}{d \tau}\left[\begin{array}{l}c t \\ x \\ y \\ z\end{array}\right]=\gamma \frac{d}{d t}\left[\begin{array}{c}c t \\ x \\ y \\ z\end{array}\right]=\gamma\left[\begin{array}{c}c \\ d x / d t \\ d y / d t \\ d z / d t\end{array}\right]=\left[\begin{array}{c}\gamma c \\ \gamma \boldsymbol{u}\end{array}\right]$

The product $U^{\mu} U_{\mu}$ should be Lorentz invariant and indeed it is $U^{\mu} U_{\mu}=-\gamma^{2} c^{2}+\gamma^{2} u^{2}=-c^{2}$

## Other physical quantities that are manifestly 4-vectors

4-acceleration: $a^{\mu} \equiv \frac{d U^{\mu}}{d \tau}$
Key feature of the 4-acceleration: $a^{\mu} U_{\mu}=\frac{d U^{\mu}}{d \tau} U_{\mu}=\frac{1}{2} \frac{d\left(U^{\mu} U_{\mu}\right)}{d \tau}=0$ $a^{\mu}$ and $U_{\mu}$ are orthogonal
In the instantaneous rest frame of the particle $a^{\prime \mu}=\left[\begin{array}{c}0 \\ \boldsymbol{a}^{\prime}\end{array}\right]$

4-momentum: $p^{\mu} \equiv m_{0} U^{\mu}=\left[\begin{array}{l}\gamma m_{0} c \\ \gamma m_{0} \boldsymbol{u}\end{array}\right]=\left[\begin{array}{l}m \\ m \\ m\end{array}\right]=\left[\begin{array}{c}E / c \\ \boldsymbol{p}\end{array}\right]$
where $m_{0}$ is the rest mass and $m=\gamma m_{0}$ is the "relativistic mass" $-c^{2} p^{\mu} p_{\mu}=E^{2}-p^{2} c^{2}$ is Lorentz invariant and equal to $m_{0}{ }^{2} c^{4}$

## 4-momentum for photons

For a photon, $U^{\mu}$ is infinite and $m_{0}$ is zero

But the energy is $E=h v=\hbar \omega$ and the
3-momentum is $\boldsymbol{p}=\left(\frac{h v}{c}\right) \widehat{\boldsymbol{k}}=\hbar \boldsymbol{k}$

Hence the 4-momentum is $p^{\mu}=\left[\begin{array}{c}\hbar \omega / c \\ \hbar \boldsymbol{k}\end{array}\right]$

We may define the 4 -wave-vector $k^{\mu}=\left[\begin{array}{c}\omega / c \\ k\end{array}\right]$ such that $p^{\mu}=\hbar k^{\mu}$
$k^{\mu}$ is a "null vector" with $k^{\mu} k_{\mu}=k^{2}-\frac{\omega^{2}}{c^{2}}=0$
In Minkowski space, we can have a non-zero vector with zero length

## Invariance of the phase

The scalar product $k^{\mu} x_{\mu}=(\boldsymbol{k} . \boldsymbol{x}-\omega t)$ is a Lorentz invariant

This is the phase of an EM wave: $\boldsymbol{E} \propto e^{\mathbf{i}(\boldsymbol{k} \cdot \boldsymbol{x}-\omega t)}$

It makes sense that this should be Lorentz-invariant. A charge located at a place and time where $E$ and $B$ vanish will not accelerate, and all observers in an IRF need to agree about that. So they must all agree about where
$(\boldsymbol{k} . \boldsymbol{x}-\omega t)=\left(n+\frac{1}{2}\right) \pi$

## Doppler shift and aberration

Consider an EM wave propagating in the $x y$-plane at angle $\theta$ to the $x$-axis
$k^{\mu}=\frac{\omega}{c}\left[\begin{array}{c}1 \\ \cos \theta \\ \sin \theta \\ 0\end{array}\right]=\frac{\omega}{c}\left[\begin{array}{c}1 \\ \mu \\ \left(1-\mu^{2}\right)^{1 / 2} \\ 0\end{array}\right]$
$k^{\mu}$ is a 4 -vector $\rightarrow$ we know how it transforms

$k^{\prime \mu}=\Lambda^{\mu}{ }_{v} k^{v}$

## Doppler shift and aberration

In a velocity boosted frame $S^{\prime}$ (v-boost in x-direction)

$$
k^{\prime \mu}=\frac{\omega}{c}\left[\begin{array}{rrrr}
\gamma & -\beta \gamma & 0 & 0 \\
-\beta \gamma & \gamma & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
1 \\
\mu \\
\left(1-\mu^{2}\right)^{1 / 2} \\
0
\end{array}\right]=\frac{\omega}{c}\left[\begin{array}{c}
\gamma(1-\beta \mu) \\
\gamma(\mu-\beta) \\
\left(1-\mu^{2}\right)^{1 / 2} \\
0
\end{array}\right]
$$

$=\frac{\omega^{\prime}}{c}\left[\begin{array}{c}1 \\ \mu^{\prime} \\ \left(1-\mu^{\prime 2}\right)^{1 / 2} \\ 0\end{array}\right]$

$$
\begin{array}{ll}
\omega^{\prime}=\gamma(1-\beta \mu) \omega & \text { (Doppler shift) } \\
\mu^{\prime}=\frac{\mu-\beta}{1-\beta \mu} & \text { (Aberration) }
\end{array}
$$

## Doppler shift and aberration

$$
\omega^{\prime}=\gamma(1-\beta \mu) \omega
$$

$$
\mu^{\prime}=\frac{\mu-\beta}{1-\beta \mu}
$$

Limiting cases
$\mu=1:(\theta=0 \rightarrow$ velocity boost along direction of $\boldsymbol{k})$
$\omega^{\prime}=\gamma(1-\beta) \omega=\sqrt{\frac{1-\beta}{1+\beta}} \omega \sim(1-\beta) \omega \quad$ if $\beta \ll 1$
$\mu^{\prime}=1$
$\mu=0:(\theta=\pi / 2 \rightarrow$ velocity boost perpendicular to $\boldsymbol{k})$
$\omega^{\prime}=\gamma \omega$
$\mu^{\prime}=-\beta \quad \Rightarrow \sin \left(\frac{\pi}{2}-\theta^{\prime}\right)=-\beta \quad \Rightarrow \theta^{\prime} \sim \frac{\pi}{2}+\beta$ if $\beta \ll 1$
(Note: for Earth's orbital motion around the Sun, $\beta=1.0 \times 10^{-4} \Rightarrow \theta^{\prime}=10^{-4} \mathrm{rad}=20^{\prime \prime}$ )

## Differential power emitted by a relativistic particle

We are now in a position to compute the differential power, from an accelerating relativistic particle. We'll denote the instantaneous rest frame of the particle, $S^{\prime}$, and the observer frame (lab frame), $S$
Let's say $S^{\prime}$ is moving along the positive $x$-axis at speed $v$, and the differential power in the instantaneous rest frame is

$$
\frac{d P^{\prime}}{d \Omega^{\prime}}=\frac{d E^{\prime}}{d \Omega^{\prime} d t^{\prime}}
$$

We previously computed the transformation from $S$ to $S^{\prime}$,

$$
\mu^{\prime}=\frac{\mu-\beta}{1-\beta \mu} \quad \omega^{\prime}=\gamma(1-\beta \mu) \omega
$$

## Differential power emitted by a relativistic particle

So in the lab frame, we want to compute

$$
\frac{d P}{d \Omega}=\frac{d E}{d \Omega d t}=\left(\frac{d E}{d E^{\prime}}\right)\left(\frac{d \Omega^{\prime}}{d \Omega}\right)\left(\frac{d t}{d t^{\prime}}\right)^{-1} \frac{d E^{\prime}}{d \Omega^{\prime} d t^{\prime}}
$$

Let's consider these factors one at a time

$$
\begin{aligned}
& \frac{d E}{d E^{\prime}}=\frac{\omega}{\omega^{\prime}}=\frac{1}{\gamma(1-\beta \mu)} \\
& \frac{d \Omega^{\prime}}{d \Omega}=\frac{d \mu^{\prime}}{d \mu}=\frac{d}{d \mu}\left(\frac{\mu-\beta}{1-\beta \mu}\right)=\frac{(1-\beta \mu)+(\mu-\beta) \beta}{(1-\beta \mu)^{2}}=\frac{1-\beta^{2}}{(1-\beta \mu)^{2}}=\frac{1}{\gamma^{2}(1-\beta \mu)^{2}}
\end{aligned}
$$

$$
\frac{d t}{d t^{\prime}}=\gamma \quad \text { to obtain }
$$

$$
\frac{d P}{d \Omega}=\frac{1}{\gamma^{4}(1-\beta \mu)^{3}} \frac{d P^{\prime}}{d \Omega^{\prime}}
$$

# Lecture 14 <br> Special Relativity continued 

Goals: understand

Relativistic beaming
Relativistic dynamics and the Lorentz force on a charge
Electromagnetism with 4-vectors

## Emitted versus received power

This is an expression for the angular dependence of the emitted power, $P_{e}$

$$
\frac{d P_{e}}{d \Omega}=\frac{1}{\gamma^{4}(1-\beta \mu)^{3}} \frac{d P^{\prime}}{d \Omega^{\prime}}
$$

But this is different from the power RECEIVED by a stationary observer in the lab frame. If two photons are emitted at times $t_{1}{ }^{\prime}$ and $t_{1}{ }^{\prime}+d t^{\prime}$, the difference between the ARRIVAL times will be $d t_{A}=\gamma d t^{\prime}(1-\beta \mu)$

This is not the same as the difference between the emission times as determined in the lab frame $\mathrm{S}, d t=\gamma d t^{\prime}$, because of the difference in light travel times $\beta \mu d t$

So the power received has an additional factor of $(1-\beta \mu)$ in the denominator

$$
\frac{d E}{d \Omega d t_{A}}=\frac{d P_{r}}{d \Omega}=\frac{d P_{e}}{d \Omega} \frac{d t}{d t_{A}}=\frac{1}{\gamma^{4}(1-\beta \mu)^{4}} \frac{d P^{\prime}}{d \Omega^{\prime}}
$$

## Relativistic beaming

Let's consider first a source of radiation that is isotropic in its own rest frame

$$
\frac{d P_{r}}{d \Omega}=\frac{1}{\gamma^{4}(1-\beta \mu)^{4}} \frac{P^{\prime}}{4 \pi}
$$

For a highly relativistic particle with $\beta \sim 1$, the denominator becomes very small when $\mu=1$ (i.e. when $\theta=0$ ) and the radiation is travelling along the positive x axis (i.e. the direction of motion)

For $\theta=0, \quad \frac{d P_{r}}{d \Omega}=\frac{1}{\gamma^{4}(1-\beta)^{4}} \frac{P^{\prime}}{4 \pi}$
Q1: In the limit $(1-\beta) \ll 1$, how does $(1-\beta)$ depend on $\gamma$ ?

## Relativistic beaming

Let's consider first a source of radiation that is isotropic in its own rest frame

$$
\frac{d P_{r}}{d \Omega}=\frac{1}{\gamma^{4}(1-\beta \mu)^{4}} \frac{P^{\prime}}{4 \pi}
$$

For a highly relativistic particle with $\beta \sim 1$, the denominator becomes very small when $\mu=1$ (i.e. when $\theta=0$ ) and the radiation is travelling along the positive $x$ axis (i.e. the direction of motion)

For $\theta=0, \quad \frac{d P_{r}}{d \Omega}=\frac{1}{\gamma^{4}(1-\beta)^{4}} \frac{P^{\prime}}{4 \pi}$

Q1: In the limit $(1-\beta) \ll 1$, how does $(1-\beta)$ depend on $\gamma$ ?
A: $1 / \gamma^{2}=(1-\beta)(1+\beta) \sim 2(1-\beta) \rightarrow(1-\beta) \sim 1 /\left(2 \gamma^{2}\right)$

So $\frac{d P_{r}}{d \Omega}=16 \gamma^{4} \frac{P^{\prime}}{4 \pi} \quad \Rightarrow$ very strong beaming along the $x$-axis

## Relation to the retarded potentials

Recall the $\kappa$ factor in our expression for the Lienard-Wiechert potentials

$$
\begin{aligned}
& \phi(x, t)=\frac{q}{\kappa\left(t_{\text {ret }}\right) R\left(t_{\text {ret }}\right)}=\left[\frac{q}{\kappa R}\right] \\
& \quad \boldsymbol{A}(\boldsymbol{x}, t)=\frac{q v}{\kappa\left(t_{\text {ret }}\right) R\left(t_{\text {ret }}\right)}=\left[\frac{q v}{c \kappa R}\right] \\
& \text { with } \kappa=(1-\boldsymbol{v} \cdot \widehat{\boldsymbol{R}} / c)
\end{aligned}
$$

$1 / \kappa \propto(1-\beta)^{-1} \sim 2 \gamma^{2}$

Hence, $E$ and $B$ are $\propto \gamma^{2}$ and $F \propto E \times B \propto \gamma^{4}$

## Relativistic beaming

If we also take the limit of small $\theta$ as well as small as $1-\beta$, we may approximate $\mu$ by
$\left(1-\theta^{2} / 2\right)$ to obtain

$$
\begin{aligned}
\frac{d P_{r}}{d \Omega} & \sim \frac{1}{\gamma^{4}\left(1-\beta\left(1-\theta^{2} / 2\right)\right)^{4}} \frac{P^{\prime}}{4 \pi} \sim \frac{1}{\gamma^{4}\left(1-\beta+\theta^{2} / 2\right)^{4}} \frac{P^{\prime}}{4 \pi} \\
& \sim \frac{1}{\left.\gamma^{4}\left(1 /\left[2 \gamma^{2}\right]+\theta^{2} / 2\right)\right)^{4}} \frac{P^{\prime}}{4 \pi}=\frac{16 \gamma^{4}}{\left(1+\gamma^{2} \theta^{2}\right)^{4}} \frac{P^{\prime}}{4 \pi}
\end{aligned}
$$

Thus the beam has an opening angle $\sim 1 / \gamma$
Power pattern (polar plot with $r \propto d P / d \Omega$ )


## Accelerating, relativistic charge

In the instantaneous rest frame of an accelerating charge, the radiation is not isotropic but instead has a $\sin ^{2} \Theta^{\prime}$ dependence on the angle to the acceleration

The power radiated is given by the Larmor formula, which may be written

$$
d P^{\prime} / d \Omega^{\prime}=\frac{e^{2}\left|a^{\prime}\right|^{2} \sin ^{2} \Theta^{\prime}}{c^{3}}=\frac{e^{2} a^{\mu} a_{\mu} \sin ^{2} \Theta^{\prime}}{4 \pi c^{3}}
$$

The 3-acceleration may be at any angle to the 3 -velocity, leading to a variety of beam patterns (R\&L Fig 4.11)
$a^{\prime} \| v$

$a^{\prime} \perp v$

$S$

## Four vector operators

For 3-vectors, a key vector operator is $\nabla \equiv\left(\begin{array}{l}\partial / \partial x \\ \partial / \partial y \\ \partial / \partial z\end{array}\right)$
For 4-vectors, the analog is $\partial_{\mu} \equiv \frac{\partial}{\partial x^{\mu}}=\left(\begin{array}{c}(1 / c) \partial / \partial t \\ \partial / \partial x \\ \partial / \partial y \\ \partial / \partial z\end{array}\right)$
The analog of $\nabla^{2}=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}$
is therefore $\partial_{\mu} \partial^{\mu}=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}-\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}}$

This operator is Lorentz invariant and is called the d'Alembertian It is variously written $\partial^{2}, \square$, or $\square^{2}$

## Acceleration of a charge in an electric field

In 4-vector notation, we may write Newton's second law as
$f^{\mu}=m_{0} a^{\mu}$

Like $a^{\mu}, f^{\mu}$ is orthogonal to $U^{\mu}$, so in the instantaneous rest frame $S^{\prime}$, where $U^{\prime \mu}=\binom{c}{\mathbf{0}}$, we must have
$f^{\prime \mu}=\binom{0}{\boldsymbol{f}^{\prime}}=\binom{0}{\boldsymbol{q} \boldsymbol{E}^{\prime}}$

But how do we know how the $B$ and $E$-fields transform?

We'll need to formulate electromagnetism in a form that is Lorentz invariant, with equations involving 4 -vectors and tensors.

Let us define the 4-current-density as

$$
j^{\mu}=\binom{\rho c}{j}
$$

Q2: what is 4 -divergence of $j^{\mu}$ i.e. what is $\partial_{\mu} j^{\mu}$

## The 4-current-density, $j^{\mu}$

Let us define the 4-current-density as

$$
j^{\mu}=\binom{\rho c}{j}
$$

Q2: what is $\partial_{\mu} j^{\mu}$
Answer: the 4-divergence of $j^{\mu}$ is zero

$$
\partial_{\mu} j^{\mu}=\frac{\partial \rho}{\partial t}+\nabla \cdot \boldsymbol{j}=0 \quad \text { by conservation of charge }
$$

Because the right-hand-side is Lorentz-invariant and $\partial_{\mu}$ is a 4-vector operator, this shows that $j^{\mu}$ is indeed a 4-vector

## The 4-potential, $A^{\mu}$

We now observe that Maxwell's equations,

$$
\begin{aligned}
& \boldsymbol{\nabla}^{2} \phi-\frac{1}{c^{2}} \frac{\partial^{2} \phi}{\partial^{2} t}=-4 \pi \rho \quad \text { Gauss' Law } \\
& \boldsymbol{\nabla}^{2} \boldsymbol{A}-\frac{1}{c^{2}} \frac{\partial^{2} \boldsymbol{A}}{\partial^{2} t}=-4 \pi \boldsymbol{j} / \mathrm{c} \text { Ampere's Law }
\end{aligned}
$$

Can be written as a 4-vector equation

$$
\partial_{v} \partial^{v} A^{\mu}=-\frac{4 \pi j^{\mu}}{c}
$$

where the 4-potential $A^{\mu} \equiv\binom{\phi}{\boldsymbol{A}}$

The relation between $\phi$ and $\boldsymbol{A}$ for the Lorentz gauge we are using is also a 4-vector equation

$$
\partial_{\mu} A^{\mu}=\frac{1}{c} \frac{\partial \phi}{\partial t}+\nabla \cdot \boldsymbol{A}=0
$$

## The electric and magnetic fields

Since we know that $A^{\mu}$ transforms as a 4 -vector, we can compute how $E$ and $B$ transform

The fields can be treated very beautifully using this object that is a bit like the curl
$F_{\alpha \beta}=\partial_{\alpha} A_{\beta}-\partial_{\beta} A_{\alpha}$

This has 16 components (since $\alpha$ and $\beta$ each take values from 0 to 3 ) and is a $2^{\text {nd }}$ rank 4-tensor
It transforms according to $F_{\alpha \beta}{ }^{\prime}=\Lambda_{\alpha}^{\gamma} \Lambda_{\beta}^{\delta} F_{\gamma \delta}$

It is clearly antisymmetric, so there are six independent components (with zeros along the diagonal): amazingly, these components are just the E and B-fields (3 components for each)

## The EM field tensor

$F_{\alpha \beta}=\partial_{\alpha} A_{\beta}-\partial_{\beta} A_{\alpha}$ is called the EM field tensor
Working out each component, we find that

$$
F_{\alpha \beta}=\left[\begin{array}{cccr}
0 & -E_{x} & -E_{y} & -E_{z} \\
E_{x} & 0 & B_{z} & -B_{y} \\
E_{y} & -B_{z} & 0 & B_{x} \\
E_{z} & B_{y} & -B_{x} & 0
\end{array}\right]
$$

The Lorentz 4-force on a charge $q$ with 4-velocity $U^{\alpha}$ is $f_{\beta}=\frac{1}{c} q F_{\alpha \beta} U^{\alpha}$ (We can confirm that in the instantaneous rest-frame, where $U^{\prime \alpha}=\binom{c}{\mathbf{0}}$, $f^{\prime}{ }_{\beta}=\binom{0}{\boldsymbol{q} \boldsymbol{E}^{\prime}}$ as required)

## Summary: the Lorentz invariant laws of electromagnetism

Maxwell's Equations

$$
\partial_{v} \partial^{v} A^{\mu}=-\frac{4 \pi j^{\mu}}{c}
$$

Lorentz Gauge

$$
\partial_{\mu} A^{\mu}=0
$$

Conservation of charge

$$
\partial_{\mu} j^{\mu}=0
$$

Definition of EM field tensor $\quad F_{\alpha \beta} \equiv \partial_{\alpha} A_{\beta}-\partial_{\beta} A_{\alpha}$

Lorentz force

$$
f_{\beta}=\frac{1}{c} q F_{\alpha \beta} U^{\alpha}
$$

## Bremsstrahlung: introduction

## Bremsstrahlung = "braking radiation"

Example: X-ray tube (developed in the early $20^{\text {th }}$ century)


By Roentgen-Roehre.svg: Hmilchderivative work: Coolth (talk) -Roentgen-Roehre.svg, Public Domain,
https://commons.wikimedia.org/w/index.php?curid=11691922

## Bremsstrahlung: astrophysical context

In the astrophysical context, we are talking about the deflection of electrons in a plasma in close encounters with protons (or other ions)


Also known as free-free emission
Interstellar environments where we find a plasma include

1) Photoionized regions (HII regions, planetary nebulae

$$
\mathrm{H}+\mathrm{hv} \rightarrow \mathrm{H}^{+}+\mathrm{e}
$$

2) Collisionally-ionized regions (behind shock waves)

$$
\mathrm{H}+\mathrm{e} \rightarrow \mathrm{H}^{+}+\mathrm{e}+\mathrm{e}
$$

## HII regions and planetary nebulae

Gas is photoionized by a hot star with an effective temperature above $\sim 25,000 \mathrm{~K}$
Gas kinetic temperature $\sim 10^{4} \mathrm{~K}$

Visible wavelength emission is dominated by spectral lines ("bound-bound" emission)


Orion nebula

Credits: NASA, ESA, M. Robberto and the Hubble Space Telescope Orion Treasury Project Team

Radio continuum emission ( 1.5 GHz map below by Subrahmanyan et al. 2001) is dominated by free-free emission


Fig. 4.-VLA 1.5 GHz image of the Orion region made with a beam of $1^{\prime}$ FWHM. Contours are at $-0.1,0.1,0.2,0.3,0.4,0.6,0.8,1.2,1.6,2.4,3.2$, $4.8,6.4,9.6,12.8,19.2,25.6$, and $38.4 \mathrm{Jy} \mathrm{beam}^{-1}$. The image has been corrected for the primary beam attenuation.

## Supernova shock waves

Supernovae release $\sim 10^{51}$ erg of kinetic energy into the ISM, sending out expanding shock waves that can persist for tens of thousands of years

Gas kinetic temperature $\sim 10^{6} \mathrm{~K}$ or higher The Vela SN remnant has an estimated age of $11,000 \mathrm{yr}$

Again, the visible wavelength emission is dominated by boundbound transitions of ions


Filaments of the Vela Supernova Remnant Image Credit \& Copyright: Angus Lau, Y Van, SS Tong (Jade Scope Observatory)

But free-free emission leads to radio and X -ray continuum (below)


Goals: understand

Acceleration of electrons in collisions within a plasma
The significance of the $b_{\text {min }}$ parameter
Emission from a (non-relativistic) collection of particles with a thermal distribution of velocities

## Acceleration of one free charge by another



Question 1: which of the following interactions can produce a non-zero $\ddot{d}$ ? $\begin{array}{llll}\text { (a) } e-p & \text { (b) } e-H & \text { (c) } e-e & \text { (d) } e^{-}-e^{+}\end{array}$

## Acceleration of one free charge by another



Question 1: which of the following interactions can produce a non-zero d̈?
(a) $e-p$
(b) $\mathrm{e}-\mathrm{H}$
(c) $e-e$
(d) $\mathrm{e}^{-}-\mathrm{e}^{+}$

## Answer: all except (c)

In an e-e collision, the center of charge remains at the center of mass $\Rightarrow \ddot{d}=0$

Also, an e-H interaction can lead to a force on the electron, because the electron can induce a dipole moment in the atom

Here, we will focus on the first case, $e-p$ (or more generally, $e-i o n$ )

## Acceleration of one free charge by another



Let's consider an interaction at impact parameter b (not too small) so the deflection angle is small (i.e. << 1 rad)

In this limit, the $x$ velocity is roughly constant, so $x=u t$ (if we define $t=0$ as the moment of closest approach)

The separation, $r$, is well approximated by $\sqrt{b^{2}+x^{2}}=\sqrt{b^{2}+u^{2} t^{2}}$ and therefore the acceleration is $a=Z e^{2} /\left(m_{e} r^{2}\right)=Z e^{2} /\left(m_{e}\left[b^{2}+u^{2} t^{2}\right]\right)$

$$
\Rightarrow \quad|\ddot{d}|=e a=\frac{Z e^{3}}{m_{e}\left(b^{2}+u^{2} t^{2}\right)}
$$

## Acceleration of one free charge by another

$$
|\ddot{d}|=e a=\frac{Z e^{3}}{m_{e}\left(b^{2}+u^{2} t^{2}\right)}
$$

We can now compute the electric and magnetic fields at distance $R$ in the wave zone

$$
\begin{gathered}
E^{2}=B^{2}=\frac{4 \pi}{c} S=\frac{4 \pi}{c} \frac{1}{R^{2}} \frac{d P}{d \Omega}=\frac{4 \pi}{c R^{2}} \frac{|\ddot{d}|^{2} \sin ^{2} \Theta}{4 \pi c^{3}} \\
\Rightarrow \quad E(t)=\frac{|\ddot{d}| \sin \Theta}{c^{2} R}=\frac{Z e^{3} \sin \Theta}{m_{e} c^{2} R\left(b^{2}+u^{2} t^{2}\right)}
\end{gathered}
$$

To get the spectrum of the emitted radiation, we are interested in the Fourier transform of the electric field (Lecture 8)

$$
\tilde{E}_{T}(\omega)=\frac{1}{2 \pi} \int_{-T / 2}^{T / 2} e^{i \omega t} E(t) d t \rightarrow \frac{Z e^{3} \sin \Theta}{2 \pi m_{e} c^{2} R b^{2}} \int_{-\infty}^{\infty} \frac{e^{i \omega t}}{1+t^{2} / t_{c}^{2}} d t \quad \text { as } T \rightarrow \infty
$$

where $t_{c}=b / u$ is the "collision time"

## Acceleration of one free charge by another

The integral

$$
\begin{gathered}
\int_{-\infty}^{\infty} \frac{e^{i \omega t}}{1+t^{2} / t_{c}^{2}} d t=\pi t_{c} e^{-\omega t_{c}} \\
\Rightarrow \quad \tilde{E}_{T}(\omega)=\frac{Z e^{3} \sin \Theta}{m_{e} c^{2} R b^{2} t_{c}} e^{-\omega t_{c}}=\frac{Z e^{3} \sin \Theta}{m_{e} c^{2} R b u} e^{-\omega b / u}
\end{gathered}
$$

The average monochromatic flux at distance $R$ is then (Lecture 8)

$$
F_{v}=\frac{2 \pi c}{T}\left|\tilde{E}_{T}(\omega)\right|^{2}=\frac{\pi Z^{2} e^{6} \sin ^{2} \Theta}{2 m_{e}^{2} c^{3} R^{2} T b^{2} u^{2}} e^{-4 \pi v b / u}
$$

(average during time period $T$ )
The radiant energy at frequency $v$ emitted due to this interaction is then
$W_{v}=T \int F_{v} d A=T \int R^{2} F_{v} d \Omega=\frac{\pi Z^{2} e^{6} 8 \pi / 3}{2 m_{e}^{2} c^{3} b^{2} u^{2}} e^{-2 \omega b / u}=\frac{4 Z^{2} e^{6}}{3 m_{e}^{2} c^{3}}\left(\frac{\pi}{b u}\right)^{2} e^{-4 \pi v b / u}$

## Key points

$$
W_{v}=\frac{4 Z^{2} e^{6}}{3 m_{e}^{2} c^{3}}\left(\frac{\pi}{b u}\right)^{2} e^{-4 \pi v b / u}
$$

This expression is the amount of energy emitted per unit bandwidth, $d E / d v$, due to a single collision with impact parameter $b$ and electron velocity $u$

Key approximations:
(1) we have neglected quantum effects: this is a purely "classical result"
(2) we neglected the acceleration of the ion
(3) we assumed a small angle deflection

Key feature: the distribution in frequency is nearly flat until $\omega t_{c}=\omega b / u$ reaches $\sim 1$



## Emission from an ensemble of particles

Let's focus on a single ion, and think about all the electrons that may hit it

Rate at which electrons hit at impact parameter between $b$ and $b+d b$

$$
=n_{e} u d A=n_{e} u 2 \pi b d b
$$

Monochromatic power emitted in such collisions

$$
\begin{gathered}
=W_{v} n_{e} u 2 \pi b d b=\frac{4 Z^{2} e^{6}}{3 m_{e}^{2} c^{3}}\left(\frac{\pi}{b u}\right)^{2} e^{-4 \pi v b / u} n_{e} u 2 \pi b d b \\
=\frac{8 \pi^{3} Z^{2} e^{6} n_{e}}{3 m_{e}^{2} c^{3} u} \frac{d b}{b} e^{-4 \pi v b / u}
\end{gathered}
$$

Total power per ion due to all collisions $=\frac{8 \pi^{3} Z^{2} e^{6} n_{e}}{3 m_{e}^{2} c^{3} u} \int \frac{d b}{b} e^{-4 \pi v b / u}$

Problem: the integral diverges (but only logarithmically) at small $b$, implying that the power radiated is infinite

## Emission from an ensemble of particles

## What went wrong?

Two approximations that we made break down at small $b$
(1) Our approximation that the deflection angle is small.
(2) Our neglect of quantum effects, as the angular momentum $m_{e} b u$ is quantized in units of $\hbar$

Since the divergence of the integral is logarithmic, even a rough estimate of where the approximations break down can yield a useful result.

So the idea is to truncate the integral $\int \frac{d b}{b} e^{-4 \pi v b / u}$ at some lower limit, $b_{\min }$, where the approximations tend to break down.

Let's consider each of them in turn.

## Small deflection angle approximation



Let us consider the acceleration in the y-direction (i.e. perpendicular to the initial direction of motion)

$$
a_{y}=-a \cos \theta=-a \frac{b}{r}=-\frac{Z e^{2}}{m_{e} r^{2}} \frac{b}{r}=-\frac{Z e^{2} b}{m_{e}\left(b^{2}+u^{2} t^{2}\right)^{3 / 2}}
$$

The $y$-velocity the electron acquires during the collision is

$$
u_{y}=\int_{-\infty}^{\infty} a_{y} d t=-\frac{Z e^{2}}{m_{e} u b} \int_{-\infty}^{\infty} \frac{d q}{\left(1+q^{2}\right)^{\frac{3}{2}}}=-\frac{2 Z e^{2}}{m_{e} u b}
$$

where $q=u t / b$

## Small deflection angle approximation



The deflection angle is small if and only if
$\left|u_{y}\right|=\frac{2 Z e^{2}}{m_{e} u b} \ll u$
or equivalently

$$
b \gg \frac{Z e^{2}}{m_{e} u^{2} / 2}
$$

We'll call the right-hand-side of this inequality $b_{\text {min }}^{(1)}$
The small angle approximation breaks down for $b$ smaller than $\sim b_{\text {min }}^{(1)}$

## Classical treatment of electron motion

The classical treatment of the electron motion is valid if and only if
Electron angular momentum

$$
l=m_{e} u b \gg \hbar
$$

or equivalently

$$
b \gg \frac{\hbar}{m_{e} u}
$$

We'll call the right-hand-side of this inequality $b_{\text {min }}^{(2)}$
The classical treatment of the electron motion breaks down for $b$ smaller than $\sim b_{\text {min }}^{(2)}$
Bottom line: our treatment is valid if and only if $b \gg b_{\text {min }}^{(1)}$ and $b \gg b_{\text {min }}^{(2)}$
Take total power per ion due to all collisions $=\frac{8 \pi^{3} Z^{2} e^{6} n_{e}}{3 m_{e}^{2} c^{3} u} \int_{b_{\text {min }}}^{\infty} \frac{d b}{b} e^{-4 \pi v b / u}$
where $b_{\text {min }}$ is the larger of $b_{\text {min }}^{(1)}$ and $b_{\text {min }}^{(2)}$

## Which is larger, $b_{\min }^{(1)}$ or $b_{\min }^{(2)}$ ?

Answer: it depends on $u$

SO

$$
b_{\min }^{(1)}=\frac{Z e^{2}}{m_{e} u^{2} / 2} \quad b_{\min }^{(2)}=\frac{\hbar}{m_{e} u}
$$

$$
\frac{b_{\min }^{(2)}}{b_{\min }^{(1)}}=\frac{u \hbar}{2 Z e^{2}}=\frac{1}{2}\left(\frac{K_{e}}{\chi}\right)^{1 / 2}
$$

where $K_{e}=m_{e} u^{2} / 2$ is the electron kinetic energy, and
$\chi=Z^{2} m_{e} e^{4} /\left[2 \hbar^{2}\right]=13.6 Z^{2} \mathrm{eV}$ is the ionization potential of a H-like ion of charge $Z e$
So, for $K_{e}$ larger than $\chi, b_{\min }^{(2)}$ is larger and the classical treatment of the electron motion breaks down first as $b \rightarrow 0$

So, for $K_{e}$ smaller than $\chi, b_{\min }^{(1)}$ is larger and the small angle approximation breaks down first as $b \rightarrow 0$

## Which is larger, $b_{\min }^{(1)}$ or $b_{\min }^{(2)}$ ?

In an HII region, $T \sim 10^{4} \mathrm{~K}$
$\Rightarrow$ typical electron K. E. $\sim k T \sim 1 \mathrm{eV} \ll \quad \chi=13.6 \mathrm{eV}$ (for H )
$\Rightarrow b_{\min }^{(1)}>b_{\min }^{(2)} \Rightarrow$ small angle approximation is what breaks down
In a hot shocked region, $T \sim 106 \mathrm{~K}$ and the opposite is usually true

## Power emitted per ion

In any case, our integral $\int_{b_{\text {min }}}^{\infty} \frac{d b}{b} e^{-4 \pi v b / u} \quad$ may be written $\int_{\xi_{\text {min }}}^{\infty} \frac{e^{-\xi}}{\xi} d \xi \equiv E_{1}\left(\xi_{\text {min }}\right)$
where $E_{1}$ is the exponential integral function and $\xi_{\min }=\frac{4 \pi b_{\min } v}{u}$

The total power per ion due to all collisions $=\frac{8 \pi^{3} Z^{2} e^{6} n_{e}}{3 m_{e}^{2} c^{3} u} E_{1}\left(\xi_{\text {min }}\right)$
For monoenergetic electrons at velocity $u$, we can determine the emission coefficient by multiplying by the density of ions $n_{i}$ and dividing by $4 \pi$

$$
j_{v}^{\mathrm{ff}}(u)=\frac{2 \pi^{2} Z^{2} e^{6} n_{e} n_{i}}{3 m_{e}^{2} c^{3} u} E_{1}\left(\xi_{\min }\right)
$$

Because of the quantization of photon energies, this expression is only correct when $h v<K_{e}$. If that condition does not apply, then $j_{v}^{\mathrm{ff}}(u)=0$

```
Lecture 16 Bremsstrahlung/ introduction to synchrotron radiation
```

Goals: understand

Emission from a (non-relativistic) collection of particles with a thermal distribution of velocities

Free-free absorption
Astrophysical introduction to cosmic rays and synchrotron radiation

## Emission coefficient for a thermal distribution of electron energies

We can average

$$
\begin{aligned}
j_{v}^{\mathrm{ff}}(u) & =\frac{2 \pi^{2} Z^{2} e^{6} n_{e} n_{i}}{3 m_{e}^{2} c^{3} u} E_{1}\left(\xi_{\min }\right) & & \text { for } v<\frac{m_{e} u^{2}}{2 h} \\
& =0 & & \text { for } v>\frac{m_{e} u^{2}}{2 h}
\end{aligned}
$$

over a Maxwell-Boltzmann distribution of electron velocities to obtain the overall emission coefficient for a plasma at temperature $T$

I'll omit the details, but neglecting the weak logarithmic factor involving $E_{1}$, the temperature and frequency dependence must be $j_{v}^{\mathrm{ff}}(T) \propto T^{-1 / 2} \exp \left(-\frac{h v}{k T}\right)$

We end up with $j_{v}^{\mathrm{ff}}(T)=\frac{16 Z^{2} e^{6}}{3 m_{e} c^{3}}\left(\frac{2 \pi}{3 k T m_{e}}\right)^{1 / 2} n_{e} n_{i} \bar{g}_{\mathrm{ff}} \exp \left(-\frac{h v}{k T}\right)$
where $\bar{g}_{\mathrm{ff}}(v, T)$ is a fudge factor (the "Gaunt factor") of order unity

In cgs units, we get
$\frac{j_{V}^{\mathrm{ff}}(T)}{\mathrm{erg} \mathrm{cm}^{-3} \mathrm{~s}^{-1} \mathrm{sr}^{-1} \mathrm{~Hz}^{-1}}=1.1 \times 10^{-38}\left(\frac{n_{e}}{\mathrm{~cm}^{-3}}\right)\left(\frac{n_{i}}{\mathrm{~cm}^{-3}}\right) \bar{g}_{\mathrm{ff}} Z^{2}\left(\frac{T}{\mathrm{~K}}\right)^{-1 / 2} \mathrm{e}^{-h v / k T}$
A proper treatment, with careful inclusion of quantum mechanical effects, is needed to compute the Gaunt factor.
$\bar{g}_{\mathrm{ff}}(v, T)$ decreases from $\sim 5$ at $h v / k T=10^{-4}$ to $\sim 1$ at $h v / k T=1$ (see R\&L figure 5.3)

Integrating over frequency and solid angle, we get the power emitted per unit volume: $\frac{\int 4 \pi j_{\nu}^{\mathrm{ff}}(T) d v}{\mathrm{erg} \mathrm{cm}}{ }^{-3} \mathrm{~s}^{-1} \mathrm{C}=1.4 \times 10^{-27}\left(\frac{n_{e}}{\mathrm{~cm}^{-3}}\right)\left(\frac{n_{i}}{\mathrm{~cm}^{-3}}\right) \bar{g}_{\mathrm{B}}\left(\frac{T}{\mathrm{~K}}\right)^{1 / 2} Z^{2}$ Here the frequency-averaged Gaunt factor $\bar{g}_{\mathrm{B}}(T) \sim 1.2 \pm 20 \%$

## Observed spectra of HII regions

At high frequencies, the free-free continuum flux measured from HII regions, $F_{v}$ is usually in good agreement with $j_{v}^{\text {ff }}$

But at low energies, the flux typically drops at low frequency


This behavior suggests that optical depth effects become important at low frequency $\left(v<v_{T}\right)$ so $I_{v}$ approaches the Planck function and $F_{j} \propto v^{2}$ (R-J limit)

## Free-free absorption

Free-free absorption is the inverse process to free-free emission: radiation can be absorbed during a collision

Because we have a thermal plasma, we can use Kirchhoff's Law to compute the absorption coefficient

$$
\alpha_{v}^{\mathrm{ff}}=\frac{j_{v}^{\mathrm{ff}}}{B_{v}} \propto \frac{\lambda^{2}}{T} j_{v}^{\mathrm{ff}} \propto \lambda^{2} T^{-3 / 2} Z^{2} n_{e} n_{i} \bar{g}_{\mathrm{ff}}
$$

The optical depth $\tau_{v}^{\mathrm{ff}}=\int \alpha_{v}^{\mathrm{ff}} d s \propto \int n_{e} n_{i} d s \equiv$ "Emission measure", $E M$

$$
\tau_{v}^{\mathrm{ff}}=6.2 \times 10^{-11} Z^{2}\left(\frac{T}{10^{4} \mathrm{~K}}\right)^{-3 / 2}\left(\frac{\lambda}{\mathrm{~cm}}\right)^{2} \bar{g}_{\mathrm{ff}} \frac{E M}{\mathrm{~cm}^{-6} \mathrm{pc}}
$$

For the Orion nebula, $T \sim 10^{4} \mathrm{~K}$ and $E M \sim 10^{6} \mathrm{~cm}^{-6} \mathrm{pc}$

$$
\left(n_{e} \sim n_{i} \sim 10^{3} \mathrm{~cm}^{-3} \text { and } D \sim 1 \mathrm{pc}\right)
$$

$\tau_{v}^{\mathrm{ff}} \sim 1$ at $\lambda \sim 50 \mathrm{~cm}$ (where $\bar{g}_{\mathrm{ff}} \sim 5$ ) or equivalently $v \sim 0.6 \mathrm{GHz}$

## Energetic charged particles in astrophysics

Energetic charged particles are well known in the Milky Way (directly detectable as "cosmic rays") and in external galaxies, especially radiogalaxies

## Discovery of cosmic rays by Victor Hess



Victor F. Hess, center, departing from Vienna about 1911, was awarded the Nobel Prize in Physics in 1936. (New York Times, August 7, 2012, page D4)

## The nature of CR was controversional



# MLLLLKAN RETORTS HOTLYTOCOMPTON IICOSMCRAYCLLSH 

Dihate of Rival Theorists Brings Drama to Session of Nation's Scientists.

THEIR DATA AT VARIANCE

New Findings of His Ex-Pupil Lead to Thrust by Millikan at 'Less Cautious' Work.

## The nature of CR was controversional

## By WuLIAM L. LAURENCE. Special to The New York Times.

ATLANTIC CITY; Dec. 30.-Professor Robert A. Millikan, who won the Nobel Prize in physics for being the first to measure the charge of the electron, and his former pupil, Professor Arthur H. Compton, who won the Nobel Prize for the discovery of the Compton effect, presented today before the American Association for the Advancement of Science two diametrically opposed hypotheses on the nature of the cosmic ray, in the study of which Dr. Millikan is the American pioneer.

In an atmosphere surcharged with drama, in which the human element was by no means lacking. the two protagonists presented their views with the vehemence and fervor of those theoretical debates of bygone days when learned men clashed over the number of angels that could dance on the point of a needle. Dr. Millikan particularly sprinkled his talk with remarks directly aimed at his antagonist's scientific acumen. There was obvious coolness between the two men when they met after the debate was over.
Dr. Millikan holds that the cosmic rays are photons, bullets of light, similar in nature to the gammarays from radium. Such rays have no electric charge, travel with the speed of light, and are wave-like in nature. Professor Compton, on the other hand, holds that the cosmic rays are electrons, electrically charged particles, of the same nature as the ultimate units of matter, one of the two kinds of "bricks" out of which all the elements in the universe are constituted. Tinese diametrically opposed hypotheses are largely based on diametrically opposed findings of fact.

In upholding the photon theory of the cosmic ray, Dr. Millikan was at the same time championing another cause, though he did not mention it today. To him the cosmic ray 'furnishes some experimental evidence that the Creator is still on the job," that the rays are really "'birth cries'" of new matter being constantly replenished in the interstellar spaces. But this hypothesis is closely bound up with the assumption that the cosmic rays are photons. If they are electrons, such a hypothesis of new creation becomes untenable.

## Cosmic ray energy spectrum

## CR are observed over a remarkable range of energies



Maximum energy detected to date: 50 J ( $\sim$ K.E. of a fastball in Little League baseball)

Total energy density ~ 1 eV cm ${ }^{-3}$
... somewhat LARGER than that of starlight, the CMB, or the Galactic B-field

| Table 1.5 Energy Densities in the Local ISM |  |  |  |
| :--- | :--- | :--- | :---: |
| Component | $u\left(\mathrm{eV} \mathrm{cm}^{-3}\right)$ | Note |  |
| Cosmic microwave background | $\left(T_{\mathrm{CMB}}=2.725 \mathrm{~K}\right)$ | 0.265 |  |
| Far-infrared radiation from dust | 0.31 | $b$ |  |
| Starlight $(h \nu<13.6 \mathrm{eV})$ | 0.54 | $c$ |  |
| Thermal kinetic energy $(3 / 2) n k T$ | 0.49 | $d$ |  |
| Turbulent kinetic energy $(1 / 2) \rho v^{2}$ | 0.22 | $e$ |  |
| Magnetic energy $B^{2} / 8 \pi$ | 0.89 | $f$ |  |
| Cosmic rays | 1.39 | $g$ |  |
| $a$ Fixsen \& Mather (2002). |  |  |  |
| $b$ Chapter 12. |  |  |  |
| $c$ Chapter 12. |  |  |  |
| $d$ For $n T=3800 \mathrm{~cm}^{-3} \mathrm{~K}$ (see $\left.\S 17.7\right)$. |  |  |  |
| $e$ For $n_{\mathrm{H}}=30 \mathrm{~cm}^{-3}, v=1 \mathrm{~km} \mathrm{~s}{ }^{-1}$, or $\left\langle n_{\mathrm{H}}\right\rangle=1 \mathrm{~cm}^{-3},\left\langle v^{2}\right\rangle^{1 / 2}=5.5 \mathrm{~km} \mathrm{~s}^{-1}$. |  |  |  |
| $f$ For median $B_{\text {tot }} \approx 6.0 \mu \mathrm{G}(\mathrm{Heiles} \&$ Crutcher 2005$)$. |  |  |  |
| $g$ For cosmic ray spectrum X3 in Fig. 13.5. | Draine, 2011 |  |  |

## Interaction with the interstellar gas

- High energy ( $\mathrm{E}>280 \mathrm{MeV}$ ) cosmic rays create $\gamma$-rays via

$$
\begin{aligned}
& C R p+p \rightarrow C R p+p+\pi^{0} \\
& \pi^{0} \rightarrow \gamma+\gamma
\end{aligned}
$$

- Lower energy cosmic rays ionize and heat the ISM

$$
\begin{aligned}
& \mathrm{CRp}+\mathrm{H} \rightarrow \mathrm{CRp}+\mathrm{H}^{+}+\mathrm{e} \\
& \mathrm{CRp}+\mathrm{H}_{2} \rightarrow \mathrm{CRp}+\mathrm{H}_{2}^{+}+\mathrm{e}
\end{aligned}
$$

- Secondary electrons can cause additional ionization and heating, and can excite UV emissions from H and $\mathrm{H}_{2}$ (important in dense clouds where starlight is absent)


## Origin of cosmic rays

Primary origin is believed to be fast shocks in supernova remnants

Fermi acceleration of particles "trapped" between converging "magnetic" mirrors (Fermi 1954)

| Preshock <br> Gas | Postshock <br> Gas |
| :--- | :--- |
| Cold | Hot |
| Fast-moving <br> Supersonic | Slower-moving <br> Subsonic |


| Preshock | Postshock |
| :--- | :--- |
| Gas | Gas |
| Cold | Hot |
| Fast-moving | Slower-moving |
| Supersonic | Subsonic |

## Radio galaxies

Active galaxies can produce giant jets of relativistic electrons that we can detect via synchrotron radiation


## Lecture 17 Synchrotron radiation I

Goals: understand

Motion of a relativistic electron in a magnetic field Power radiated by such an electron
The spectrum of synchrotron radiation (for an electron with a specific energy)

## Electron equation of motion

The electron equation of motion is

$$
\begin{gathered}
\frac{d p^{\mu}}{d \tau}=\frac{q}{c} F_{\nu}^{\mu} U^{\mu} \\
\Rightarrow m_{e} \frac{d}{d \tau}\binom{\gamma c}{\gamma \boldsymbol{v}}=\frac{q}{c}\left[\begin{array}{cccc}
0 & -E_{x} & -E_{y} & -E_{z} \\
E_{x} & 0 & B_{z} & -B_{y} \\
E_{y} & -B_{z} & 0 & B_{x} \\
E_{z} & B_{y} & -B_{x} & 0
\end{array}\right]\left[\begin{array}{c}
\gamma c \\
\gamma v_{x} \\
\gamma v_{y} \\
\gamma v_{z}
\end{array}\right]=\frac{q}{c} \gamma\left[\begin{array}{c}
\boldsymbol{v} \cdot \boldsymbol{E} \\
c \boldsymbol{E}+\boldsymbol{v} \times \boldsymbol{B}
\end{array}\right]
\end{gathered}
$$

If $E$ is zero in the lab frame, we find

$$
m_{e} \ngtr \frac{d}{d t}\left[\begin{array}{l}
\gamma c \\
\gamma \boldsymbol{v}
\end{array}\right]=\frac{q}{c} \gamma\left[\begin{array}{c}
\mathbf{0} \\
\boldsymbol{v} \times \boldsymbol{B}
\end{array}\right] \Rightarrow m_{e} \gamma \frac{d v}{d t}=\frac{q}{c} \boldsymbol{v} \times \boldsymbol{B}
$$

and $\gamma=$ constant

$$
\Rightarrow \quad|v|=\text { constant }
$$

## Electron equation of motion

$$
m_{e} \gamma \frac{d \boldsymbol{v}}{d t}=\frac{q}{c} \boldsymbol{v} \times \boldsymbol{B}
$$

$$
|v|=\text { constant }
$$

We can decompose vinto the components parallel and perpendicular to the B-field

$$
v=v_{\|}+v_{\perp}
$$

and write

$$
\frac{d v_{\|}}{d t}=0 \quad \frac{d v_{\perp}}{d t}=\frac{q}{m_{e} \gamma c} \boldsymbol{v}_{\perp} \times \boldsymbol{B}
$$

Thus,
$\boldsymbol{v}_{\|}=$constant and $\left|\boldsymbol{v}_{\perp}\right|=$ constant


The electron executes a helical motion at constant speed

## Pitch angle

We define the pitch angle, $\alpha$, as the angle between $\boldsymbol{v}$ and $\boldsymbol{B}$

$$
\sin \alpha=\frac{\left|v_{\perp}\right|}{|v|} \quad \cos \alpha=\frac{\left|v_{\|}\right|}{|v|}
$$

$$
\alpha=\pi / 2 \text { for circular motion } \perp \text { to } \boldsymbol{B}
$$

$$
\alpha=0 \text { for linear motion along } \boldsymbol{B}
$$

## Larmor frequency

Angular frequency of gyration, $\omega_{B}$, is derived from

$$
\begin{aligned}
& a=\left|\frac{d v_{\perp}}{d t}\right|=\frac{\left|\boldsymbol{v}_{\perp}\right|^{2}}{r}=v_{\perp} \omega_{B} \\
& \frac{q}{m_{e} \gamma c} v_{\perp} B=v_{\perp} \omega_{B} \\
& \Rightarrow \omega_{B}=\frac{q B}{m_{e} \gamma c} \text { This is called the Larmor frequency }
\end{aligned}
$$

The Larmor frequency is independent of the pitch angle and depends on $v$ only through $\gamma$

For an electron, $\omega_{B}=17.6 \frac{B}{\mu G} \gamma^{-1} \mathrm{rad} \mathrm{s}^{-1}$
corresponding to a frequency $v_{B}=\frac{\omega_{B}}{2 \pi}=2.8 \frac{B}{\mu G} \gamma^{-1} \mathrm{~Hz}$

## Acceleration

The acceleration $a=v_{\perp} \omega_{B}$ is perpendicular to the velocity, $v$
Let's orient our axes so that $v$ is instantaneously in the $x$-direction and $a$ is in the $y$-direction

Then $a_{y}=v_{\perp} \omega_{B}$ and the 4-acceleration is
$a^{\mu}=\frac{d U^{\mu}}{d \tau}=\frac{d}{d \tau}\left[\begin{array}{l}\gamma c \\ \gamma v\end{array}\right]=\gamma \frac{d}{d t}\left[\begin{array}{l}\gamma c \\ \gamma v\end{array}\right]=\gamma^{2}\left[\begin{array}{c}0 \\ d \boldsymbol{v} / \boldsymbol{d} t\end{array}\right]=\gamma^{2}\left[\begin{array}{c}0 \\ 0 \\ v_{\perp} \omega_{B} \\ 0\end{array}\right]$
since $\gamma$ is constant
In the instantaneous particle rest frame, $S^{\prime}$, we find $a^{\prime \mu}=a^{\mu}$ (since the $x$ and $t$ components are both zero)

Hence, the 3-acceleration in the rest-frame has magnitude $a^{\prime}=a^{\prime}{ }_{y}=\gamma^{2} v_{\perp} \omega_{B}$

## Total radiated power

The power radiated in the particle rest frame is given by the Larmor formula

$$
\begin{aligned}
P^{\prime}= & \frac{2\left(e a^{\prime}\right)^{2}}{3 c^{3}}=\frac{2\left(e \gamma^{2} v_{\perp} \omega_{B}\right)^{2}}{3 c^{3}}=\frac{2 e^{2} \gamma^{4} v_{\perp}^{2}}{3 c^{3}}\left(\frac{e B}{\gamma m e c}\right)^{2} \\
& =\frac{2 \gamma^{2} v_{\perp}^{2}}{3 c}\left(\frac{e^{2}}{m_{e} c}\right)^{2} 8 \pi\left(\frac{B^{2}}{8 \pi}\right)=\frac{2 \gamma^{2} v_{\perp}^{2}}{c^{2}} \sigma_{T} U_{B} c
\end{aligned}
$$

What about the power radiated in the lab frame, $P_{e}=d E / d t$ ?
We have
$d E=\gamma\left(d E^{\prime}+v \mathrm{~d} p_{x}^{\prime}\right)=\gamma d E^{\prime}$ because $\mathrm{d} p_{x}^{\prime}=0$ (forward/backward symmetry) $d t=\gamma\left(d t^{\prime}+v \mathrm{~d} x^{\prime}\right)=\gamma d t^{\prime}$ because the particle is at rest in $S^{\prime}$

So $P_{e}=d E / d t=d E^{\prime} / d t^{\prime}=P^{\prime}=2 \sigma_{T} U_{B} \beta_{\perp}^{2} \gamma^{2}$

## Rate of energy loss

$$
P_{e}=2 c \sigma_{T} U_{B} \beta_{\perp}^{2} \gamma^{2}
$$

Averaged over an isotropic distribution of pitch-angles

$$
\left\langle\beta_{\perp}^{2}\right\rangle=\beta^{2}\left\langle\sin ^{2} \alpha\right\rangle=\frac{2}{3} \beta^{2} \quad \Rightarrow \quad\left\langle P_{e}\right\rangle=\frac{4}{3} c \sigma_{T} U_{B} \beta^{2} \gamma^{2}
$$

As the electrons lose energy, their Lorentz factor decreases slowly according to

$$
\left\langle P_{e}\right\rangle=-\frac{d}{d t}\left(\gamma m_{e} c^{2}\right) \Rightarrow \frac{d \gamma}{d t}=-\frac{\left\langle P_{e}\right\rangle}{m_{e} c^{2}}=-\frac{4 c \sigma_{T} U_{B} \beta^{2} \gamma^{2}}{3 m_{e} c^{2}}
$$

so the energy loss timescale is

$$
\tau_{\text {loss }} \equiv-\frac{\gamma}{d \gamma / d t}=\frac{3 m_{e} c}{4 c \sigma_{T} U_{B} \beta^{2} \gamma}=\frac{2.5 \times 10^{13} \mathrm{yr}}{(B / \mu G)^{2} \gamma}
$$

For $B=5 \mu G$ and $\gamma=10^{4}$, we find $\tau_{\text {loss }}=100 \mathrm{Myr}$

## Spectrum of the radiation received

Consider the plane in which the particle is moving instantaneously


Because of beaming, an observer only sees radiation during a small fraction of the electron orbit, when the electron is between points $P$ and $Q$

The angle $\angle P C Q \sim 2 / \gamma$
The radius of curvature, $r$, is given by

$$
\gamma m_{e} \frac{v^{2}}{r}=\left|\frac{q}{c} v \times B\right|=\frac{e v B \sin \alpha}{c} \Rightarrow r=\frac{\gamma m_{e} v c}{e B \sin \alpha}=\frac{v}{\omega_{B} \sin \alpha}
$$

## Spectrum of the radiation received



$$
r=\frac{v}{\omega_{B} \sin \alpha}
$$

Time taken for particle to travel from P to $\mathrm{Q}, \Delta t=\frac{r \angle P C Q}{v}=\frac{2 r}{\gamma v}=\frac{2}{\gamma \omega_{B} \sin \alpha}$
This is not, however, the duration of the pulse that is received, because of light travel time effects

Radiation emitted from P at time $t_{p}$ arrives at time $t_{p}^{A}=t_{p}+l_{p} / \mathrm{c}$ Radiation emitted from Q at time $t_{q}$ arrives at time $t_{q}^{A}=t_{q}+l_{q} / \mathrm{c}$ where $l_{p}$ and $l_{q}$ are the distances from the observer

## Spectrum of the radiation received

Consider the plane in which the particle is moving instantaneously


$$
r=\frac{v}{\omega_{B} \sin \alpha}
$$

Length of the observed pulse of radiation is

$$
\Delta t^{A}=t_{q}^{A}-t_{p}^{A}=\left(t_{q}-t_{p}\right)+\left(l_{q}-l_{p}\right) / c=2 r /[\gamma v]-2 r \sin (1 / \gamma) / c
$$

$$
\begin{aligned}
& =\frac{2}{\gamma \omega_{B} \sin \alpha}-\frac{2 v}{c \omega_{B} \sin \alpha} \sin (1 / \gamma)=\frac{2}{\gamma \omega_{B} \sin \alpha}(1-\beta \gamma \sin (1 / \gamma)) \\
& \sim \frac{2}{\gamma \omega_{B} \sin \alpha}\left(1-\left(1-\frac{1}{2 \gamma^{2}}\right)\left(1-\frac{1}{6 \gamma^{2}}\right)\right) \sim \frac{4}{3 \gamma^{3} \omega_{B} \sin \alpha} \text { for } \gamma \gg 1
\end{aligned}
$$

## Spectrum of the radiation received

The E-field shows a pulse of width $\Delta t^{A} \sim\left(\gamma^{3} \omega_{B} \sin \alpha\right)^{-1}$

which implies that the emitted spectrum contains angular frequencies up to $\sim \gamma^{3} \omega_{B} \sin \alpha=\gamma^{2} \frac{q B}{m_{e} c} \sin \alpha$

Note the factor $\gamma^{3}$ : for a highly relativistic electron this can be way higher than the Larmor frequency

## Power spectrum of synchrotron radiation

The power spectrum is obtained by taking the Fourier transform of the pulse shape (and squaring its magnitude) - see R\&L Section 6.4 for details

If we define the "cutoff" (angular frequency) by $\omega_{c}=\frac{3}{2} \gamma^{3} \omega_{B} \sin \alpha$, the monochromatic power emitted per electron is $\frac{d P}{d \omega}=\frac{\sqrt{3}}{2 \pi} \frac{q^{3} B \sin \alpha}{m_{e} c^{2}} F\left(\frac{\omega}{\omega_{c}}\right)$ where $F(x)$
$F(x) \propto x^{1 / 3}$

$$
F(x)=x \int_{x}^{\infty} K_{\frac{5}{3}}(\xi) d \xi
$$

$$
\underbrace{F(x) \propto x^{1 / 2} e^{-x}}_{x \quad 4} \quad R \& L \text { Fig } 6.6
$$

# Lecture 18 Synchrotron radiation II 

Goals: understand

Synchrotoron spectrum for monoenergetic electrons
The synchrotron spectrum expected with a power-law distribution of electron energies

Inverse Compton radiation

Clearly, in the non-relativistic limit ("cyclotron radiation") there is no beaming and the $E$-field is just a sine wave $\rightarrow$ the power spectrum is a delta function at $\omega=\omega_{B}$



R\&L Fig 6.8

As $\gamma$ increases, the waveform starts to get distorted by the effects of beaming and we start to get harmonics



R\&L Fig 6.9

## Transition from cyclotron $(\gamma \sim 1)$ to synchrotron $(\gamma \gg 1)$ radiation

As $\gamma$ becomes very large, we see higher and higher harmonics which eventually "wash-out" to yield a continuum


R\&L Fig 6.10


## Power spectrum for synchrotron ( $\gamma \gg 1$ ) radiation

Once the spectrum is well approximated by a continuum, the spectrum is

$$
\frac{d P}{d \omega}=\frac{\sqrt{3}}{2 \pi} \frac{q^{3} B \sin \alpha}{m_{e} c^{2}} F\left(\frac{\omega}{\omega_{c}}\right)
$$

Key features of this result:

1) The total power is

$$
\begin{gathered}
P=\int_{0}^{\infty} \frac{d P}{d \omega} d \omega=\frac{\sqrt{3}}{2 \pi} \frac{q^{3} B \omega_{c} \sin \alpha}{m_{e} c^{2}} \int_{0}^{\infty} F(x) d x \\
=\frac{\sqrt{3}}{2 \pi} \frac{q^{3} B \sin \alpha}{m_{e} c^{2}} \frac{3}{2} \gamma^{3} \omega_{B} \sin \alpha \frac{8 \pi}{9 \sqrt{3}}=\frac{4}{9} \frac{q^{3} B \sin \alpha}{m_{e} c^{2}} \frac{3}{2} \gamma^{3} \frac{q B}{m_{e} \gamma c} \sin \alpha \\
=\frac{2}{3} \frac{q^{4} B^{2}}{m_{e}^{2} c^{3}} \gamma^{2} \sin ^{2} \alpha \sim 2 c \sigma_{T} U_{B} \beta_{\perp}^{2} \gamma^{2}
\end{gathered}
$$

(since $\left.\beta_{\perp} \sim \sin \alpha\right)$. This agrees with our previous result from the Larmor formula.

## Power spectrum for synchrotron ( $\gamma \gg 1$ ) radiation

Key features of $\frac{d P}{d \omega}=\frac{\sqrt{3}}{2 \pi} \frac{q^{3} B \sin \alpha}{m_{e} c^{2}} F\left(\frac{\omega}{\omega_{c}}\right)$
2) The function $F$ only depends on $\omega / \omega_{c}$ and is independent of $\omega / \omega_{B}$

Explanation: the relativistic beaming factor is a function of $\gamma \theta$
Recall that $\frac{d P_{r}}{d \Omega}=\frac{16 \gamma^{4}}{\left(1+\gamma^{2} \theta^{2}\right)^{4}} \frac{P \prime}{4 \pi}=\frac{1}{\left(1+\gamma^{2} \theta^{2}\right)^{4}}\left(\frac{d P_{r}}{d \Omega}\right)_{\max }$
So $E(t) / E_{\max }$ is a universal function of $\gamma \theta$

We now need to return to an earlier figure to determine how the arrival time is related to $\theta$

## Spectrum of the radiation received

We will now call $M$ the midpoint of the region where the emitted radiation is beamed towards us

The arrival time of radiation emitted from point $Q$ relative to the middle of the pulse is


$$
\Delta t^{A}=t_{q}^{A}-t_{m}^{A}=\left(t_{q}-t_{m}\right)+\left(l_{q}-l_{m}\right) / c=r \theta / v-r \sin \theta / c
$$

$$
\begin{aligned}
& =\frac{\theta}{\omega_{B} \sin \alpha}-\frac{v}{c \omega_{B} \sin \alpha} \sin \theta=\frac{\theta}{\omega_{B} \sin \alpha}-\frac{1}{\omega_{B} \sin \alpha}\left(1-\frac{1}{2 \gamma^{2}}\right)\left(\theta-\frac{\theta^{3}}{6}\right) \\
& \sim \frac{1}{\omega_{B} \sin \alpha}\left(\frac{\theta}{2 \gamma^{2}}+\frac{\theta^{3}}{6}\right)=\frac{1}{\gamma^{3} \omega_{B} \sin \alpha}\left(\theta \gamma-\frac{\theta^{3} \gamma^{3}}{6}\right)=\frac{3}{2 \omega_{c}}\left(\theta \gamma-\frac{\theta^{3} \gamma^{3}}{6}\right)
\end{aligned}
$$

So $E$ and $\omega_{c} t$ are both functions of $\theta \gamma$ alone $\rightarrow E$ is a fixed function of $\omega_{c} t$

## The pulse shape is a fixed function of $\omega_{c} t$

As plotted below $\left(E(t) / E_{\max }\right.$ versus $\left.\omega_{c} t\right)$, the pulse shape looks the same whatever $\gamma$ and $B$

i.e. $E(t) / E_{\max }=g\left(\omega_{c} t\right)$

So when we take the Fourier transform, we get

$$
\tilde{E}_{T}(\omega)=\frac{1}{2 \pi} \int e^{i \omega t} E(t) d t=\frac{1}{2 \pi} \int e^{i \omega t} g\left(\omega_{c} t\right) d t=\frac{1}{2 \pi \omega_{c}} \int e^{i\left(\omega / \omega_{c}\right) \xi} g(\xi) d \xi
$$

The integral is a function of $\omega / \omega_{c}$ alone, and thus the spectral shape (i.e. $P(\omega) / P \max$ is a function of $\omega / \omega_{c}$ )

Meaning: spectrum is identical for ( $B=1 \mu G, \gamma=2 \times 10^{4}$ ) and ( $B=4 \mu G, \gamma=10^{4}$ ) (Both cases have the same $\omega_{c}$ which is $\propto \gamma^{3} \omega_{B} \propto \gamma^{2} B$

## The pulse shape is a fixed function of $\omega_{c} t$

As plotted below $\left(E(t) / E_{\max }\right.$ versus $\left.\omega_{c} t\right)$, the pulse shape looks the same whatever $\gamma$ and $B$

i.e. $E(t) / E_{\max }=g\left(\omega_{c} t\right)$

So when we take the Fourier transform, we get

$$
\tilde{E}_{T}(\omega)=\frac{1}{2 \pi} \int e^{i \omega t} E(t) d t=\frac{1}{2 \pi} \int e^{i \omega t} g\left(\omega_{c} t\right) d t=\frac{1}{2 \pi \omega_{c}} \int e^{i\left(\omega / \omega_{c}\right) \xi} g(\xi) d \xi
$$

The integral is a function of $\omega / \omega_{c}$ alone, and thus the spectral shape (i.e. $P(\omega) / P \max$ is a function of $\omega / \omega_{c}$ )

Meaning: spectrum is identical for ( $B=1 \mu G, \gamma=2 \times 10^{4}$ ) and ( $B=4 \mu G, \gamma=10^{4}$ ) (Both cases have the same $\omega_{c}$ which is $\propto \gamma^{3} \omega_{B} \propto \gamma^{2} B$

Key features of $\frac{d P}{d \omega}=\frac{\sqrt{3}}{2 \pi} \frac{q^{3} B \sin \alpha}{m_{e} c^{2}} F\left(\frac{\omega}{\omega_{c}}\right)$
3) The function $F \rightarrow 0$ as $\omega \rightarrow 0$


This must mean that $\tilde{E}_{T}(\omega)=\frac{1}{2 \pi} \int e^{i \omega t} E(t) d t \rightarrow 0$ as $\omega \rightarrow 0$
which implies that the pulse has zero net area: $\int E(t) d t=0$

This makes sense, because integrating over one orbit is equivalent to placing orbiting electrons everywhere on a circle


This is just a current loop, which has no electric dipole moment (and a constant magnetic dipole moment) $\rightarrow$ no long range $E$-field decreasing as as only $1 / R \rightarrow$ no radiation

So far, we have only considered the emission of relativistic electrons with a single energy $\gamma m_{e} c^{2}$

$$
\frac{d P}{d \omega}=\frac{\sqrt{3}}{2 \pi} \frac{q^{3} B \sin \alpha}{m_{e} c^{2}} F\left(\frac{\omega}{\omega_{c}}\right)
$$

where $\omega_{c}$ is proportional to $\gamma^{2} B$
But cosmic rays have a roughly power law distribution of energies over a huge range of $\gamma$

Let's suppose that the number of electrons with Lorentz factor $\gamma$ to $\gamma+d \gamma$ is $d N=\gamma^{-p} d \gamma$ where $p$ is some positive number.

The integral $\int d N$ will diverge either at large $\gamma$ (if $p<1$ ) or small $\gamma$ (if $p>1$ ) (or both if $p=1$ ), so let's assume that this power law applies only over some large range of Lorentz factors, $\gamma_{1}$ to $\gamma_{2}$

## Cosmic ray energy spectrum <br> CR are observed over a remarkable range of energies



[^0]Maximum energy detected to date: 50 J
(~ K.E. of a fastball in Little League baseball)

Total energy density ~ $1 \mathrm{eV} \mathrm{cm}^{-3}$
... somewhat LARGER than that of
starlight, the CMB, or the Galactic B-field
Table 1.5 Energy Densities in the Local ISM

| Component | $u\left(\mathrm{eV} \mathrm{cm}^{-3}\right)$ | Note |  |
| :--- | :--- | :--- | :--- |
| Cosmic microwave background | $\left(T_{\mathrm{CMB}}=2.725 \mathrm{~K}\right)$ | 0.265 | $a$ |
| Far-infrared radiation from dust | 0.31 | $b$ |  |
| Starlight $(h \nu<13.6 \mathrm{eV})$ | 0.54 | $c$ |  |
| Thermal kinetic energy $(3 / 2) n k T$ | 0.49 | $d$ |  |
| Turbulent kinetic energy $(1 / 2) \rho v^{2}$ | 0.22 | $e$ |  |
| Magnetic energy $B^{2} / 8 \pi$ | 0.89 | $f$ |  |
| Cosmic rays | 1.39 | $g$ |  |

$a$ Fixsen \& Mather (2002).
$b$ Chapter 12.
c Chapter 12.
$d$ For $n T=3800 \mathrm{~cm}^{-3} \mathrm{~K}$ (see $\S 17.7$ ).
$e$ For $n_{\mathrm{H}}=30 \mathrm{~cm}^{-3}, v=1 \mathrm{~km} \mathrm{~s}^{-1}$, or $\left\langle n_{\mathrm{H}}\right\rangle=1 \mathrm{~cm}^{-3},\left\langle v^{2}\right\rangle^{1 / 2}=5.5 \mathrm{~km} \mathrm{~s}^{-1}$.
$f$ For median $B_{\text {tot }} \approx 6.0 \mu \mathrm{G}$ (Heiles \& Crutcher 2005).
$g$ For cosmic ray spectrum X3 in Fig. 13.5.
Draine, 2011

## Synchrotron spectrum for a power-law distribution of energies

The power radiated by this collection of electrons is then

$$
\frac{d P_{\mathrm{tot}}}{d \omega}=\int \frac{d P}{d \omega} d N=\int_{\gamma_{1}}^{\gamma_{2}} \frac{d P}{d \omega} \gamma^{-p} d \gamma \propto \int_{\gamma_{1}}^{\gamma_{2}} F\left(\omega / \omega_{c}\right) \gamma^{-p} d \gamma
$$

Now let's define $x \equiv \omega / \omega_{c}=k \omega / \gamma^{2} \Rightarrow \gamma=\sqrt{k \omega / x}$
where $k$ is some constant that depends on $B$ but not $\gamma$

$$
\frac{d P_{\text {tot }}}{d \omega} \propto \int_{x_{1}}^{x_{2}} F(x)(k \omega / x)^{-p / 2} d(\sqrt{k \omega / x}) \propto \omega^{(1-p) / 2} \int_{x_{1}}^{x_{2}} F(x) x^{(p-3) / 2} d x
$$

If $\omega_{c}$ for $\gamma_{1} \ll \omega \ll \omega_{c}$ for $\gamma_{2}$, then $x_{1} \ll 1$ and $x_{2} \gg 1$. We can then take the integral from 0 to $\infty$, and the only frequency dependence is $\omega^{(1-p) / 2}$

Through this analysis, we find that a power law distribution of electron energies yields a power law distribution of emitted frequency but the power-law indices are different

$$
d N=\gamma^{-p} d \gamma \quad \Rightarrow \quad F_{v} \propto v^{-S}
$$

where $s=\frac{1}{2}(p-1)$

We call $s$ the "spectral index"
(equals -2 in the Rayleigh Jeans limit, $\sim 0.1$ for Bremsstrahlung)

Typically, the spectral index for synchrotron is $\sim 0.7$, corresponding to $p=2 s+1 \sim 2.4$

## Synchrotron self-absorption

As in the case of Bremsstrahlung, synchrotron radiation can become optically-thick at low frequencies

However, with a power-law distribution of energies instead of a thermal distribution, the spectral index is $-5 / 2$ instead of -2 .


In addition to emitting synchrotron radiation, relativistic electrons also scatter radiation, especially the cosmic microwave background (CMB). This gives rise to to what is known as "inverse Compton radiation"

CMB photons have a typical energy

$$
\epsilon \sim k T_{\mathrm{CMB}}=3.77 \times 10^{-16} \mathrm{erg} \sim 2.36 \times 10^{-4} \mathrm{eV}
$$

Consider a photon incident at angle $\theta$ to the particle velocity as shown below


Picture in the lab frame $S$ (observer at rest in Galaxy)

## Electron

In the rest frame of the electron, $S^{\prime}$, the photon energy is $\epsilon^{\prime}=\gamma \epsilon(1+\beta \mu)$
For an isotropic distribution of photons in the lab frame, the average value of $(1+\beta \cos \theta)$ is 1 , and thus the typical CMB photon is highly blueshifted as viewed in the electron rest frame: $\left\langle\epsilon^{\prime}\right\rangle=\gamma \epsilon$

Q1: $\gamma$ is the average value of $\epsilon^{\prime} / \epsilon$, but what is the minimum value (if $\gamma \gg 1$ )?


Electron

In the rest frame of the electron, $S^{\prime}$, the photon energy is $\epsilon^{\prime}=\gamma \epsilon(1+\beta \mu)$
For an isotropic distribution of photons in the lab frame, the average value of $(1+\beta \cos \theta)$ is 1 , and thus the typical CMB photon is highly blueshifted as viewed in the electron rest frame: $\left\langle\epsilon^{\prime}\right\rangle=\gamma \epsilon$

Q1: $\gamma$ is the average value of $\epsilon^{\prime} / \epsilon$, but what is the minimum value (if $\gamma \gg 1$ )?
Answer: at $\mu=-1$ (i.e. $\theta=\pi \quad \Rightarrow \quad$ photon coming directly from behind) we have $\epsilon^{\prime}=\gamma \epsilon(1-\beta) \sim \gamma \epsilon /\left[2 \gamma^{2}\right]=\epsilon /[2 \gamma]$
Some photons (with $\theta$ very close to $\pi$ ) are redshifted, but most are blueshifted


Electron

In the rest frame of the electron, $S^{\prime}$, the scattering is coherent provided $\epsilon^{\prime} \ll m_{e} c^{2}$ (recoil negligible)

Thus, the energy of the scattered photon in the electron rest frame is $\epsilon_{1}{ }^{\prime}=\epsilon^{\prime}=\gamma \epsilon(1+\beta \cos \theta)$


Picture in the electron rest frame $S^{\prime}$

Suppose the scattered photon emerges at angle $\theta_{1}{ }^{\prime}$ to the x -axis (as measured in the electron rest frame $S^{\prime}$ )

Converting back to the lab frame, this scattered photon has energy $\epsilon_{1}=\gamma \epsilon_{1}{ }^{\prime}\left(1+\beta \cos \theta_{1}{ }^{\prime}\right)$

## Inverse Compton radiation

So we have
$\epsilon \sim k T_{\text {CMB }}$
$\epsilon^{\prime}=\gamma \epsilon(1+\beta \cos \theta)$
$\epsilon_{1}^{\prime}=\epsilon^{\prime}$
$\epsilon_{1}=\gamma \epsilon_{1}{ }^{\prime}\left(1+\beta \cos \theta_{1}{ }^{\prime}\right)$

Energy of CMB photon in $S$ frame Energy of CMB photon in the $S^{\prime}$ frame Energy of scattered photon in the $S^{\prime}$ frame Energy of scattered photon in the $S$ frame


Picture in the electron rest frame $S$

Q2: what is the typical energy of the scattered photon in the lab frame?

## Inverse Compton radiation

So we have
$\epsilon \sim k T_{\text {CMB }}$
$\epsilon^{\prime}=\gamma \epsilon(1+\beta \cos \theta)$
$\epsilon_{1}^{\prime}=\epsilon^{\prime}$
$\epsilon_{1}=\gamma \epsilon_{1}{ }^{\prime}\left(1+\beta \cos \theta_{1}{ }^{\prime}\right)$

Energy of CMB photon in $S$ frame Energy of CMB photon in the $S^{\prime}$ frame Energy of scattered photon in the $S^{\prime}$ frame Energy of scattered photon in the $S^{\prime}$ frame


Picture in the electron rest frame $S$

Q2: what is the typical energy of the scattered photon in the lab frame?
Answer: $\epsilon_{1}=\gamma^{2} \epsilon(1+\beta \cos \theta)\left(1+\beta \cos \theta_{1}{ }^{\prime}\right)=\gamma^{2} \epsilon$

Average $=1$ because CMB is isotropic in $S$

$$
\epsilon_{1}=\gamma^{2} \epsilon(1+\beta \cos \theta)\left(1+\beta \cos \theta_{1}{ }^{\prime}\right)
$$

So, the lab frame, the scattered radiation has typical energy $\gamma^{2} \epsilon$ and maximum energy $4 \gamma^{2} \epsilon$

For a Lorentz factor of $10^{4}$, this yields a typical energy

$$
\epsilon_{1} \sim 10^{8}\left(2 \times 10^{-4} \mathrm{eV}\right)=20 \mathrm{keV}
$$

(microwaves scattered to yield X -rays!)
This process works so long as $\epsilon^{\prime}$ is less than $\sim m_{e} c^{2}$, i.e. for $\gamma$ up to $\sim m_{e} c^{2} / \epsilon=\frac{511 \mathrm{keV}}{2 \times 10^{-4} \mathrm{eV}} \sim 2.5 \times 10^{9}$

In principle, it can therefore produce gamma rays with energies up to $\epsilon_{1} \sim \gamma^{2} \epsilon \sim\left(m_{e} c^{2} / \epsilon\right)^{2} \epsilon \sim\left(m_{e} c^{2}\right)^{2} / \epsilon \sim 10^{15} \mathrm{eV}$

# Lecture 19 <br> Inverse Compton radiation II 

## Goals: understand

Spectrum of IC radiation: monoenergetic case power-law distribution

Compton scattering by non-relativistic thermal electrons

## Inverse Compton radiation

Let's work out the power generated by this process. To do so, we need to find the mean intensity of the radiation in the electron rest frame, $J^{\prime}=c u^{\prime} / 4 \pi$. The scattered power will then be $P^{\prime}=4 \pi J^{\prime} \sigma_{T}$

Consider first a beam of photons travelling at angle $\theta$ to the direction of motion


The photon 4-momentum is $p^{\mu}=\binom{\epsilon / c}{\boldsymbol{p}}=\left(\begin{array}{c}\epsilon / c \\ -\epsilon \cos \theta / c \\ -\epsilon \sin \theta / c \\ 0\end{array}\right)$
Suppose there are $n$ photons per unit volume. Then $u=n \epsilon$ and $u^{\prime}=n^{\prime} \epsilon^{\prime}$

## Inverse Compton radiation

How does $n$ transform to the $S^{\prime}$ frame? We can construct a 4 -vector exactly analogous to the 4-current $j^{\mu}=q\binom{n c}{n \boldsymbol{v}}$. It is $V^{\mu}=\binom{n c}{n \boldsymbol{v}_{p}}=\left(\begin{array}{c}n c \\ -n c \cos \theta \\ -n c \sin \theta \\ 0\end{array}\right)$
So $n$ must transform exactly the same way as $\epsilon$
In other words, the photon density in the $S^{\prime}$ frame is $n^{\prime}=\gamma n(1+\beta \cos \theta)$ exactly in the same way that $\epsilon^{\prime}=\gamma \epsilon(1+\beta \cos \theta)$

In the $S^{\prime}$ frame, the energy density associated with these photons is
$u^{\prime}=n^{\prime} \epsilon^{\prime}=\gamma^{2}(1+\beta \cos \theta)^{2} n \epsilon=\gamma^{2}(1+\beta \cos \theta)^{2} u$
If we now consider an isotropic distribution of photons instead of a beam, we obtain $u^{\prime}=\gamma^{2}\left\langle 1+2 \beta \cos \theta+\beta^{2} \cos ^{2} \theta\right\rangle u=\gamma^{2}\left(1+\frac{\beta^{2}}{3}\right) u$

The scattered power is then $P^{\prime}=4 \pi J^{\prime} \sigma_{T}=c u^{\prime} \sigma_{T}$
where $J^{\prime}=c u^{\prime} / 4 \pi$ is the mean intensity of the radiation in the $S^{\prime}$ frame
As we discussed previously, the scattered power is invariant, so in the lab frame we also have

$$
P_{s}=P^{\prime}=c u^{\prime} \sigma_{T}=\gamma^{2}\left(1+\frac{\beta^{2}}{3}\right) u \sigma_{T} c
$$

This is the rate at which power is added to the radiation field due to blueshifted scattered photons. We have to subtract the rate at which CMB photons are removed, $u \sigma_{T} c$, to obtain the net power produced by the inverse Compton process
$P_{I C}=P^{\prime}=c u^{\prime} \sigma_{T}-u \sigma_{T} c=\left(\gamma^{2}+\frac{\beta^{2} \gamma^{2}}{3}-1\right) u \sigma_{T} c=\frac{4}{3} \beta^{2} \gamma^{2} u \sigma_{T} c$ using $\gamma^{2}-1=\beta^{2} \gamma^{2}$

This result is true even if $\gamma$ isn't >> 1

## Inverse Compton radiation

$P_{I C}=\frac{4}{3} \beta^{2} \gamma^{2} u \sigma_{T} C$ may look vaguely familiar!
Recall the result we got for synchrotron radiation in Lecture 17
$P_{\text {synch }}=\frac{4}{3} c \sigma_{T} U_{B} \beta^{2} \gamma^{2}$
The ratio of these is just the ratio of the photon energy density to the magnetic field energy density

$$
\frac{P_{\mathrm{IC}}}{P_{\text {synch }}}=\frac{u}{U_{B}}=\frac{a T_{\mathrm{CMB}}^{4}}{B^{2} / 8 \pi}
$$

Putting in numbers, we find (amazingly) that for $T_{\text {CMB }}=2.73 \mathrm{~K}$

$$
\frac{P_{\mathrm{IC}}}{P_{\text {synch }}}=\left(\frac{3.25 \mu G}{B}\right)^{2} \sim 0.3
$$

## Spectrum of Inverse Compton Radiation for a single value of $\gamma$

In the limit of large $\gamma$, the spectrum extends to $\epsilon_{1, \max }=4 \gamma^{2} \epsilon$, and can be expressed as a function of $x=\epsilon_{1} / \epsilon_{1, \text { max }}$ alone
i.e. $\frac{d P}{d \epsilon_{1}}=\left(\frac{d P}{d \epsilon_{1}}\right)_{\max } f(x)$

This makes sense, because $\epsilon_{1}=\gamma^{2} \epsilon(1+\beta \cos \theta)\left(1+\beta \cos \theta_{1}{ }^{\prime}\right)$
$\rightarrow x=\epsilon_{1} / \epsilon_{1, \text { max }}=(1+\beta \cos \theta)\left(1+\beta \cos \theta_{1}{ }^{\prime}\right) / 4$
$f(x)$ can be written in a fairly simple analytic form
$f(x)=2 x \ln x+x+1-2 x^{2}$
(Blumenthal \& Gould, Rev Mod Physics, 1970)


## Spectrum of Inverse Compton Radiation for a power law distribution of $\gamma$

As before, we assume a power-law distribution of electron energies $d N=\gamma^{-p} d \gamma$ over some wide range of Lorentz factors from $\gamma_{1}$ to $\gamma_{2}$

The power radiated by this collection of electrons is then

$$
\begin{array}{r}
\frac{d P_{\text {tot }}}{d \epsilon_{1}}=\int \frac{d P}{d \epsilon_{1}} d N \propto \int_{\gamma_{1}}^{\gamma_{2}} f\left(\epsilon_{1} / \epsilon_{1, \max }\right) \gamma^{-p} d \gamma \\
\text { Now let's define } x \equiv \epsilon_{1} / \epsilon_{1, \max }=\epsilon_{1} /\left(4 \epsilon \gamma^{2}\right) \Rightarrow \gamma=\sqrt{\epsilon_{1} /(4 \epsilon x)}
\end{array}
$$

$$
\frac{d P_{\text {tot }}}{d \epsilon_{1}} \propto \int_{x_{1}}^{x_{2}} f(x)\left(\epsilon_{1} / 4 \epsilon x\right)^{-p / 2} d\left(\sqrt{\epsilon_{1} / 4 \epsilon x}\right) \propto \epsilon_{1}^{(1-p) / 2} \int_{x_{1}}^{x_{2}} f(x) x^{(p-3) / 2} d x
$$

If $\epsilon_{1, \text { max }}$ for $\gamma_{1} \ll \epsilon_{1} \ll \epsilon_{1, \text { max }}$ for $\gamma_{2}$, then $x_{1} \ll 1$ and $x_{2} \gg 1$. We can then take the integral from 0 to $\infty$, and the only frequency dependence is $\epsilon_{1}{ }^{(1-p) / 2}$

Spectral index $s=(p-1) / 2$ exactly as for synchrotron radiation!

## Synchrotron self-Compton process

Not only can relativistic electrons scatter the CMB, they can also scatter the synchrotron radiation that they themselves emit. This is known as the synchrotron self-Compton (SSC) process

The figure at the right shows the spectrum of the blazar Mrk 501 (from Konopelko et al. 2003, ApJ)

The peak around $10^{19} \mathrm{~Hz}(40 \mathrm{keV})$ is due to synchrotron radiation

The peak around $10^{27} \mathrm{~Hz}(4 \mathrm{TeV})$ is due to SSC


## Aside: how are these TeV gamma-rays detected?

While lower energy gamma rays can be observed with satellite observatories, TeV gamma rays can be detected indirectly from the ground

They interact with nuclei in the atmosphere (at an altitude of $10-20 \mathrm{~km}$ ) to produce highly relativistic electron-positron pairs. These are travelling faster than the speed of light in air and give rise to Cherenkov radiation that can be detected from the ground $\rightarrow$ Cherenkov light pool of diameter $\sim 250 \mathrm{~m}$ containing $\sim 100$ photons per $\mathrm{m}^{2}$ in a pulse of duration $\sim$ few $n s$.


## Scattering in hot (but non-relativistic) thermal plasmas

We now turn to another case that can be treated with our expression

$$
P_{I C}=\frac{4}{3} \beta^{2} \gamma^{2} u \sigma_{T} C
$$

Clusters of galaxies are typically filled with thermal electrons that are hot but non-relativistic. But our expression above applies even for nonrelativistic electrons with $\gamma \sim 1$

Suppose we have $n$ photons of energy $\epsilon$ per unit volume. The energy density is $u=n \epsilon$

The rate at which scattering occurs is $S=n \sigma_{T} c$ per electron

The mean energy imparted to each photon on a single scattering is therefore

$$
\Delta \epsilon=\epsilon_{1}-\epsilon=\frac{P_{I C}}{S}=\frac{\frac{4}{3} \beta^{2} \gamma^{2} u \sigma_{T} C}{n \sigma_{T} C}=\frac{4}{3} \beta^{2} \gamma^{2} \epsilon \sim \frac{4}{3} \beta^{2} \epsilon
$$

## Scattering in hot (but non-relativistic) thermal plasmas

The increase in photon energy per scattering is $\Delta \epsilon=\frac{4 \beta^{2} \epsilon}{3}$, which implies a fractional increase

$$
\Delta \ln \epsilon=\frac{\Delta \epsilon}{\epsilon}=\frac{4 \beta^{2}}{3}(\ll 1 \text { for a nonrelativistic electron })
$$

If there is a distribution of electron velocities (e.g. in a thermal plasma) then the average fractional increase per scattering is

$$
\langle\Delta \ln \epsilon\rangle=\frac{4\left\langle\beta^{2}\right\rangle}{3}
$$

For a Maxwell-Boltzmann distribution of electron densities at temperature $T$, the mean energy is $\frac{1}{2} m_{e}\left\langle v^{2}\right\rangle=\frac{1}{2} m_{e} c^{2}\left\langle\beta^{2}\right\rangle=\frac{3}{2} k T$ implying

$$
\left\langle\beta^{2}\right\rangle=\frac{3 k T}{m_{e} c^{2}} \text { and thus }\langle\Delta \ln \epsilon\rangle=\frac{4 k T}{m_{e} c^{2}}
$$

## Scattering in hot (but non-relativistic) thermal plasmas

For a single scattering, we had $\langle\Delta \ln \epsilon\rangle=\frac{4 k T}{m_{e} c^{2}}$

So if a photon suffers $N$ scatterings within a hot plasma, the total average increase in $\ln \epsilon$ is $\frac{4 k T}{m_{e} c^{2}} N$

This is called the Compton y-parameter: the mean energy of a photon after $N$ scatterings is therefore $\epsilon \exp (y)$

Note that for large $N, y$ does not need to be $<1$ even though $\frac{4 k T}{m_{e} c^{2}} \ll 1$
In clusters of galaxies, CMB photons can be upscattered in energy by this process, which is called the Sunyaev-Zeldovich effect.

```
Lecture 20 SZ-effect, Propagation of EM waves through a plasma
```

Goals: understand

Sunyaev-Zeldovich effect

Currents driven when EM waves propagate through a conductive medium

The dispersion relation for a plasma and its astrophysical applications

Faraday rotation

## Number of scatterings

If the optical depth is small, $\tau_{e s}=\int n_{e} \sigma_{T} d s \ll 1$, then almost all photons suffer 0 or 1 scattering. The mean number of scatterings (expectation value) is simply $\tau_{e s}$, and the Compton y-parameter is

$$
y=\int n_{e} \sigma_{T} \frac{4 k T}{m_{e} c^{2}} d s
$$

On the other hand, if $\tau_{e s} \gg 1$, then photons suffer of order $\tau_{e s}{ }^{2}$ scatterings because they do a random walk.

Recall, each step in the random walk has length $l=1 /\left(n_{e} \sigma_{T}\right)$, and after $N$ steps the distance travelled is $N^{1 / 2} l$. So to traverse a cloud of size $\sim D$ the number of required scatterings is given by

$$
N^{1 / 2} l \sim D \Rightarrow N \sim D^{2} / l^{2}=\tau_{e s}^{2}
$$

So a useful rough estimate is $y \sim \frac{4 k T}{m_{e} c^{2}} \max \left(\tau_{e s}, \tau_{e s}{ }^{2}\right)$
For a rich galaxy cluster, we might have $\tau_{e s} \sim 10^{-3}, T \sim 10^{8} \mathrm{~K} \Rightarrow y \sim 10^{-4}$

## The Sunyaev-Zeldovich effect

When CMB photons encounter a galaxy cluster filled with hot gas, their energies are increased by a typical factor $e^{y}$

This increases the energy density $u$ without adding any photons, so the resultant spectrum is clearly no longer a blackbody.

Proof: the peak of the spectrum shifts to a higher frequency $\nu_{\text {peak }}{ }^{\prime}=e^{y} \nu_{\text {peak }}$ and the energy density shifts by the same factor to $u^{\prime}=e^{y} u$. But for a blackbody $v_{\text {peak }} \propto T$ whereas $u \propto T^{4}$

http://www.astro.ucla.edu/~wright/SZ-spectrum.html

## The Sunyaev-Zeldovich effect

To first order, the change in intensity is found to be governed by

$$
\frac{\partial I_{\nu}}{\partial y}=\frac{2 h \nu^{3}}{c^{2}} \frac{x e^{x}}{\left(e^{x}-1\right)^{2}}\left(x \frac{e^{x}+1}{e^{x}-1}-4\right) \quad \text { with } \quad x=h \nu / k T_{\circ}
$$

The lower frequency region is most typically observed, so the SZE shows up as a decrement in the intensity


Fig. 4. Left to right: individual SZ maps at 70,100 , and 143 GHz in units of $10^{6}$ times the Compton parameter. The field of view is 31.9 and the coordinates are Galactic. Virgo is the extended source below the centre. The Coma cluster is also clearly visible in the top of the map. The maps have been smoothed to a resolution of 1.5 to highlight the faintest structures.


## Propagation of EM radiation in a plasma

Astrophysical gas containing free electrons (e.g. the interstellar medium) is conductive, leading to currents that modify Maxwell's equations

Let's consider the electron equation of motion with a plane-parallel EM wave $\boldsymbol{E}=\boldsymbol{E}_{\mathbf{0}} \exp (i(\boldsymbol{k} \cdot \boldsymbol{r}-\omega t))$ and assuming no external $B$-field and $v \ll c$ :

$$
m_{e} \dot{\boldsymbol{v}}=-e \boldsymbol{E} \sim-e \boldsymbol{E}_{\mathbf{0}} \exp (i(\boldsymbol{k} . \boldsymbol{r}-\omega t))
$$

Writing $\boldsymbol{v}=\boldsymbol{v}_{\mathbf{0}} \exp (i(\boldsymbol{k} \cdot \boldsymbol{r}-\omega t))$
we find $\quad \boldsymbol{v}_{\mathbf{0}}=\frac{e}{i \omega m_{e}} \boldsymbol{E}_{\mathbf{0}}$
Hence the current density is $\boldsymbol{j}=\boldsymbol{j}_{\mathbf{0}} \exp (i(\boldsymbol{k} \cdot \boldsymbol{r}-\omega t))$ with

$$
\boldsymbol{j}_{\mathbf{0}}=-n_{e} e \boldsymbol{v}_{\mathbf{0}}=\frac{i n_{e} e^{2}}{\omega m_{e}} \boldsymbol{E}_{\mathbf{0}}=\sigma \boldsymbol{E}_{\mathbf{0}}
$$

where $\sigma$ is the conductivity (pure imaginary and positive multiple of i) $\rightarrow$ current lags $E$-field)

## Propagation of EM radiation in a plasma

Do these electron motions ever lead to a non-zero charge density, $\rho$
Let's entertain the possibility by writing $\rho=\rho_{0} \exp (i(\boldsymbol{k} . \boldsymbol{r}-\omega t))$
Then charge conservation tells us
$\frac{\partial \rho}{\partial t}+\boldsymbol{\nabla} \cdot \boldsymbol{j}=0 \Rightarrow-i \omega \rho_{0}+i \boldsymbol{k} . \boldsymbol{j}_{\mathbf{0}}=0$
Multiplying by $\sigma$, we obtain $i \sigma \boldsymbol{k} . \boldsymbol{j}_{\mathbf{0}}=i \omega \sigma \rho_{0} \Rightarrow i \boldsymbol{k} . \boldsymbol{E}_{\mathbf{0}}=i \omega \sigma \rho_{0}$
Moreover, $\boldsymbol{\nabla} . \boldsymbol{E}=4 \pi \rho \Rightarrow i \boldsymbol{k} . \boldsymbol{E}_{0}=4 \pi \rho_{0}$
Combining these two equations in red, we find that
$\rho_{0}(4 \pi-i \omega \sigma)=0 \Rightarrow \rho_{0}=0$
This also implies that the wave is transverse, just as it was in a vacuum

## Dispersion relation (i.e relationship between $\omega$ and $k$

Ampere's law is modified by the presence of currents

$$
\nabla^{2} A-\frac{1}{c^{2}} \frac{\partial^{2} A}{\partial t^{2}}=-4 \pi j / \mathrm{c}
$$

Substituting the plane-wave solution $\boldsymbol{A}=\boldsymbol{A}_{\mathbf{0}} e^{i(\boldsymbol{k} \cdot \boldsymbol{x}-\omega t)}$ we obtain

$$
-k^{2} \boldsymbol{A}_{\mathbf{0}}+\frac{\omega^{2}}{c^{2}} \boldsymbol{A}_{\mathbf{0}}=-\frac{4 \pi}{c} \boldsymbol{j}_{\mathbf{0}}=-\frac{4 \pi \sigma}{c} \boldsymbol{E}_{\mathbf{0}}=-\frac{4 \pi \sigma}{c}\left(\frac{i \omega}{c} \boldsymbol{A}_{\mathbf{0}}-\boldsymbol{k} \phi_{0}\right)
$$

Hence, equating the components perpendicular to $\boldsymbol{k}$

$$
\begin{aligned}
-k^{2}+\frac{\omega^{2}}{c^{2}}= & -\frac{4 \pi \sigma}{c}\left(\frac{i \omega}{c}\right)=-\left(\frac{4 \pi}{c}\right) \frac{i n_{e} e^{2}}{\omega m_{e}}\left(\frac{i \omega}{c}\right)=\frac{4 \pi n_{e} e^{2}}{m_{e} c^{2}} \\
& \Rightarrow \omega^{2}-k^{2} c^{2}=\frac{4 \pi n_{e} e^{2}}{m_{e}} \equiv \omega_{p}^{2}
\end{aligned}
$$

where $\omega_{p}=\sqrt{\frac{4 \pi n_{e} e^{2}}{m_{e}}}$ is called the plasma frequency

## Dispersion relation (i.e relationship between $\omega$ and $k$ )

$$
\begin{aligned}
& \omega_{p}=\sqrt{\frac{4 \pi n_{e} e^{2}}{m_{e}}}=5.64 \times 10^{4} \sqrt{\frac{n_{e}}{\mathrm{~cm}^{-3}}} \mathrm{rad} \mathrm{~s}^{-1} \\
& \Rightarrow \quad v_{p}=\frac{\omega_{p}}{2 \pi}=\sqrt{\frac{n_{e} e^{2}}{\pi m_{e}}}=9.0 \sqrt{\frac{n_{e}}{\mathrm{~cm}^{-3}}} \mathrm{kHz}
\end{aligned}
$$

The dispersion relation $\omega^{2}-k^{2} c^{2}=\omega_{p}{ }^{2}$

$$
\Rightarrow k=\frac{\sqrt{\omega^{2}-\omega_{p}^{2}}}{c} \quad \omega=\sqrt{\omega_{p}^{2}+k^{2} c^{2}}
$$

$k$ is only real above the plasma frequency, below which waves cannot propagate
For $\omega<\omega_{p}, k=i \frac{\sqrt{\omega_{p}^{2}-\omega^{2}}}{c}$, an we have an "evanescent" wave in which the amplitude declines exponentially. This leads to reflection at the interface between a region with $\omega>\omega_{p}$ and $\omega<\omega_{p}$

## Dispersion relation (i.e relationship between $\omega$ and $k$ )

## Example: Earth's ionosphere

 where $n_{e} \sim 10^{5}-10^{6} \mathrm{~cm}^{-3}$$\Rightarrow v_{p}=$ few MHz
AM radio waves ( $530-1600 \mathrm{kHz}$ ) are reflected off the ionosphere and can travel large distances bouncing between the Earth and the ionosphere


J. V. Evans and T. Hagfors, Radar Astronomy, 1968

Sky \& Telescope graphic
FM radio waves ( $87-107 \mathrm{MHz}$ ) are not reflected: need line-of-sight to transmitter

## Phase and group velocity

When waves travel in a "dispersive" medium (i.e. where $\omega / k$ is a function of $\omega$ ), there are two key velocities

1) Phase velocity

$$
v_{\phi}=\frac{\omega}{k}=\frac{c \omega}{\sqrt{\omega^{2}-\omega_{p}^{2}}}=\left(1-\frac{\omega_{p}^{2}}{\omega^{2}}\right)^{-1 / 2} c
$$

This is the speed $(>c)$ at which the peaks of a sine wave move through space The index of refraction is $n_{r} \equiv c / v_{\phi}=\left(1-\frac{\omega^{2}}{\omega_{p}{ }^{2}}\right)^{1 / 2}<1$
2) Group velocity

$$
v_{g}=\frac{\partial \omega}{\partial k}=\frac{\partial}{\partial k} \sqrt{\omega_{p}^{2}+k^{2} c^{2}}=\frac{k c}{\sqrt{\omega_{p}^{2}+k^{2} c^{2}}}=\frac{k c}{\omega}=\frac{c^{2}}{v_{\phi}}=\left(1-\frac{\omega_{p}^{2}}{\omega^{2}}\right)^{+1 / 2}
$$

This is the speed ( $<c$ ) at which a wavepacket (pulse) will propagate, and is the speed at which information can travel through a plasma

## Pulsar dispersion

The travel time for a pulse emitted by a pulsar at distance $D$ is

$$
\begin{gathered}
\tau=\int \frac{d s}{v_{g}}=\int\left(1-\frac{\omega_{p}{ }^{2}}{\omega^{2}}\right)^{-1 / 2} \frac{d s}{c} \\
\sim \int\left(1+\frac{\omega_{p}{ }^{2}}{2 \omega^{2}}\right) \frac{d s}{c}=\frac{D}{c}+\int\left(\frac{\omega_{p}{ }^{2}}{2 c \omega^{2}}\right) d s, \quad \text { provided } \omega \gg \omega_{p}
\end{gathered}
$$

There is a frequency-dependent delay,

$$
\Delta \tau=\int\left(\frac{\omega_{p}^{2}}{2 c \omega^{2}}\right) d s=\int \frac{4 \pi n_{e} e^{2}}{2 m_{e} c \omega^{2}} d s=\frac{2 \pi e^{2}}{m_{e} c \omega^{2}} \int n_{e} d s
$$

We can also write this

$$
\Delta \tau=\frac{e^{2}}{2 \pi m_{e} c^{3}} \lambda^{2} N_{e}=4.6\left(\frac{N_{e}}{\mathrm{~cm}^{-3} \mathrm{pc}}\right)\left(\frac{\lambda}{\mathrm{cm}}\right)^{2} \mu \mathrm{~s}
$$

where $N_{e}=\int n_{e} d s$ is the electron column density (sometimes called the dispersion measure)

## Pulsar dispersion

Measurements of pulsar dispersion measure are a key method for determining the electron density in the interstellar medium

If the distances are known (e.g. from trigonometric parallax), we can estimate then mean electron density along the sight line

$$
\left\langle n_{e}\right\rangle=\frac{N_{e}}{D}
$$

Typical values are a few $\times 0.01 \mathrm{~cm}^{-3}$ (for sight-lines that do not intersect known HII regions)


Pulse Longitude ( ${ }^{\circ}$ )
"Warm ionized medium" (WIM)
Phillips and Wolszczan 1992

# Lecture 21 <br> Plasma effects II / Atoms 

## Goals: understand

Faraday rotation and its astrophysical applications Structure of atoms

## Effect of interstellar magnetic fields

The dispersion effect we considered first is independent of the polarization state of the wave

But now let's turn to circularly polarized radiation and reconsider the motion of an electron. The electric field associated with the EM wave rotates in a circle:

The electron rotates at speed $v$ in a circle, with a centripetal acceleration of magnitude


$$
\begin{gathered}
a=\frac{\left|v_{0}\right|^{2}}{r}=\left|v_{0}\right| \omega=\frac{-e E_{0}}{m_{e}} \begin{aligned}
E(t) & =E_{0}(\widehat{\boldsymbol{x}} \pm i \widehat{\boldsymbol{y}}) e^{-i \omega t} \\
v(t) & =v_{0}(\widehat{\boldsymbol{x}} \pm i \widehat{\boldsymbol{y}}) e^{-i \omega t} \\
j(t) & =j_{0}(\widehat{x} \pm i \widehat{\boldsymbol{y}}) e^{-i \omega t}
\end{aligned} \\
v(t) \text { lags } a \Rightarrow v_{0}=\frac{-i e E_{0}}{m_{e} \omega} \Rightarrow j_{0}=-n_{e} e v_{0}=\frac{i n_{e} e^{2} E_{0}}{m_{e} \omega} \Rightarrow \sigma=\frac{i n_{e} e^{2}}{\omega m_{e}} \\
\text { as before }
\end{gathered}
$$

## Effect of interstellar magnetic fields

Suppose there is now a fixed interstellar magnetic field $B_{\|}$along the $\pm$ z-axis. We now have

$$
a=\left|v_{0}\right| \omega=-\frac{e}{m_{e}}\left(E_{0} \pm \frac{\left|v_{0}\right| B_{\|}}{c}\right)=-\frac{e}{m_{e}} E_{0} \pm\left|v_{0}\right| \omega_{B}
$$

Hence

$$
v_{0}=\frac{-i e E_{0}}{m_{e}\left(\omega \pm \omega_{B}\right)} \Rightarrow j_{0}=\frac{i n_{e} e^{2} E_{0}}{m_{e}\left(\omega \pm \omega_{B}\right)} \Rightarrow \sigma=\frac{i n_{e} e^{2}}{m_{e}\left(\omega \pm \omega_{B}\right)}
$$

The dispersion relation becomes

$$
\begin{aligned}
&-k^{2}+\frac{\omega^{2}}{c^{2}}=-\frac{4 \pi \sigma}{c}\left(\frac{i \omega}{c}\right)=\frac{\omega}{\omega \pm \omega_{B}} \omega_{p}{ }^{2} / c^{2} \\
& k=\frac{\sqrt{\omega^{2}-\omega_{p}{ }^{2} /\left(1 \pm \omega_{B} / \omega\right)}}{c} \sim \frac{\omega}{c}\left(1-\frac{\omega_{p}{ }^{2}}{2 \omega^{2}}\left(1 \pm \frac{\omega_{B}}{\omega}\right)\right) \\
& \quad \text { provided } \omega \gg \omega_{p} \gg \omega_{B}
\end{aligned}
$$

## Effect of interstellar magnetic fields

$$
k=\frac{\sqrt{\omega^{2}-\omega_{p}^{2} /\left(1 \pm \omega_{B} / \omega\right)}}{c} \sim \frac{\omega}{c}\left(1-\frac{\omega_{p}^{2}}{2 \omega^{2}}\left(1 \pm \frac{\omega_{B}}{\omega}\right)\right)
$$

The difference in wavevector for the two opposite circular polarizations is therefore

$$
\Delta k=\frac{\omega_{p}^{2} \omega_{B}}{\omega^{2} c}
$$

The difference in phase is $\Delta \phi=\int \Delta k d s$

Consider now the case of a linearly polarized wave (initially with $E$ vertical), which can be considered the superposition of two circularly-polarized waves with opposite polarizations.

## Faraday rotation

This phenomenon is called Faraday rotation
The rotation angle is

$$
\begin{gathered}
\Delta \theta=\frac{\Delta \phi}{2}=\int \frac{\Delta k}{2} d s=\int \frac{\omega_{p}{ }^{2} \omega_{B}}{2 \omega^{2} c} d s \\
=\int \frac{1}{2 \omega^{2} c} \frac{4 \pi n_{e} e^{2}}{m_{e}} \frac{e B}{m_{e} c} d s=\frac{\lambda^{2} e^{3}}{2 \pi m_{e}{ }^{2} c^{4}} \int n_{e} B_{\|} d s \\
=8.1 \times 10^{-4}\left(\frac{\lambda}{\mathrm{~cm}}\right)^{2} \frac{R M}{\mathrm{~cm}^{-3} \mathrm{pc} \mu \mathrm{G}} \mathrm{rad}
\end{gathered}
$$

Where $R M=\int n_{e} B_{\|} d s$ is called the "rotation measure"

## Faraday rotation

$$
\Delta \theta=\frac{\lambda^{2} e^{3}}{2 \pi m_{e}{ }^{2} c^{4}} \int n_{e} B_{\|} d s=8.1 \times 10^{-4}\left(\frac{\lambda}{\mathrm{~cm}}\right)^{2} \frac{R M}{\mathrm{~cm}^{-3} \mathrm{pc} \mu \mathrm{G}} \mathrm{rad}
$$

Notes:
(1) Faraday rotation is only sensitive to the component of $\boldsymbol{B}$ along the line of sight. The component in the "plane of the sky" is irrelevant since for that component the time-averaged $\boldsymbol{v} \times \boldsymbol{B}$ is zero
(2) The sign of the rotation angle depends on the sense of $B_{\|}$(whether towards or away from us). A changing sense along the sight-line can lead to cancellation that reduces the rotation measure.
(3) The ratio of the rotation measure $\int n_{e} B_{\|} d s$ to the dispersion measure $\int n_{e} d s$ yields an estimate of the typical magnetic field (although note point (2) above)

## Faraday rotation

$$
\Delta \theta=\frac{\lambda^{2} e^{3}}{2 \pi m_{e}{ }^{2} c^{4}} \int n_{e} B_{\|} d s=8.1 \times 10^{-4}\left(\frac{\lambda}{\mathrm{~cm}}\right)^{2} \frac{R M}{\mathrm{~cm}^{-3} \mathrm{pc} \mu \mathrm{G}} \mathrm{rad}
$$

Notes:
(4) If there is a significant RM from the front of a synchrotron emission to the back, Faraday rotation mixes radiation with different emergent polarization directions $=>$ decrease in overall polarization fraction

This effect is known as
Faraday depolarization


## Interaction of radiation with atoms: astrophysical motivation

A) Bound-bound transitions of atoms (and atomic ions) play a critical role in astrophysics as

1) coolants of gas (except at very high temperature)
2) a source of opacity in stars
3) diagnostics of abundances, redshifts, density, temperature
B) Bound-free/free-bound transitions determine the ionization state of astrophysical gas through
4) Photoionization: $\mathrm{X}^{+n}+h v \rightarrow \mathrm{X}^{+(n+1)}+e$

Rate per unit volume $=\int \frac{4 \pi J_{v}}{h v} \sigma_{v}^{p i} n\left(\mathrm{X}^{+n}\right) d v$
2) Radiative recombination: $\mathrm{X}^{+(n+1)}+e \rightarrow \mathrm{X}^{+n}+h v$

Rate per unit volume $=\alpha_{R}(T) n_{e} n\left(\mathrm{X}^{+(n+1)}\right)$

## Energy levels for atoms: hydrogen (and H-like)

Simplest case: only one electron

The state of the electron is described by five quantum numbers:
$n=$ principal quantum number, which ranges from 1 to $\infty$
$l=$ orbital angular momentum (in units of $\hbar$ ), which ranges from 0 to $n-1$ and is coded with the letters $s, p, d, f, g, h \ldots$
$m_{l}=$ azimuthal quantum number, which ranges from $-l$ to $l$ and is the projection of the orbital angular momentum onto some axis
$s=1 / 2$ is the electronic spin
$m_{s}= \pm 1 / 2$, is the projection of the spin onto some axis

## Energy levels for atoms: hydrogen (and H-like)

The eigenstates are solutions to the time independent Schrodinger equation

$$
H \psi=E \psi
$$

For a simple Coulomb potential, the Hamiltonian $H$ is

$$
H=-\frac{\hbar^{2}}{2 m_{e}} \nabla^{2}-\frac{Z e^{2}}{r}
$$

And the energy of system depends only on $n$ (neglecting the effects of spin and quantum electrodynamics)

$$
E_{n}=-Z^{2} \frac{R y}{n^{2}}
$$

## Energy levels for atoms: hydrogen (and H-like)

$$
E_{n}=-Z^{2} \frac{R y}{n^{2}}
$$

Here the $R y=e^{2} / 2 a_{0} \sim 13.59 \mathrm{eV}$ is called the "Rydberg"

$$
a_{0}=\frac{\hbar^{2}}{m_{e} e^{2}}=\left(\frac{e^{2}}{\hbar c}\right)^{-2} \frac{e^{2}}{m_{e} c^{2}}=\alpha^{-2} r_{0}=0.529 \times 10^{-8} \mathrm{~cm} \quad \text { is the Bohr radius, }
$$

and $\alpha=\frac{e^{2}}{\hbar c} \sim \frac{1}{137}$ is the fine-structure constant
Note: if we measure length in units of $a_{0}$, and energy in units of $e^{2} / a_{0}$ (sometimes called atomic units), the Hamiltonian becomes dimensionless and can be written

$$
H=-\frac{1}{2} \nabla^{2}-\frac{Z}{r}
$$

Hence $R y=\frac{m_{e} e^{4}}{2 \hbar^{2}}=\frac{1}{2} \alpha^{2} m_{e} c^{2}$
Actually, this expression assumes that the nuclear mass $m_{N} \gg m_{e}$ so the center of the nuclear potential is coincident with the center of mass. To be more precise, we need to replace $m_{e}$ with the "reduced mass" $\mu=m_{e} m_{N} /\left(m_{e}+m_{N}\right)$

## Lecture 22

## Goals: understand

Multielectron atoms
Spin-orbit coupling

## Multielectron atoms

The energy levels of multielectron atoms are far more complex. The crudest description of a state involves simply specifying the number of electrons in each "orbital" (defined by specific values of $n$ and l.)

Example: the ground state of atomic carbon is $1 s^{2} 2 s^{2} 2 p^{2}$

This is called the electronic configuration

Pauli exclusion principle: maximum number of electrons in state $n l$ is number of $m_{s}$ values $\times$ number of $m_{l}$ values
$=(2 s+1)(2 l+1)=2(2 l+1)$
i.e. $2,6,10,14, \ldots$ for $n s, n p, n d, n f$

## Multielectron atoms

C $1 s^{2} 2 s^{2} 2 p^{2}$

In this case, the $1 s^{2}$ electrons have zero orbital angular momentum are paired with opposite spins so their total spin and orbital angular momentum are both zero. The same is true of the $2 s^{2}$ electrons.

But the $2 p^{2}$ electrons each have $l=1$ and $s=\frac{1}{2}$. The total orbital angular momentum $L$ therefore ranges from zero to 2 (i.e. can be 0 , 1 or 2 ), and the total spin $S$ can be zero or 1 .

A set of states with given values of $L$ and $S$ is called a term

Terms are represented with the notation ${ }^{2 S+1} L$ where $L$ is a capital letter in the sequence $S, P, D, F, G \ldots$ for $L=0,1,2,3,4 \ldots$.

## Multielectron atoms

For carbon in the ground state configuration ( $1 s^{2} 2 s^{2} 2 p^{2}$ ) there are three terms: ${ }^{3} P,{ }^{1} D$, and ${ }^{1} S$.

In this particular case (both $p$ electrons in $n=2$ ), not all possible combinations of $L$ and $S$ are permitted by the Pauli exclusion principle. (Thus there are no ${ }^{1} P,{ }^{3} D$, or ${ }^{3} S$ terms for this configuration.)

The superscripted symbols $2 S+1$ are the spin-degeneracies, so it is conventional when speaking to refer to ${ }^{3} P$ as "triplet-P" not "three- $P$ " and ${ }^{1} S$ as "singlet- $S$ " not "one-S"

## Hamiltonian for multielectron atoms

Just including electrostatic energies (i.e. neglecting the effects of spin), the Hamiltonian $H$ is

$$
H=\sum_{j}\left(-\frac{\hbar^{2}}{2 m_{e}} \nabla_{j}^{2}-\frac{Z e^{2}}{r_{j}}\right)+\sum_{i>j} \frac{e^{2}}{r_{i j}}
$$

where the indices $i$ and $j$ number the electrons

Here $r_{j}$ is the distance of the $j$ th electron from the nucleus and $r_{i j}$ is the separation between the $j$ th and $i$ th electrons

Because of the $\sum_{i>j} \frac{e^{2}}{r_{i j}}$ term, the different terms have significantly
different energies by $\sim 1 \mathrm{eV}$ and transitions between them typically yield visible/near-IR photons

## Hamiltonian for multielectron atoms

Terms with larger spin $S$ have a greater degree of spin alignment. The Pauli exclusion principle therefore tends to make the electrons stay further apart, which reduces $\sum_{i>j} \frac{e^{2}}{r_{i j}}$
$\rightarrow$ larger $S$ states have lower energy (Hund's rule \#1)

For this reason, the ${ }^{3} P$ term is the ground state of atomic carbon

The same is true of terms with larger $L \rightarrow$ larger $L$ states have lower energy (Hund's rule \#2)

Thus the ${ }^{1} D$ state is next in energy, and then the ${ }^{1} S$ state

## Spin-orbit coupling

Within a given term, there are various possible orientations of $L$ and $S$. These have slightly different energies, because the spin is associated with a magnetic dipole moment and the electron sees a magnetic field as it moves through the Coulomb potential.

This adds a small additional term to the Hamiltonian

$$
H=\sum_{j}\left(-\frac{\hbar^{2}}{2 m_{e}} \nabla_{j}^{2}-\frac{Z e^{2}}{r_{j}}\right)+\sum_{i>j} \frac{e^{2}}{r_{i j}}+H_{s o}
$$

where $H_{S O}=\xi \boldsymbol{L} . \boldsymbol{S}$

## Spin-orbit coupling

If we define the total angular momentum $\boldsymbol{J}=\boldsymbol{L}+\boldsymbol{S}$, we find that $J^{2}=L^{2}+S^{2}+2 L . S$
$\rightarrow H_{S o}=\xi \mathbf{L} . \boldsymbol{S}=\frac{\xi}{2}\left(\boldsymbol{J}^{\mathbf{2}}-\boldsymbol{L}^{\mathbf{2}}-\boldsymbol{S}^{\mathbf{2}}\right)$

$$
\left\langle H_{s o}\right\rangle=C[J(J+1)-L(L+1)-S(S+1)]
$$

For a given term, $L$ and $S$ are fixed but the energy depends on $J$. Thus the term may be split into several of different $J$, which are indicated using the notation ${ }^{2 S+1} L_{J}$, where $J$ ranges from $|L-S|$ to $L+S$

This splitting is called fine structure

## Spin-orbit coupling

Example: ground state term of atomic carbon, ${ }^{3} P$, splits into ${ }^{3} P_{0},{ }^{3} P_{1}$ and ${ }^{3} P_{2}$

$$
\left\langle H_{s o}\right\rangle=C[J(J+1)-L(L+1)-S(S+1)]
$$

$C$ is positive when a shell (e.g. $2 p$ ) is less than half-full (e.g. Carbon $1 s^{2} 2 s^{2} 2 p^{2}$ ), but negative when a shell is more than half-full (e.g. Oxygen $1 s^{2} 2 s^{2} 2 p^{4}$ )

For negative $C$, the energy is a decreasing function of $J$ and the term is called inverted (as opposed to "normal")
(Hund's rule \#3)

## Hierarchy of energy splittings



Each electron has 2 possible values of $m_{s}$ and 3 possible values of $m_{l} \rightarrow 6$ possible combinations (b)

Figure 9.2b Same as a, but for two pelectrons. Dashed levels are absent from the multiplet if the electrons are equivalent $\left(n=n^{\prime}\right)$. (Taken from Leighton, R., 1959, Principles of Modern Physics, McGraw-Hill, New York.)

## Astrophysical importance of fine structure

1) Optical line emission between terms can be split into multiple nearby lines

Example: [OIII] and [NII] lines observed from HII regions (both $1 s^{2} 2 s^{2} 2 p^{2}$ )


## Astrophysical importance of fine structure

## [ O III]

2) Transitions can occur between fine structure states, leading to farinfrared radiation


## Lecture 23

## Atoms II

## Goals: understand

Parity

Hyperfine structure
Radiative transitions and selection rules

## Parity

One final note about the electronic state of an atom

Every state has an overall wavefunction that is either symmetric or antisymmetric under mirror reflection
i.e. if we make the transformation $x \rightarrow-x, \quad y \rightarrow-y, \quad z \rightarrow-z$ then either $\psi \rightarrow-\psi$ (odd parity) or $\psi \rightarrow+\psi$ (even parity)

The parity depends solely on whether $\sum l$ is even ( $\rightarrow$ even parity) or odd ( $\rightarrow$ odd parity)

Thus all terms in a given configuration have the same parity. An odd parity is indicated by a superscripted O after the term
e.g. the ground state term of $\mathrm{N}\left(1 s^{2} 2 s^{2} 2 p^{3}\right)$ is ${ }^{4} S^{o}$

## Hyperfine splitting

When the nucleus has non-zero spin, $I \neq 0$ there is an additional splitting that occurs for electronic states with $J \neq 0$

Abundant nuclei with non-zero spin (in parentheses):
${ }^{1} \mathrm{H}(1 / 2),{ }^{2} \mathrm{H}(1),{ }^{14} \mathrm{~N}(1),{ }^{23} \mathrm{Na}(3 / 2),{ }^{35} \mathrm{Cl}(3 / 2),{ }^{37} \mathrm{Cl}(3 / 2),{ }^{13} \mathrm{C}(1 / 2)$
(dominant isotopes in black, others in purple)
NB: $\alpha$-nuclei with even number of neutrons = number of protons are typically spinless (e.g. ${ }^{4} \mathrm{He},{ }^{12} \mathrm{C},{ }^{16} \mathrm{O},{ }^{20} \mathrm{Ne},{ }^{24} \mathrm{Mg},{ }^{28} \mathrm{Si},{ }^{32} \mathrm{~S},{ }^{36} \mathrm{Ar},{ }^{40} \mathrm{Ca}$ )

The vector sum of the nuclei spin and electronic angular momentum is given the quantum number $\boldsymbol{F}=\boldsymbol{I}+\boldsymbol{J}$

The interaction between the nuclear magnetic dipole and the electronic magnetic dipole leads to a (very small) splitting

## Fine structure of $\mathrm{C}^{+}$ground state term

Example 1: ground state term of $\mathrm{C}^{+}$. The configuration is $1 s^{2} 2 s^{2} 2 p$

Question 1: what terms are possible with this configuration?

## Fine structure of $\mathrm{C}^{+}$ground state term

Example 1: ground state term of $\mathrm{C}^{+}$. The configuration is $1 s^{2} 2 s^{2} 2 p$

Question 1: what terms are possible with this configuration?
Answer: there only one term, with $S=\frac{1}{2}, L=1$, i.e. ${ }^{2} P$

## Fine structure of $\mathrm{C}^{+}$ground state term

Example 1: ground state term of $\mathrm{C}^{+}$. The configuration is $1 s^{2} 2 s^{2} 2 p$
Question 1: what terms are possible with this configuration?
Answer: there only one term, with $S=\frac{1}{2}, L=1$, i.e. ${ }^{2} P$
Question 2: what does spin-orbit coupling do to this term?

## Fine structure of $\mathrm{C}^{+}$ground state term

Example 1: ground state term of $\mathrm{C}^{+}$. The configuration is $1 s^{2} 2 s^{2} 2 p$
Question 1: what terms are possible with this configuration?
Answer: there only one term, with $S=\frac{1}{2}, L=1$, i.e. ${ }^{2} P$
Question 2: what does spin-orbit coupling do to this term?
Answer: it splits it into two fine-structure states ${ }^{2} P_{1 / 2}$ and ${ }^{2} P_{3 / 2}$

$$
\begin{array}{rlrl}
\Delta E & =7.86 \mathrm{meV} & & { }^{2} P_{3 / 2} \\
& =1900.536 \mathrm{GHz} & \\
& =157.7 \mu \mathrm{~m} & { }^{2} P_{1 / 2}
\end{array}
$$

These have an energy difference leading to a fine-structure transition near $158 \mu \mathrm{~m}$. This is typically the most luminous spectral line emitted by galaxies, because it dominates the cooling of cold interstellar gas

## Fine structure of $\mathrm{C}^{+}$ground state term

[CII] map of the face-on spiral galaxy M51, from Pineda et al. 2020

Obtained with the upGREAT instrument on the SOFIA airborne observatory


## Hyperfine splitting

But suppose we now have ${ }^{13} \mathrm{C}^{+}$, with nuclear spin $1 / 2$ (relative isotopic abundance $\sim 1 \%$ )

Each fine-structure state is split into two and there are three slightly-separated transitions ( $F=2-0$ is forbidden)


$$
\begin{aligned}
& { }^{2} P_{3 / 2} F=2 \\
& { }^{2} P_{3 / 2} F=1 \\
& \\
& { }^{2} P_{1 / 2} F=1 \\
& { }^{2} P_{1 / 2} F=0
\end{aligned}
$$



## Hyperfine splitting

Example 2: ground state term of atomic hydrogen, ${ }^{2} S_{1 / 2}$, is split into two states: $F=1$ and $F=0$. Transitions between these two states result in a photon at $1,420,405,751.7667 \pm 0.0009 \mathrm{~Hz}$, which is equivalent to 21.1061140542 cm

The key spectral line for studying cold neutral gas in the Universe

$$
I=1 / 2
$$



## Radiative transitions

The rate of radiative transitions between any two states is related to the wavefunctions of the initial and final states, $\psi_{i}$ and $\psi_{j}$

In the dipole approximation, the Einstein-A coefficient for two non-degenerate states is given by

$$
A_{i j}=\frac{64 \pi^{4} v^{3}}{3 h c^{3}}\left\langle\psi_{i}\right|(-e \boldsymbol{r})\left|\psi_{f}\right\rangle^{2}
$$

Here $\left\langle\psi_{i}\right|(-e \boldsymbol{r})\left|\psi_{f}\right\rangle \equiv \int \psi_{i}(-e \boldsymbol{r}) \psi_{j}{ }^{*} d^{3} \boldsymbol{r}$ is the transition dipole moment $\boldsymbol{d}_{\boldsymbol{i} \boldsymbol{j}}$
The dipole approximation, which is based on the approximation $e^{i \boldsymbol{k} \cdot r} \sim 1$, (i.e. $\lambda \gg a_{0}$ ) is generally very good provided $\boldsymbol{d}_{\boldsymbol{i} \boldsymbol{j}} \neq 0$. Transitions with $\boldsymbol{d}_{\boldsymbol{i j}} \neq 0$ are called "dipole-allowed."

In the case of "forbidden" transitions with $\boldsymbol{d}_{\boldsymbol{i j}}=0$, additional terms in the expansion of $e^{i k . r}$ must be included. $A_{i j}$ is not necessarily zero, but is typically much smaller than in a dipole-allowed transition.

## Selection rules for dipole-allowed transitions

## "Laporte's rule":

$\boldsymbol{d}_{\boldsymbol{i j}}=\int \psi_{i}(-e \boldsymbol{r}) \psi_{j}{ }^{*} d^{3} \boldsymbol{r}$ can only be non-zero if the integrand has even parity.
$\boldsymbol{r}$ has odd parity, so the product $\psi_{i} \psi_{j}{ }^{*}$ needs to be odd
In other words, for non-zero $\boldsymbol{d}_{\boldsymbol{i} \boldsymbol{j}}$, one of the wavefunctions must be odd and the other must be even $\rightarrow$ the parity has to change

The parity is the same for all states within a given configuration (since $\sum l$ is the same)
$\rightarrow$ All transitions between different terms within a given configuration are forbidden by Laporte's rule, as are all fine-structure transitions

This is indicated with the use of square brackets around the designation of the ion (e.g. [OIII] means a forbidden transition of the $\mathrm{O}^{++}$ion)

## Selection rules for dipole-allowed transitions

## Selection rules related to angular momentum

For dipole-allowed transitions, the additional selection rules are
$\Delta J=0$ or $\pm 1$ (except that $J=0 \rightarrow 0$ is forbidden)
$\Delta L=0$ or $\pm 1$
$\Delta S=0$ (or else the transition is called "spin-forbidden")
The first rule can be understood in terms of angular momentum conservation

The angular momentum of the emitted photon is $\hbar$, since the photon is a spin 1 particle. There could also be a component due to the photon's linear motion, but this is of order $a_{0} p=a_{0} h v / c=\left(2 \pi a_{0} / \lambda\right) \hbar \ll \hbar$

Thus, the final angular momentum is the vector sum of $\hbar$ and $J_{f} \hbar$, and this must equal the initial angular momentum of the atom, $J_{i} \hbar$

For $J_{f} \neq 0$, this final angular momentum ranges from $\left(J_{f}-1\right) \hbar$ to $\left(J_{f}+1\right) \hbar$, requiring $\Delta J=0$ or $\pm 1$

For $J_{f}=0$, the final angular momentum is just $\hbar$, requiring $J_{i}=1$ and disallowing $J=0 \rightarrow 0$

## NIST database of atomic transitions (wavelengths and A-values)

## https://www.nist.gov/pml/atomic-spectra-database

## Atomic Spectra Database

## NIST Standard Reference Database 78

## Version 5.8

Last Update to Data Content: October 2020 | Version History \& Citation Information | Disclaimer |
DOI: https://dx.doi.org/10.18434/T4W30F
Welcome to the NIST Atomic Spectra Database, NIST Standard Reference Database \#78. The spectroscopic data may be selected and displayed according to wavelengths or energy levels by choosing one of the following options:

## Lines

## Levels

Ground States \& Ionization Energies

LIBS

Spectral lines and associated energy levels displayed in wavelength order with all selected spectra intermixed or in multiplet order. Transition probabilities for the lines are also displayed where available.

Energy levels of a particular atom or ion displayed in order of energy above the ground state.

Ground states and ionization energies of atoms and atomic ions.

ASD Interface for Laser Induced Breakdown Spectroscopy (LIBS)

## NIST database of atomic transitions (wavelengths and A-values)

Allows searches by ion, wavelength range, upper and lower state energies

Lists quantum numbers and energies for the upper and lower states, wavelengths, and Einstein A-coefficients

## Example search

The type of transition is listed with the following (conventional) coding
E1: electric dipole (i.e. dipole-allowed according to the selection rules discussed previously)

Typical $A_{i j}$ of $10^{9} \mathrm{~s}^{-1}$ for visible wavelength transitions
M1: magnetic dipole (no parity change; otherwise the same selection rules as E1) Typically five orders of magnitude lower $A_{i j}$ than E1

E2: electric quadrupole (no parity change, $|\Delta J|$ up to 2 ). Even lower $A_{i j} \propto v^{5}$ (Of little/no astrophysical importance)

## Lecture 24

## Goals: understand

Importance of molecules in astrophysics
Born-Oppenheimer approximation
Electronic, vibrational and rotational transitions

## Motivation for studying molecules

## 1) Molecules are ubiquitous

A wide variety of molecules are found in a wide variety of astrophysical environments:

```
Interstellar medium - sites of star formation
Circumstellar outflows
Cometary comae
Accretion disks
High-z galaxies
Stellar and planetary atmospheres
```

List of ~ 200 molecules detected in the ISM: some familiar, some very exotic

| 2 atoms | FeO ? | $\mathrm{H}_{2} \mathrm{~S}$ | 4 atoms | 5 atoms | 6 atoms | 7 atoms | 9 atoms | 12 atoms |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{H}_{2}$ | $\mathrm{O}_{2}$ | HNC | ${\mathrm{c}-\mathrm{C}_{3} \mathrm{H}}^{\text {c }}$ | $\mathrm{C}_{5}$ * | $\mathrm{C}_{5} \mathrm{H}$ | $\mathrm{C}_{6} \mathrm{H}$ | $\mathrm{CH}_{3} \mathrm{C}_{4} \mathrm{H}$ | $\mathrm{c}-\mathrm{C}_{6} \mathrm{H}_{6}$ * |
| AIF | $\mathrm{CF}^{+}$ | HNO | $\mathrm{I}_{-\mathrm{C} 3} \mathrm{H}$ | $\mathrm{C}_{4} \mathrm{H}$ | $\mathrm{I}-\mathrm{H}_{2} \mathrm{C} 4$ | $\mathrm{CH}_{2} \mathrm{CHCN}$ | $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CN}$ | $\mathrm{n}-\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{CN}$ |
| AlCl | SiH ? | MgCN | $\mathrm{C}_{3} \mathrm{~N}$ | $\mathrm{C}_{4} \mathrm{Si}$ | $\mathrm{C}_{2} \mathrm{H}_{4}{ }^{*}$ | $\mathrm{CH}_{3} \mathrm{C}_{2} \mathrm{H}$ | $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{O}$ | $i-\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{CN}$ |
| $\mathrm{C}_{2}{ }^{* *}$ | PO | MgNC | $\mathrm{C}_{3} \mathrm{O}$ | I-C3 $\mathrm{H}_{2}$ | $\mathrm{CH}_{3} \mathrm{CN}$ | $\mathrm{HC}_{5} \mathrm{~N}$ | $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$ | $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OCH}_{3}$ (?) |
| CH | AlO | $\mathrm{N}_{2} \mathrm{H}^{+}$ | $\mathrm{C}_{3} \mathrm{~S}$ | $\mathrm{c}-\mathrm{C}_{3} \mathrm{H}_{2}$ | $\mathrm{CH}_{3} \mathrm{NC}$ | $\mathrm{CH}_{3} \mathrm{CHO}$ | $\mathrm{HC}_{7} \mathrm{~N}$ |  |
| $\mathrm{CH}^{+}$ | $\mathrm{OH}^{+}$ | $\mathrm{N}_{2} \mathrm{O}$ | $\mathrm{C}_{2} \mathrm{H}_{2}{ }^{*}$ | $\mathrm{H}_{2} \mathrm{CCN}$ | $\mathrm{CH}_{3} \mathrm{OH}$ | $\mathrm{CH}_{3} \mathrm{NH}_{2}$ | $\mathrm{C}_{8} \mathrm{H}$ |  |
| CN | $\mathrm{CN}^{-}$ | NaCN | $\mathrm{NH}_{3}$ | $\mathrm{CH}_{4}{ }^{*}$ | $\mathrm{CH}_{3} \mathrm{SH}$ | c-C $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}$ | $\mathrm{CH}_{3} \mathrm{C}(\mathrm{O}) \mathrm{NH}_{2}$ |  |
| CO | $\mathrm{SH}^{+}$ | OCS | HCCN | $\mathrm{HC}_{3} \mathrm{~N}$ | $\mathrm{HC}_{3} \mathrm{NH}^{+}$ | $\mathrm{H}_{2} \mathrm{CCHOH}$ | $\mathrm{C}_{8} \mathrm{H}^{-}$ |  |
| $\mathrm{CO}^{+}$ | SH | $\mathrm{SO}_{2}$ | $\mathrm{HCNH}^{+}$ | $\mathrm{HC}_{2} \mathrm{NC}$ | $\mathrm{HC}_{2} \mathrm{CHO}$ | $\mathrm{C}_{6} \mathrm{H}^{-}$ | $\mathrm{C}_{3} \mathrm{H}_{6}$ |  |
| CP | $\mathrm{HCl}+$ | $\mathrm{c}-\mathrm{SiC}_{2}$ | HNCO | HCOOH | $\mathrm{NH}_{2} \mathrm{CHO}$ | $\mathrm{CH}_{3} \mathrm{NCO}$ | $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{SH}$ (?) |  |
| SiC | TiO | $\mathrm{CO}_{2}$ * | HNCS | $\mathrm{H}_{2} \mathrm{CNH}$ | $\mathrm{C}_{5} \mathrm{~N}$ |  |  |  |
| HCl | $\mathrm{ArH}^{+}$ | $\mathrm{NH}_{2}$ | $\mathrm{HOCO}^{+}$ | $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}$ | $\mathrm{I}-\mathrm{HC}_{4} \mathrm{H}^{*}$ | 8 atoms | 10 atoms | $\geq 12$ atoms |
| KCl | $\mathrm{NO}^{+}$(?) | $\mathrm{H}_{3}{ }^{+}$(*) | $\mathrm{H}_{2} \mathrm{CO}$ | $\mathrm{H}_{2} \mathrm{NCN}$ | $\mathrm{I}-\mathrm{HC}_{4} \mathrm{~N}$ | $\mathrm{CH}_{3} \mathrm{C}_{3} \mathrm{~N}$ | $\mathrm{CH}_{3} \mathrm{C}_{5} \mathrm{~N}$ | $\mathrm{HC}_{11} \mathrm{~N}$ |
| NH |  | SiCN | $\mathrm{H}_{2} \mathrm{CN}$ | $\mathrm{HNC}_{3}$ | $\mathrm{C}-\mathrm{H}_{2} \mathrm{C}_{3} \mathrm{O}$ | $\mathrm{HC}(\mathrm{O}) \mathrm{OCH}_{3}$ | $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO}$ | $\mathrm{C}_{60}{ }^{\text {* }}$ |
| NO | 3 atoms | AINC | $\mathrm{H}_{2} \mathrm{CS}$ | $\mathrm{SiH}_{4}{ }^{*}$ | $\mathrm{H}_{2} \mathrm{CCNH}$ | $\mathrm{CH}_{3} \mathrm{COOH}$ | $\left(\mathrm{CH}_{2} \mathrm{OH}\right)_{2}$ | $\mathrm{C}_{70}$ * |
| NS | $\mathrm{C}_{3}{ }^{\text {* }}$ | SiNC | $\mathrm{H}_{3} \mathrm{O}^{+}$ | $\mathrm{H}_{2} \mathrm{COH}^{+}$ | $\mathrm{C}_{5} \mathrm{~N}^{-}$ | $\mathrm{C}_{7} \mathrm{H}$ | $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHO}$ | $\mathrm{C}_{60}{ }^{+}$ |
| NaCl | $\mathrm{C}_{2} \mathrm{H}$ | HCP | $\mathrm{c}-\mathrm{SiC}_{3}$ | $\mathrm{C}_{4} \mathrm{H}^{-}$ | HNCHCN | $\mathrm{C}_{6} \mathrm{H}_{2}$ | $\mathrm{CH}_{3} \mathrm{CHCH}_{2} \mathrm{O}$ |  |
| OH | $\mathrm{C}_{2} \mathrm{O}$ | CCP | $\mathrm{CH}_{3}{ }^{*}$ | $\mathrm{HC}(\mathrm{O}) \mathrm{CN}$ |  | $\mathrm{CH}_{2} \mathrm{OHCHO}$ |  |  |
| PN | $\mathrm{C}_{2} \mathrm{~S}$ | AlOH | $\mathrm{C}_{3} \mathrm{~N}-$ | HNCNH |  | I-HC6 ${ }^{\text {H }}$ | 11 atoms |  |
| SO | $\mathrm{CH}_{2}$ | $\mathrm{H}_{2} \mathrm{O}^{+}$ | $\mathrm{PH}_{3}$ | $\mathrm{CH}_{3} \mathrm{O}$ |  | $\mathrm{CH}_{2} \mathrm{CHCHO}$ (?) | $\mathrm{HC}_{9} \mathrm{~N}$ |  |
| $\mathrm{SO}^{+}$ | HCN | $\mathrm{H}_{2} \mathrm{Cl}^{+}$ | HCNO | $\mathrm{NH}_{4}{ }^{+}$ |  | $\mathrm{CH}_{2} \mathrm{CCHCN}$ | $\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}$ |  |
| SiN | HCO | KCN | HOCN | $\mathrm{H}_{2} \mathrm{NCO}^{+}$(?) |  | $\mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CN}$ | $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OCHO}$ |  |
| SiO | $\mathrm{HCO}^{+}$ | FeCN | HSCN | $\mathrm{NCCNH}^{+}$ |  | $\mathrm{CH}_{3} \mathrm{CHNH}$ | $\mathrm{CH}_{3} \mathrm{OC}(\mathrm{O}) \mathrm{CH}_{3}$ |  |
| SiS | HCS ${ }^{+}$ | $\mathrm{HO}_{2}$ | $\mathrm{H}_{2} \mathrm{O}_{2}$ |  |  |  |  |  |
| CS | $\mathrm{HOC}^{+}$ | $\mathrm{TiO}_{2}$ | $\mathrm{C}_{3} \mathrm{H}^{+}$ |  |  |  |  |  |
| HF | $\mathrm{H}_{2} \mathrm{O}$ | $\mathrm{C}_{2} \mathrm{~N}$ | HMgNC |  |  |  |  |  |
| HD |  | $\mathrm{Si}_{2} \mathrm{C}$ | HCCO |  |  |  |  |  |

## Motivation for studying molecules

2) Molecules as probes
a) As a probe of excitation conditions: thanks to the rich spectrum of rotational, vibrational and electronic transitions
b) As a kinematic probe: thanks to the high brightness temperature of maser spots
c) As a chemical probe
d) As a probe of isotopic abundances: thanks to the large isotopic shift
e) As a magnetic probe: thanks to the Zeeman shift

## Excitation conditions probed by observations of CO rotational lines

 (Watson et al. 1985, ApJ)

## Masers as a kinematic probe of circumnuclear gas in AGN (Miyoshi et al. 1995, Nature)




## Molecules as a probe of isotopic abundances

(from Kahane et al. 1992, ApJ)


Fig. 2. The same as Fig. 1 for the AlCl (15-14) lines. The spectral resolutions are respectively 0.43 and $0.44 \mathrm{~km} \mathrm{~s}^{-1}$.

Table 2. Observed isotopic ratios towards IRC +10216.

| Ratio | Value | $1 \sigma$ | Ref. ${ }^{\text {a }}$ | Solar ${ }^{\text {b }}$ |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{Na}^{35} \mathrm{Cl} / \mathrm{Na}^{37} \mathrm{Cl}$ (7-6) | 2.33 | 0.50 | (1) |  |
| $\mathrm{Al}^{35} \mathrm{Cl} / \mathrm{Al}^{37} \mathrm{Cl}(15-14)$ | 2.15 | 0.33 | (1) |  |
| $\mathrm{Na}^{35} \mathrm{Cl} / \mathrm{Na}^{37} \mathrm{Cl}(8-7)$ | 1.78 | 0.59 | (2) |  |
| $\mathrm{Al}^{35} \mathrm{C} / / \mathrm{Al}^{37} \mathrm{Cl}(10-9)$ | 3.17 | 0.79 | (3) |  |
| $\mathrm{Al}^{35} \mathrm{Cl} / \mathrm{Al}^{37} \mathrm{Cl}(11-10)$ | 2.40 | 0.76 | (3) |  |
| ${ }^{35} \mathrm{Cl}^{37} \mathrm{Cl}^{\text {c }}$ | 2.30 | 0.24 | (1) | 3.13 |
| ${ }^{12} \mathrm{C} /{ }^{13} \mathrm{C}$ | 45 | 3 | (3) | 89 |
| ${ }^{14} \mathrm{~N} /{ }^{15} \mathrm{~N}$ | $>4400$ |  | (4) | 270 |
| ${ }^{16} \mathrm{O} /{ }^{17} \mathrm{O}$ | 840 | 200 | (5) | 2610 |
| ${ }^{16} \mathrm{O} /{ }^{18} \mathrm{O}$ | 1260 | 280 | (5) | 499 |
| ${ }^{24} \mathrm{Mg} /{ }^{25} \mathrm{Mg}$ | 7.60 | 1.1 | (6) | 7.94 |
| ${ }^{24} \mathrm{Mg} /{ }^{26} \mathrm{Mg}$ | 6.50 | 0.7 | (6) | 7.19 |
| ${ }^{29} \mathrm{Si}{ }^{30} \mathrm{Si}$ | 1.45 | 0.13 | (3) | 1.52 |
| ${ }^{28} \mathrm{Si} /{ }^{29} \mathrm{Si}^{\text {d }}$ | $>15.4$ |  | (3) | 19.8 |
| ${ }^{34} \mathrm{~S} /{ }^{33} \mathrm{~S}$ | 5.55 | 0.31 | (3) | 5.62 |
| ${ }^{32} \mathrm{~S} /{ }^{34} \mathrm{~S}$ | 21.8 | 2.6 | (3) | 22.5 |

${ }^{\text {a }}$ the references are the following: (1) this paper; (2) Cernicharo et al. 1987; (3) Cernicharo et al. 2000; (4) Kahane et al. 1988; (5) Kahane et al. 1992; (6) Guélin et al. 1995
${ }^{\text {b }}$ from Anders \& Grevesse 1989
${ }^{\mathrm{c}}$ average value derived from the above ratios (see text)
${ }^{d}$ due to the non negligeable opacity of the ${ }^{28}$ Si bearing lines, only a lower limit could be derived.

## Molecules as a probe of of magnetic fields



Fig. 2.-Stokes $I$ (top) and $V$ (bottom) profiles of the $-40 \mathrm{~km} \mathrm{~s}^{-1}$ maser in W3 IRS 5 at the position $(0,0)$ in Fig. 1 (histograms). The superposed curve in the bottom panel shows the derivative of $I$ scaled by $B_{\text {los }}=-18.6 \pm 1.3 \mathrm{mG}$. The $V$ profile is that obtained after leakage correc tion, i.e., $V-a I$, as described in § 3 (eq. [1])

Sarma et al. 2002, ApJ


Fig. 1.-Plot of $\log B_{\text {los }}$ vs. $\log n\left(\mathrm{H}_{2}\right)$. Inverted triangles are the upper limits for undetected clouds; the averaged limit for all of the dark clouds with $\log n\left(\mathrm{H}_{2}\right)=3$ is plotted as a single large inverted triangle. The line is the fit to detected clouds.

Crutcher 1999, ApJ: $\mathrm{U}_{\text {mag }} \sim 25 \mathrm{U}_{\text {thermal }}$

## Motivation for studying molecules

3) Molecules as coolants

In addition to serving as test particles that can be used as diagnostic probes, molecular emissions can dominate the thermal balance in astrophysical objects

Examples: Star-forming molecular clouds
Primordial gas in the Early Universe

## Molecular cooling in the Early Universe

## $\mathrm{H}_{2}$ played a key role as a coolant in the Early Universe before heavy elements had been created (from Lepp \& Shull, 1984, ApJ)



Fig. 1.-Abundance fractions of atoms, ions, and molecules vs. redshift n standard Friedmann cosmological model $1\left(\Omega_{0}=\Omega_{b}=0.1, h=0.5\right.$; see [able 1). Various channels for $\mathrm{H}_{2}$ formation are indicated by the internediate species in parentheses. The HD curve includes both radiative association and the isotropic versions of $\mathrm{H}_{2}$ formation via $\mathrm{H}^{-}$and $\mathrm{H}_{2}{ }^{+}$.


FIG. 3.-Temperature and density track of spherical cloud in self-similar free-fall collapse at redshift $z=50$. Fractional $\mathrm{H}^{+}$and $\mathrm{H}_{2}$ abundances are plotted at right. Molecular cooling causes temperature to depart from adiabatic value $\left(T \propto n^{2 / 3}\right)$ at $10^{3} \mathrm{~K}$, and the formation of additional molecules in the collapse cools cloud below 500 K until $n>10^{9} \mathrm{~cm}^{-3}$, when three-body $\mathrm{H}_{2}$ formation sets in.

## Born-Oppenheimer approximation

- Key realization: to very good approximation, the electron and nuclear motions can be treated separately
Particle momenta $p \sim \hbar / a_{0}$ for both nuclei and electrons
$\rightarrow$ electron velocities larger by a factor
$m_{N} / m e \sim$ few $\times 10^{3}-10^{5}$
electron kinetic energies larger by the same factor
$\rightarrow$ initially neglect nuclear k.e. and assume that electronic wavefunction and k.e. energy responds instantly to slowly changing nuclear positions


## Potential energy curve



Fig. 20-1. Contributions to "nuclear potential." The Coulomb repulsion and the electronic energy combine to give a curve with a minimum at $R_{0}$.

The Born-Oppenheimer approximation underlies the concept of the PES

## Different energy scales

- Electronic energy, $E_{e l} \sim R y \sim \hbar 2 / m_{e} a_{0}{ }^{2}=\mathrm{few} \mathrm{eV}$
- Nuclear vibrational energies $\sim \hbar \omega$
where $\omega \sim \sqrt{ }\left(k / m_{N}\right)$ is the classical angular frequency of oscillation for spring constant $k$

This is related to the curvature of the potential energy curve at its minimum, since

$$
E=E_{0}+1 / 2 k\left(R-R_{0}\right)^{2}
$$

## Different energy scales

The spring constant, $k$, must be of order

$$
k \sim \frac{E_{0}}{R_{0}^{2}} \sim\left(\hbar^{2} / m e a_{0}{ }^{2}\right) / a_{0}{ }^{2}=\frac{\hbar^{2}}{m_{e} a_{0}{ }^{4}}
$$

Hence $E_{v i b} \sim \hbar \sqrt{\frac{\hbar^{2}}{m_{e} a^{4} m_{N}}}=\left(\frac{m_{e}}{m_{N}}\right)^{\frac{1}{2}}$ Eel $\sim$ few $\times 10^{-2} \mathrm{eV}$

- Rotational energies $=\frac{L^{2}}{2 I} \sim \frac{L^{2}}{m_{N} R_{0}{ }^{2}} \sim \frac{\hbar^{2}}{m_{N} a_{0}{ }^{2}}$

$$
\rightarrow E_{\text {rot }} \sim\left(\frac{m_{e}}{m_{N}}\right) E_{\text {el }} \sim \mathrm{few} \times 10^{-4} \mathrm{eV}
$$

Summary: $E_{e l}: E_{v i b}: E_{r o t}=1:\left(m e / m_{N}\right)^{1 / 2}:\left(m e / m_{N}\right)$

## Lecture 25

## Goals: understand

The LCAO approximation
Molecular orbitals
Quantum numbers for molecules
Selection rules

## Structure of molecules

## Simplest example: $\mathrm{H}_{2}{ }^{+}$

(This is analytically tractable)


Electronic wavefunction, $\psi(\boldsymbol{r})$ - a function of $R=\left|\boldsymbol{R}_{\boldsymbol{A}}-\boldsymbol{R B}\right|$
Hamiltonian (dimensionless units):

$$
H=-\frac{1}{2} \nabla^{2}-\left|\boldsymbol{R}_{A}-\boldsymbol{r}\right|^{-1}-\left|\boldsymbol{R}_{\boldsymbol{B}}-\boldsymbol{r}\right|^{-1}+\left|\boldsymbol{R}_{A}-\boldsymbol{R}_{B}\right|^{-1}
$$

## LCAO - linear combination of atomic orbitals

- The wavefunction of a single electron is called a molecular orbital (MO)
- Approximate this as a linear combination of two atomic 1s orbitals

$\psi(\boldsymbol{r})=\alpha \psi_{A}(\boldsymbol{r})+\beta \psi_{B}(\boldsymbol{r})$ where
$\psi_{A}(\boldsymbol{r})=\pi^{-1 / 2} \exp \left(-\left|\boldsymbol{R}_{\boldsymbol{A}}-\boldsymbol{r}\right|\right) \quad$ 1s orbital
$\psi_{B}(\boldsymbol{r})=\pi^{-1 / 2} \exp \left(-\left|\boldsymbol{R}_{B}-\boldsymbol{r}\right|\right)$


## LCAO - linear combination of atomic orbitals

Two linear combinations are consistent with the symmetry of the potential

$$
\begin{array}{ll}
\psi_{u}(\boldsymbol{r})=C u\left(\psi_{A}(\boldsymbol{r})-\psi_{B}(\boldsymbol{r})\right) \quad \text { odd parity } \\
\psi_{g}(\boldsymbol{r})=C g\left(\psi_{A}(\boldsymbol{r})+\psi_{B}(\boldsymbol{r})\right) \quad \text { even parity }
\end{array}
$$

with the normalization condition
$1=\left\langle\psi_{u}(\boldsymbol{r}) \mid \psi_{u}(\boldsymbol{r})\right\rangle=\left\langle\psi_{g}(\boldsymbol{r}) \mid \psi_{g}(\boldsymbol{r})\right\rangle$
requiring $C_{u}=(2-2 S)^{-1 / 2}$ and $C_{g}=(2+2 S)^{-1 / 2}$
where $S=\left\langle\psi_{A}(\boldsymbol{r}) \mid \psi_{B}(\boldsymbol{r})\right\rangle$ is the "overlap integral" (which is a function of the internuclear separation, $R$, of course)

## Ritz variational principle

## Recall the Ritz variational principle:

If the ground state of any system has energy $\mathrm{E}_{0}$,
then $\langle\psi| \mathrm{H}|\psi\rangle \geq \mathrm{E}_{0}$ for any function $\psi$

So $\mathrm{E}_{0}$ must be smaller than the smaller of $\left\langle\psi_{\mathrm{u}}\right| \mathrm{H}\left|\psi_{\mathrm{u}}\right\rangle$ and $\left\langle\psi_{\mathrm{g}}\right| \mathrm{H}\left|\psi_{\mathrm{g}}\right\rangle$

## Ritz variational principle

## Results of the calculation (figure from Gasiorowicz)



## LCAO - linear combination of atomic orbitals

## Notes:

1) The even ("gerade") LCAO has the lowest energy:
$\psi_{g}(\boldsymbol{r})=C g\left(\psi_{A}(\boldsymbol{r})+\psi_{B}(\boldsymbol{r})\right)$
This is called a bonding orbital. The energy is the less than -13.6 eV except when $R$ is very small

The electron probability density $\left|\psi_{g}(\boldsymbol{r})\right|^{2}$ peaks in the midplane, where the electron can perform a bonding function
2) The odd ("ungerade") LCAO has an energy that increases monotonically as $R$ decreases

The electron density is zero in the midplane
... an antibonding orbital

## LCAO - linear combination of atomic orbitals

## Notes:

3) As the internuclear separation $R \rightarrow \infty$, both energies tend to the energy of a hydrogen atom: $E=-13.6 \mathrm{eV}$

The overlap integral tends to 0 , and the wavefunctions tend to
$\psi(\mathbf{r})=\left[\psi_{\mathrm{A}}(\mathbf{r}) \pm \psi_{\mathrm{B}}(\mathbf{r})\right] / \sqrt{ } 2$
$50 \%$ of finding electron on either separated atom
4) As $R \rightarrow 0$, electronic wavefunction for the exact solution tends to that of an $\mathrm{He}^{+}$ion (although our trial solution does not)
$E \rightarrow-54.4 e V+e^{2} / R$

# Nuclear and electronic contributions to the energy 



Fig. 20-1. Contributions to "nuclear potential." The Coulomb repulsion and the electronic energy combine to give a curve with a minimum at $R_{0}$.

## Structure of molecules

Next simplest example: $\mathrm{H}_{2}$

Two electrons can occupy the same MO. The Pauli Exclusion Principle requires that they have a wavefunction with an antisymmetric spin part
$\rightarrow$ total spin $=0$ (like in the ground state of He ).

## Structure of molecules

## Multielectron diatomic molecules

An electric field points along the internuclear axis and defines a special direction

The projection of angular momenta onto this special axis must be quantized

For an individual electron, $\mathrm{m}_{\epsilon}$ takes all integral values between - $\lceil$ and $\lceil$

Define $\lambda=0,1,2, . . \mid$ as $\left|m_{c}\right|$

## Structure of molecules

Multielectron diatomic molecules: orbital angular momentum

For an individual electron, $\mathrm{m}_{\ell}$ takes all integral values between - $\varsigma$ and $\varsigma$

Define $\lambda=0,1,2, . . \mid$ as $\left|m_{c}\right|$
An electron with $\lambda=0,1,2,3$ is called a $\sigma, \pi, \delta, \phi$ electron (by analogy with $s, p, d, f$ )

For a collection of electrons, the sum of the $\lambda$ is denoted $\Lambda$. States with $\Lambda=0,1,2,3 \ldots$ are denoted $\Sigma, \Pi, \Delta, \Phi$..

## Structure of molecules

Multielectron diatomic molecules: electronic spin
For a collection of electrons, the total spin is $S$, and its projection of the onto the internuclear axis is denoted $\Sigma$. The spin degeneracy is $2 S+1$, because $S$ takes integer spacing values between - $S$ and $S$

An electron state can then be characterized as
${ }^{2 \mathrm{~S}+1} \Lambda$ or ${ }^{2 \mathrm{~S}+1} \Lambda_{(\mathrm{u}, \mathrm{g})}$ for a homonuclear molecule
e.g. the ground state of $\mathrm{H}_{2}$ is a ${ }^{1} \Sigma_{\mathrm{g}}$ state the ground state of OH is a ${ }^{2} \Pi$ state

## Structure of molecules

Total electronic angular momentum
The projection of the total electronic angular momentum (spin plus orbital) onto the internuclear axis is $\Omega=\Sigma+\Lambda$

We write this in the form ${ }^{2 S+1} \Lambda_{\Omega}$
e.g. spin-orbit coupling splits the OH ground state into a ${ }^{2} \Pi_{3 / 2}$ state and a ${ }^{2} \Pi_{1 / 2}$ state

## Selection rules

Electronic transitions (dipole rules) :
$\Delta \Lambda=0, \pm 1$
$\Delta S=0$
$\Delta \Omega=0, \pm 1$ but $0 \rightarrow 0$ is forbidden
Homonuclear molecules ( $u \leftrightarrow g$ g required)

Example: $\mathrm{H}_{2}$ Lyman $\left(\mathrm{X}^{1} \Sigma_{\mathrm{g}} \rightarrow \mathrm{B}^{1} \Sigma_{\mathrm{u}}\right.$ ) and Werner $\left(\mathrm{X}^{1} \Sigma_{\mathrm{g}} \rightarrow \mathrm{C}^{1} \Pi_{\mathrm{u}}\right)$ bands

## Rovibrational splitting

- Perfect harmonic oscillator

$$
E_{v i b}=\hbar \omega(v+1 / 2)
$$

$v$ (non-negative integer) is the "vibrational quantum number

- Rigid rotor

$$
E_{\text {rot }}=\left(\hbar^{2} / 2 I\right) K(K+1)=B K(K+1)
$$

Higher order terms arise because of anharmonicity and centrifugal distortion

## Rovibrational splitting

## Nomenclature: transition from $J_{u} \rightarrow J_{l}$ is denoted

$$
\begin{array}{ll}
S\left(J_{l}\right) \text { for } \Delta J=J u-J_{l}=+2 \longleftarrow \\
R\left(J_{l}\right) \text { for } \Delta J=J u-J_{l}=+1 \\
Q\left(J_{l}\right) \text { for } \Delta J=J u-J_{l}=+0 \\
P\left(J_{l}\right) \text { for } \Delta J=J u-J_{l}=-1 \\
O\left(J_{l}\right) \text { for } \Delta J=J u-J_{l}=-2 \longleftarrow & \text { Quadrupole allowed transition } \\
\text { Dipole allowed transitions } \\
\text { Quadrupole allowed transition }
\end{array}
$$

Example: FUV H2 absorption spectra obtained towards the AGN PG 1211+143 from FUSE


Example: FUV H2 absorption spectra obtained towards the AGN PG 1211+143 from FUSE

## Zoom in to show rotational structure more clearly



## Other splittings, transitions

- Lambda doubling (e.g. OH):
- For $\Lambda \neq 0$, there are 2 states with a given value of $\Lambda$
- In a non-homonuclear molecule these can have slightly different energies
- Hyperfine splitting (also OH )
- Inversion transitions (e.g. $\mathrm{NH}_{3}$ )
- Torsional and bending modes (e.g. $\mathrm{H}_{2} \mathrm{CO}$ )


## References on molecular physics

- The classic text: Molecular spectra and molecular structure, by G. Herzberg, (4 volume series)
- Physics and Chemistry of the ISM, by Tielens: pages 21-45
- Rybicki and Lightman, Chapter 11
- Journals:
- Journal of Chemical Physics
- Journal of Physical Chemistry (A)
- Molecular Physics
- Journal of Quantitative Spectroscopy and Radiative Transfer
- Journal of Physics. B: Atomic, molecular, and optical physics


[^0]:    source: Swordy - U.Chicago)

