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Radiative Astrophysics

Instructor: David Neufeld (he/him/his — feel free to call me David)

Email: neufeld@jhu.edu o o .
Radiative Processes
Class meetings: MW 1:30 — 2:45 pm except 9/5 (Labor Day) in Astrophysics

Lecture notes will be posted on Canvas
Textbook: Radiative Processes in Astrophysics by Rybicki and Lightman
phy. Y RY g -

Available at the University bookstore or online (free, | think)
https://onlinelibrary.wiley.com/doi/book/10.1002/9783527618170

Course Requirements:

Homework: Problem sets will be handed out every week or two
Final exam: take home

Academic integrity:

The strength of the university depends on academic and personal integrity. In this course, you must
be honest and truthful. Ethical violations include cheating on exams, plagiarism, reuse of
assignments, improper use of the Internet and electronic devices, unauthorized collaboration,
alteration of graded assignments, forgery and falsification, lying, facilitating academic dishonesty,
and unfair competition.

IF YOU EVER HAVE ANY QUESTION ABOUT ANYTHING RELATED TO ACADEMIC INTEGRITY, ASK ME


https://onlinelibrary.wiley.com/doi/book/10.1002/9783527618170

Learning goals

Almost everything we know about the astrophysical Universe comes
from observing electromagnetic radiation.

(Exceptions: some spacecraft investigations of the solar system;
gravitational wave astrophysics)

The goals of this course are to

1) Learn about those physical processes that involve emission,
absorption, and scattering of electromagnetic radiation

2) Appreciate how radiative processes both affect the nature of
astrophysical objects and provide us with information about the
astrophysical Universe
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Overall course structure

Part 1: Macroscopic description of radiation and of its propagation
(R&L, Chapter 1)

Part 2: Review and Extension of EM - the interaction of radiation with a point
charge
(R&L, Chapters 2 - 4)

Part 3: Radiative Processes in Astrophysical Gas: lonized Media
Bremsstrahlung, synchrotron radiation, Compton scattering, plasma effects
(R&L, Chapters 5 - 8)

Part 4: Radiative Processes in Astrophysical Gas: Atomic and Molecular Media
(R&L, Chapters 9 -11)



Radiative Astrophysics: schedule

Mon Aug 29
Wed Aug 31
Mon Sep 5

Wed Sep 7

Mon Sep 12
Wed Sep 14
Mon Sep 19
Wed Sep 21
Mon Sep 26
Wed Sep 28
Mon Oct 3

Wed Oct 5

Mon Oct 10
Wed Oct 12

Introduction, Specific Intensity & Moments

Radiative Transfer Equation & Moments
Labor Day: NO CLASS

Blackbody and Thermal Radiation
Einstein Coefficients

Scattering

Radiative diffusion

Maxwell's Eqns., Fourier Transforms
Polarization

EM Potentials and the L-W Potentials
Radiation fields, Dipole approx.
Thomson Scattering, Harmonic Oscillator
Lorentz Transformations & 4-vectors

Emission from Relativistic Particles

R&L1.1-1.3
R&L 1.4

R&L 1.5
R&L 1.6
R&L 1.7
R&L 1.8
R&L2.1-2.3
R&L 2.4
R&L 2.5, 3.1
R&L 3.2
R&L3.4,3.6
R&L 4.1, 4.2
R&L 4.8



Radiative Astrophysics: schedule

14 Mon Oct 17 Bremsstrahlung | R&L 5
15 Wed Oct 19 Bremsstrahlung Il R&L 5
16 Mon Oct 24 Bremsstrahlung Ill R&L 5
17 Wed Oct 26 Synchrotron Radiation | R&L 6
18 Mon Oct 31 Synchrotron Radiation |l R&L 6
19 Wed Nov 2 Synchrotron Radiation Ill / Compton Scattering | R&L 6
20 Mon Nov 7 Compton Scattering | R&L 7
21 Wed Nov 9 Compton Scattering Il R&L 7
22 Mon Nov 14  Plasma Effects R&L 8
23 Wed Nov 16 Atoms R&L 9

Mon Nov 21  Thanksgiving break: NO CLASS

Wed Nov 23  Thanksgiving break: NO CLASS
24 Mon Nov 28  Atoms R&L 9
25 Wed Nov 30  Radiative transitions R&L 10
26 Mon Dec 5 Molecules R&L 11



Lecture 1

Macroscopic description of radiation

Goal: understand the definitions of, and differences
between

Radiative flux
Specific intensity

READING: R&L1.1-1.3



Radiative flux

For an element of area, dA, the radiative flux (power per unit area) is defined by

e i
 dAdt

dA
and has units: erg cm=2s71 (c.g.s.) =103 W m=2 (Sl)
Note that the flux passing through a given element depends on its orientation

For an isotropic source of luminosity (power) L = dE/dt, conservation of energy
implies

Sphere of radius r

L

F =
412




Monochromatic flux

The flux carried by radiation in the frequency range vto v+ dv can be written
F,dv

where
dE

E =
V' dAdtdv

is the monochromatic flux

The c.g.s unit is erg cm™2 st Hz%, and a commonly-used unit in astronomy is
the Jansky (Jy)

1Jly=102ergcm2?stHz?! =102°W m—=2Hz?
Of course, we can also use wavelength in place of frequency and compute

. dE
AT dAdtdA

where F; = E, |dv/dA| =v?E, / cor AF, = VE,




VE,

If you plot VF, versus Inv or InA, the area under the curve is the total flux

Example: Galaxy SED models from Hayward and Smith (2015)
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Rest Wavelength / um

Two peaks at 1 and 100 micron indicate that stars and dust radiate roughly equal
amounts of energy in this model

For a blackbody, F = 1.36 [VF,]peak



Specific intensity

Flux measures the total amount of radiation in all directions passing through an

element of area M

dA
We can also think about a single ray (in the normal direction) and define the specific

intensity

L dE
Y dAdtdvdQ

R&L Figure 1.2 Geometry for normally incident rays.

with units ergcm=2 st Hz “1sr?!

This defines the amount of energy within a cone of (infinitesimal) solid angle d{)



Relationship between flux and specific intensity

The flux can be considered an angular moment of the specific intensity, obtained
from an integral over all directions

%
E,dA = fIVdA'dQ

where dA' = cos@ dA is the projected area of the element of area

E, = [ I,cos8dQ

Convenient notation: 1= cos@ = dQ = |sinfdfd¢|=|dudg|

21 1
F, = J d¢ j Lpdu
0 -1

Question 1 (in pairs; respond via Zoom poll): what is the flux for an
isotropic radiation field (I,, the same in all directions)?



Relationship between flux and specific intensity

If I, is independent of xand ¢, then

21T 1
F, = f d¢ f Lypdu
0 -1

=2nl, [17/2] 5 =0

Of course: the energy flow from top to bottom is exactly balanced by the
flow from bottom to top

If uniformly bright radiation is incident over just one hemisphere (x> 0)
then E, = 2ml, [1*/2]} =ml,
Example: small window in a hot kiln

This is a useful result that we’ll return to later




Lecture 2

Angular moments of specific intensity, radiative transfer

Goals: understand the significance of

Momentum flux / pressure
Mean intensity and energy density
Angular moments

Constancy of specific intensity along a ray (in vacuo), and the
inverse square law for flux

READING: R&L 1.4, 1.5



Momentum flux

So far, we have been considering the flow of energy. But photons also
carry momentum of magnitude E/c

Momentum is, of course, is a vector, and the normal component of
momentum is

E/c cos@=Eu/c

The momentum flux is therefore

2T 1
Jyplc) cos@0d= [ dg [ (I,/c) ,UT du
This quantity is proportional to the second angular moment of the
intensity (whereas the flux is proportional to the first angular moment).

This is the pressure (associated with radiation at frequency v)

Question 1: for isotropic radiation, with intensity, I,,, what is the pressure?



Momentum flux

So far, we have been considering the flow of energy. But photons also
carry momentum of magnitude E/c

Momentum is, of course, is a vector, and the normal component of
momentum is

E/c cos@=Eu/c

The momentum flux is therefore

[Uyplc) cosOdQ = [" dg [ (1,/0) uT du

This quantity is proportional to the second angular moment of the
intensity (whereas the flux is proportional to the first angular moment).
This is the pressure (associated with radiation at frequency v)

Question 1: for isotropic radiation, with intensity, I,,, what is the pressure?
Answer: p, = 2nl, [12/3]2 /c = 4nl,/3c



Mean intensity

The energy flux and pressure are proportional to the first and second angular
moments. What about the zeroth angular moment? This is just the mean (angle-
averaged) intensity

21
Jy = E d¢f L, du

...note the 1/(4m)

This has the same units as specific intensity, and is proportional to the energy
density, u,, of radiation at frequency v )
a82 ¢

Element of energy in cylinder at right M / )
|
\

dE = I, dAdtdvd(Q) | N
= 1,dA(ds/c)dvd() I~ t

=1 vdVdVd-Q/ C R&L Figure 1.4 Electromagnetic energy in a cylinder.

So, the element of energy density is given by du,,= dE/dV=1,dvd(}/c
Integrating over solid angle, we find
u,=dE/dV = 4nJ,/c



Angular moments of [,

To make things more elegant, the 1/(4m) is typically used for all angular
moments with the definitions

J, = % [1,dQ “Mean intensity” cu, /Am
H, = ﬁ [I,cos0dQ  “Eddington flux” F, /AT
K, = ﬁ [ I, cos20dQ  “Second moment” cp, /AT

For isotropic radiation,
H,=0

K, = %]v =>» pressure =§ energy density

(relativistic ideal gas)



Tensor representation

R&L treat the angular moments as scalars that are defined for an element

of area in a specific orientation.

A more sophisticated analysis treats radiative flux (4mH,,) as a vector and
pressure (4K, /c) as a 2"9-rank tensor

We define H, =— [, kdQ andK, =_- [I,kkdQ
where k is a unit directional vector.

In Cartesian coordinates k = (1};, 7(;, ]’EZ)
= (sinfcosg, sin@sing, cosH)

So H,, has 3 components, H,= %t [ I, kd9,
wherei=1, 2,3 forx, y, and z 0

and K, has 9 components, K= %T | L, k; kdQ

\‘w)

d(}



Tensor representation

With these definitions, the radiative flux, F,, = 4tH,, is a vector that
shows the direction in which the radiation is travelling

If we define a vector element of area dA4, where dAis pointing in the
normal direction, energy passes through that area at a rate F,,.dA

dA |0 F
v F,.dA=F,dAcosd

We can also write this using the “summation convention” in which we sum

- dE
over repeated indices: T F; dA;

The pressure, p, = 4K, /c is a 2"%-rank tensor, and the rate at which
J-momentum passes through the element is the j-component of p,; d4,



Information content

Successive angular moments provide increasing amounts of information
about the angular distribution of the radiation. This is similar to a spherical
harmonics expansion, in which we write

£(60,) = z z aimYim (6, 6)

=0 m=-1

The coefficients a;,, provide successive finer detail about the angular
distribution as [ gets larger and larger Angular Scale

o 20 k o . o
6000 L 9|0 | 0|5 0]2

E TT Power Spectrum
5000 - ¥ WMAP Data 3

Aside: the spherical harmonics are g o
related to the power spectrum gi 2000 b

(e.g. of the CMB), by the relation =
[ = 2000

1
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Information content

In a spherical harmonics expansion:
There is one term with [ = 0, corresponding to the one
component of [,

There are 3 terms with [ = 1, corresponding to the 3
components of H,,

There are 5 terms with [ = 2, but there are 9 components of K,

Question 2: but how many new pieces of information are
provided by K,7?



Information content

There are only five new pieces of information

Note first that

1 ~ = : : .
K= yy [, k; k;dQ is symmetric, so there are only six independent
components

Still, we haven’t gotten to the five terms for [ = 2
There is one additional relationship, involving the trace of K

What is the trace of K?

1 ~ ~ ~
Tr(Ky) =K+ K, + K, = pym [, (kz+ k32, +k2)d =],
So this reduces the new information content by 1

General result: the first g angular moments provide the same directional
information as the spherical harmonics expansionupto /=g



Radiative transfer: constancy of I, along a ray

In a vacuum, and in steady-state, the specific intensity is constant along a ray

Proof:

R&L Figure 1.5 Constancy of intensity along rays.

Consider the radiant energy that passes through both hoops shown above
dE = I,dA{dtdvd), = I,dA,dtdvd ),

where d(); , = dA; ,/R*is the solid angle subtended by hoop 1,2 as
viewed from hoop 2,1

Hence dAldQZ = dAde]_ -> 11 = 12
If there’s a time dependence, then I,(t + R/c) = 1,(t)

How is this consistent with the inverse square law for flux?



Radiative transfer: constancy of I, along a ray

Consider now a uniformly bright (“Lambertian” sphere) that is viewed from a
distance r

R&L Figure 1.6 Flux from a uniformly bright sphere.

The observed fluxis F = fozn d¢ fclosec uB du

= 2mB[1? /2] ¢os 9, = TB(1 — cos? 6;) = B sin® 6,
The intensity B does not depend on r, but the angle 6. does!
sin, =R/r = F =nB (R/r)*

Constant intensity along a ray = inverse square law for flux



Lecture 3

Radiative transfer

Goals: understand

Radiative transfer with emission and absorption

Optical depth and the source function

The radiative transfer equation as a “relaxation equation”
Angular moments of the transfer equation
Thermodynamics of blackbody radiation

READING: R&L 1.5



Emission

We now want to consider what happens when radiation travels through a medium
capable of emitting and absorbing radiation

Define the spontaneous emission coefficient as the power emitted per unit volume
per unit solid angle
(units: erg cm=3s1sr-1)

. dE
) = dvdtda
and the monochromatic emission coefficient in a similar way per unit bandwidth
dE

Jv = dVdtdQdu (units: ergcm=3s-1sr1 Hz 1)
In travelling a distance ds along a ray, a beam of cross section dA travels through a
volume dV/=dAds, and the intensity therefore increases by dI,, = j,ds
Other related quantity often used in stellar astrophysics:

€, = total monochromatic power per unit mass (erg stg=1 Hz!) = 4mj,/p



Absorption

Absorption removes power from a ray in proportion to the intensity that is already present
Define absorption coefficient, a,,, by the equation

dl,
a5 T W
so a,, has units cm™

Microscopic description: suppose we have n absorbing particles per unit volume, each of
which presents a cross-section g, to radiation at frequency v

Number of particles in cylinder =n dA ds

dA dQ
Total cross-section presented = n dA ds g, 17
(a)

Fraction of radiation removed = n ds g, Figure 1.7a  Ray passing through a medium of absorbers.
(covering factor in lower panel at right) i

This fraction must equal —=dI,,/ I, = a,ds a,

(b}

which implies a,, = n g,
(check dimensions: cm=t = cm=3 cm? as required)

Figure 1.7b  Cross sectional view of 7a.



Sign conventions and stimulated emission

The absorption coefficient, ay, is defined to be positive if the medium removes
radiation in proportion to the amount already present

As we’ll see later, there is an opposite process known as stimulated emission which
adds radiation in proportion to the amount already present. This makes a negative
contribution to the absorption coefficient.

Under ordinary circumstances, absorption beats stimulated emission and the
combined effect yields a positive value of a,, leading to an exponential decay in
the intensity:
dl,
E = —ay Iv <0
But under special circumstances sometimes achieved in astrophysical media,
stimulated emission can dominate absorption.

Then a,, is negative and the intensity can increase exponentially (e.g. in maser =
“microwave amplification by the stimulated emission of radiation”)

dl,

E:—CZUIU>O



Radiative transfer equation and optical depth

With both processes present, our equation becomes
dl, |
_— — a
ds Jv vy

Pure emission (a,= 0) solution:  I,(s) = I,,(0) + f;jv(s’)ds’
Pure absorption (j,= 0) solution: I,,(s) = I,(0) exp|— f; a,(s")ds']

With both processes present, it is convenient to define the “optical depth,”
Ty = f; a,(s")ds’. This is a dimensionless quantity.

The optical depth measures distance along the ray in units of the
mean-free-path (i.e. the mean distance travelled before a photon gets
absorbed)

lmfp =1/a,



Radiative transfer equation and source function

Noting that a,ds = dt,,, we may divide the transfer equation by «,, to
obtain

dIU jU

dt,

We introduce the source function S, = j,/a, to obtain

dl, _ |
dTU_ 1)) 1))

This is a relaxation equation, in that the intensity is relaxing towards S, as it
moves along the ray (although it may never reach S,)

In other words, if [,,< S, it will increase whereas if I,,> S, it will decrease
Ty ! ’ ’
The formal solutionis  1,(7,)= 1.,(0)3_7"*”[ e~ (w7 S (1) dr,.
0

In an optically-thick medium with t,>> 1, the first term is very small and
there is no “memory” of I,,(0). I, gets very close to the local source function



Angular moments of the transfer equation

So far we’ve written the radiative transfer equation for a single ray

an, .
E=]v_av1v

where s is the distance along that ray
We can easily write this for all rays at once

k. VIU(E) = Ju — Qy IU(E)

And add in time dependence if needed (rarely)

191, . .
EE + kVIv(k) = Ju — Ay Iv(k)

Later: look back at Lecture 2 and convince yourself | did this right



Angular moments of the transfer equation

Let’s take angular moments of this equation, i.e. multiply by 4" and integrate
d()

I, ~
ot — +k.VI,(k) = j, —a, L,k

Zeroth moment (n = 0):

41T a]v
¢ ot

where I've assumed that «,, is isotropic and noted

+V.F, = 4nj, — 4nay, |,

- - . dI, d [ - 0F,;
jk.VIv(k)dQ =jki—AdQ =—Afki1v dQ) =——="V.F,
ok; ok; ok;

Above, we are using the summation convention in which we sum over
repeated indices, i.e. we abbreviate }}; x; x; as x; x;

Question: what physical principle does this differential equation encapsulate?
Explain your answer briefly.



Angular moments of the transfer equation

The zeroth moment of the transfer equation is a statement of energy
conservation

Time derivative of the density Divergence of the flux
of a conserved quantity of that quantity

\ /
— ATay Jy

Rate of production / \

per unit volume (“sources”

Rate of destruction
per unit volume (“sinks”)



Angular moments of the transfer equation

Let’s take angular moments of this equation, i.e. multiply by #"* and
integrate d{)

oL, . _
EE-I_ kVIv(k) = Juv — Ay Iv(k)

First moment (n = 1):

10F,
c Ot

+4nV.K,=0—qa, F,
where we note that

I _ I, . OKy;
Jk.VIU(k) kdQ =Jki a—f(vkjdﬂ = 41 ai’” = 41 V.K,

[

Divergence of a 2"d-rank tensor is a vector
Question: what physical principle does this differential equation
encapsulate? Explain your answer briefly.



Angular moments of the transfer equation

Dividing through by ¢, we see that first moment of the transfer equation is
a statement of momentum conservation

Time derivative of the Divergence of the momentum flux

momentum density \ /

1 JF, B
+V.p,=—a,F,/c

c2 ot /

Rate of “destruction” per unit volume
= force per unit volume exerted by the
radiation field on the gas




Blackbody radiation: thermodynamic considerations

Blackbody radiation is radiation in thermal equilibrium

Allow an isolated enclosure to reach TE, i.e. a state of
maximum entropy

Theorem: I, is a universal function, of v and T, which is
independent of direction and the nature of the enclosure
(shape, material...). This we call the Planck function, B, (T)



Blackbody radiation: thermodynamic considerations

Proof: Join the enclosure to another enclosure at the same temperature,
with a filter that reflects all radiation except at frequency v. Radiation at
frequency v can pass between the enclosures through a hole.

_J
1

Figure 1.8 Two containers at temperature T, separated by a filter. (R&L)

Unless I, = I’ at all frequencies (see Figure) and angles, energy could pass
from one enclosure to the other, violating the 2"® Law of Thermodynamics



Blackbody radiation: thermodynamic considerations

Corollary: The universal function, B, must be a monotonically increasing
function of T at every frequency

r T'>T

Two containers at different temperatures

Unless I, = I, heat could pass from the cooler container (left) to the hotter,
violating the 2" Law of Thermodynamics. (Condition must be satisfied at
every frequency)



Kirchhoff’s Law for material in TE

Suppose we have a blob of material inside the enclosure (in
equilibrium, so at temperature, T)

In thermal equilibrium, I, = B,(T), so

dl,
O=E=SU_IU=SU_BU
=> S, =B,(T)inTE, orj, =a, B,(T)

This is Kirchhoff’s Law, which relates the absorption and emission
coefficients in TE



Kirchhoff’s Law

Kirchhoff’s Law applies to any material, under TE conditions. The
latter means that the material at temperature T is surrounded by
blackbody radiation at the same temperature.

However, in many circumstances, the material properties are not
affected by the radiation that it is exposed to. In that case, Kirchhoff’s
Law may still apply, and the material is said to be in local
thermodynamic equilibrium (LTE)

Example: glass rod heated with a
Bunsen burner (but not inside a
furnace). To a good approximation,

Jv =0y By (T)

Kirchhoff’s law implies that good absorbers
are good emitters, and poor absorbers are
poor emitters. This is why stainless steel
makes a good teapot material (low absorptivity in the thermal IR)




Lecture 4

Blackbody radiation, Einstein coefficients

Goals: understand

The statistical mechanics of blackbody radiation
The Planck function

The Einstein coefficients

The equations of statistical equilibrium

Alternative textbook:
The Physics of Astrophysics Volume 1: Radiation by Frank Shu
ISBN: 978-1891389764



Statistical mechanics and the Planck function

To derive the Planck function, B, (T), we start with four basic
principles concerning photons

1) Each photon has energy hv

2) There’s a finite density of quantum states in phase space,
dN,/ (d®p d3x) = 1/h3

When we account for the fact that photons have spin =1 and two
possible helicities, this becomes 2/h3

3) Since photons are bosons, there is no limit on the number of
photons that can occupy a given quantum state. This number is called
the photon occupation number,

4) In thermal equilibrium, the probability of finding n photons in any
given state is proportional to the Boltzmann factor
exp (—E, /kT), where E, =nhv



Statistical mechanics: photon occupation number, N

The probability that a given quantum state contains n photons is
therefore

e—nhv/kT

Pr(n) =

Z

where the “partition function,” Z, is the quantity needed to normalize
the probabilities so they sum to unity

7 = z e Nhv/KT — 1
1 — e—hV/KT

n=0

The mean occupation number is therefore

co

N = ZnPr(‘n) =l2ne‘"’“’/kT _1.dz
Z Z hv
n=0 n=0 (kT)

— e~hv/kTY2 = ohv/kT _ 1



Energy density and Planck function

We’re now ready to compute the energy density of radiation at
frequency v to v+dv

U, dv =}w (hz_s) ‘J{fa‘?p = hv (%) N 4np?dp

Energy per photon Density of photons in phase space

The momentum of a photogl has magnitude p = hv/c, so this
becomes u,dv = 8mhv (%) N dv

-> I, = cu, /4= (Zhv ) N

C2
2hv3 1
> B = (") e



The Cosmic Microwave Background

The CMB provides a beautiful example of a Planck function, and
is the most accurately measured in any experiment

Intensity [MJy/sr]

400

350

300

250

200

150

100

50

Cosmic microwave background spectrum (from COBE)

T T
COBE data F——
Black body spectrum

7=2.72548 + 0.00057 K
(Fixsen et al. 2009, Ap)J) |

6 8 10 12 14 16 18 20 22
Frequency [1/cm] v/c



Significance of energy quantization

Note that we cannot derive the Planck function without
discussing photons, i.e. the fact that radiant energy at frequency
v is quantized in multiples of hv

Without this (i.e. in the limit h — 0), we obtain the “classical
result,” which diverges in the limit of large v (the “ultraviolet
catastrophe”)

B — 2hv’ 1 . (2kTv®\ _ 2kT

v c2 ) ehv/kT_1 ° c2 12
This limit does indeed apply in the limit of low frequency
(hv/kT « 1) and is called the Rayleigh-Jeans Law

In the opposite limit, B, is well approximated by hv e /KT

(“Wien’s Law”)



Properties of the Planck function: derivatives

B — 2hv® 1 B, — 2hc? 1
v =\ o2 Johvrr—; O A= \"5 ) ghe/akT_{

Clearly 0B,/dT > 0 for all T and v, as required by the Second
Law of Thermodynamics

Solving for dB,,/0v = 0 (yields a transcendental eqn.), we may
determine where the Planck function peaks

vpeak_2-81k
T  h

= 58.8 GHz/K

Solving for dB;/0dA = 0, we get the Wien displacement law

497hc
ApeakT = P 0.290 cm K




Wien displacement law

N e N

Pluto

Earth

0.1 Mg main sequence star
Sun

10 Mg main sequence star

Youngest white dwarfs

2.73 K
44 K
287 K
2900 K
5800 K
20000 K
250,000 K

1.1 mm
66 um
10 um
1.0 um
500 nm (5000 A)
145 nm (1450 A)
12 nm (120 A)

mm-wave
Far-IR
Mid-IR
Near-IR
Visible
Far-Uv

Extreme UV / soft X-ray



Properties of the Planck function: integrals

2hv3 1
By = ( c? )e’“’/kT —1

Integrating over frequency with the change of variable
x = hv/kT, we obtain

20\ kT x3
B=ijd”=(c—z)(7) fex_ldx

0 0
=) 5
— \¢2 h 15
For blackbody radiation leaving a surface isotropically, the
fluxis F = B = o4, T* (the “Stefan-Boltzmann Law”)

where o, = (i—?) (%)4 (?—Z) =5.67 X 10 erg cm2s 1 K*



Properties of the Planck function: integrals

The total energy density is

_AmB 404, T*

U= = aT*

C C

where 2a =7.57 x 1071 erg cm=3 K* is called the
“radiation constant”

The pressure associated with blackbody radiation can
dominate in the interiors of high-mass stars



The Einstein coefficients

We consider an atom or molecule with two states, 1 and 2

Level 2, g, . .
! ) Spontaneous emission

AL = hyg
l

EmMission ——3m - Absorption

A,,= transition probability per unit time
for spontaneous emission (sec ‘).

Level 1, g,

R&L Figure 1.12a Emission and absorption from a two level atom. Atoms per unit volume in state 2

A X hyo /
o) b= . n,Ay6(v)
——* i‘—Av

Line profile function (units Hz1),
normalized such that

Yo

o0
Figure 1.12b  Line profile for 12a. f ¢( v)dv=1.
0

¢ (v) is not quite a delta function, because various processes (natural linewidth, Doppler
motions) give the line a finite width, but typically Av < v,



The Einstein coefficients

We consider an atom or molecule with two states, 1 and 2

Level 2, L

e Absorption
Emil;smn — < Absorption
B,J = transition probability
RGL i 130 Emision and absrio o ot st o per unit time for absorption

4
oyl

| i=[ "1 o(v)dy
0

Yo

Figure 1.12b Line profile for 12a.

If ], varies slowly with v and Av < v, then we can treat ¢(v) as a delta
function and write | = J, (vo)



The Einstein coefficients

We consider an atom or molecule with two states, 1 and 2

Level 2, L

T

Ak < hyg
l

Stimulated emission

EmMission ——3m - Absorption

B,,J = transition probability per unit time
for stimulated emission.

! Level 1, g,
R&L Figure 1.12a Emission and absorption from a two level atom.

A The process is the reverse of absorption

&)

—{[\[a Unlike spontaneous emission, its rate is
proportional to the radiation field

" As we’ll see (and as Einstein found), this
Figure 1126 Line profile for 12a. process has to be present on
thermodynamic grounds



Equation of statistical equilbrium

In steady-state, the rate of transitions from 2 to 1 will be
exactly balanced by the rate from 1 to 2

Ny Ay + ny By ] =ny BiyJ

which implies _ A,/ Ba
T /(B /B - |

Now, suppose we are in thermal equilibrium

Then | = B, (Planck function)

and M &exp(—E/KT) __ & . oop k) (BOltzmann

n,  grexp[ —(E+hw)/kT] 8 factor)




Equation of statistical equilibrium

Given the Boltzmann factor for n,/n;, we then have

A2I/B2l

J =
(8,B\2/8:B3)) exp(hvy/kT)—1

_ . 2hv3 1
If / is to equal the Planck function, o2 ) ghv/kT_q
we require 81B1>= 8,83,

2hv’

C



Emission and absorption coefficients

- hy,
As noted previously, J,= . n,Ay6(v)

This is the rate at which energy is added by spontaneous emission
(per unit bandwidth, per unit volume, per unit solid angle)

The combined effect of absorption and stimulated emission is to
remove energy at a rate proportional to the mean intensity,

[ny B, —n, By 1 hv ¢(v) J, (per unit bandwidth, per unit
volume)

This has to equal [ a,, I, dQ = 47a, J,

hv

S0y = [n1 Biz —ny Byy 1 (v)



The source function

Given these expressions for &y, and j,,, and using the relationship
between the Einstein coefficients, we may compute the source
function

S = Jv _ Ny Az, _ 2h® 4
v T — 2 g
Qy Ny Bz =Ny Bpq e
ey n.g
In thermal equilibrium, ﬁ = /KT (Boltzmann factor)
291

and we recover the Kirchhoff’s Law, S,= B,

The condition for “local thermodynamic equilibrium” (LTE) is clearly
just that n,/ n,is given by the Boltzmann factor

This typically holds at sufficiently high density, regardless of whether
Jv= By

Example: the surface of the Sun, where J,,~ %Bv butny/ n,is
typically close to LTE



Lecture 5

Goals: understand

Different types of “temperature”
Effects of collisional excitation
The kinetic and excitation temperatures

Maser amplification and its astrophysical applications



The excitation temperature

Regardless of whether a system is in LTE, we can always
define some temperature, such that

ng, — o /kTex
n,9,

We call this the “excitation temperature,” Toy

The condition for LTE is then that T, equals the
temperature of the gas

Either way, S, = B, (Tay)



Other temperatures astronomers like to define

We can also define several other temperatures that are equal to each
other in TE but could differ in other circumstances. These definitions are
used regardless of whether we are in TE

Kinetic temperature, T,;,, characterizes the distribution of particle
velocities (Maxwell-Boltzmann distribution at temperature T;;,)

Radiation temperature, T,,4(v) characterizes the mean intensity through
the definitionJ, =B, (T,,4)

Brightness temperature, T, (v), characterizes the specific intensity along a
given ray through the definition /, = B, (T;)

Rayleigh-Jeans brightness temperature, T;;, characterizes the specific
intensity along a given ray through the definition |, = 2kT; 5, /A7 . This is
used whether or not the RJ limit applies.



Other temperatures

Effective temperature, T4 is @ measure of total (i.e. frequency
integrated) flux, through the definition F = o5 T ;")

This is widely used in describing stars, for which the luminosity
may be written L = 4mR* 0T

In LTE, T, = T}, =2 Kirchhoff’s Law holds since
51/: Bv(Tex) = Bv(Tkin)

In complete thermal equilibrium, T, = T,;, = T,,4

For isotropic radiation T (along any ray) =T, 4

But note that T ;, differs from T; unless hv<< kT



Effect of collisions on the excitation temperature

With radiative processes alone, we had

Ny Ay + Ny Byy /=11 By5J

But inelastic/superelastic collisions with another particle
can also induce a transition from one state to another

These are characterized by a collision rate that depends
on the kinetic temperature

C1, = rate of inelastic collisions from state 1 to 2
C,1 = rate of superelastic collisions from state 2to 1

We now have

Ny, Cyy + Ny Ayr + Ny By J = ny Cip+ ny By J



Effect of collisions on the excitation temperature

We now have

n Ci»+ Bi,]
&exp(—hv/kTeX) =2 = 12 12) =
g1 ny  Cyp+ Az1+ BygJ

Let’s consider first the case where collisions are absent (say because the
density is very low) and we are in thermal equilibrium at temperature, T

In thermal equilibrium at temperature T, we know that radiative processes
alone give us

g2 B2 ]
== —hv/kT) = -
g1 exp( U/ ) Az1+ Byq ]

The right hand side depends only on the radiation field, so this must mean

B2 ] g2
- = 2= exp(—hv/kT
A1+ Bz1] 01 p( / rad)

whether or not we are in TE



Effect of collisions on the excitation temperature

Now suppose we are in TE and collisions are significant

) Ci2+ B1o ]
If 22 exp(—hv/kT) is to equal 12° 12 then we must also have
91 p( / ) G C21+ A1+ Bz ]

Ci2 ')
— = —exp(—hv/kT
Cr - as p(—hv/kT)

Since collisions are controlled by the kinetic temperature of the gas, this

Ci2 9>

must mean —= = P exp(—hv/kT,;,) whether or not we are in TE
21 1

In general, T,;, # T,.4, then

ng  Cip+ BiaJ
ny Cy+ Ay + BoiJ

will lie somewhere between g—zexp(—hv/kam) and g—zexp(—hv/kTrad)
1 1



“Critical density”

The collision rates, C,; and C,,, are proportional to the volume density of
particles, n, with which our atom can collide, e.g. C,; = q,;n

We define the critical density, n., = A,,/q,;, as the particle density at which
C,;isequalto A,

In the high-density limit, n >> n_, the collisional terms dominate and

n Ci2+ B12 ] C . . .
22— 272120 12 _ T2 gyn hy/kT,,) which implies Ty = Tyin
ny  Cz1+ A1+ B21 ] C21 91

In the low-density limit, n << n_, the radiative terms dominate and

ny Ci2+ B12] Bia g2 ST .
—= = - ~ = =2 exp(—hv/kT..q) Which implies T, =
nq Cy1+ A1+ Ba1] A1+ By1 T g1 p( / rad) P ex rad

You’ll work this out more fully in the homework



Maser emission

Under some conditions actually attained in the

interstellar gas, certain transitions of specific molecules
can have a “population inversion” in which

This implies a negative excitation temperature and a
negative absorption coefficient 2 [nl B,, —ny, By lo®)

Leading to the exponential amplification of radiation in

: dl .
accord with d—;’ = j, — ay I,



Maser emission

Most notable example: the 22 GHz transition of H,0

2000 . T T
S 74 -4.77
- 2.74 - A&
- = :
E = I
|
1500 | I .
N | I |
II I |
g, P -3.74 |
c Sl : 4.1 / |
'S | _ | |
2 | -4.37_, -4.02 | |
¥ 1000f ! ! | -
£ | | |
i‘ | | |
w | |
-3.21 '
3.52 [
—73.12__-2.88 | |
. | !
500 I | : .
| | |
- . ! NI
L °| ol O,
- . ~ 0| =,
0 - - 1 1 N! 1 gl 1 %| 1
0 2 4 6 8 10

Neufeld et al. (2021) ApJ



Maser emission

Most notable example: the 22 GHz transition of H,0

In warm environments (T,;, > 300 — 400 K), we see small
spots of maser radiation with brightness temperatures
Tg up to 1014 K

A fascinating phenomenon in its own right, but also a
fantastic “tool”, because emission that bright can be
observed using the techniques of radio interferometry



VLBI (Very Long Baseline Interferometry)

100 m single dish (e.g. GBT)

Angular resolution is approximately

6~ A/D=1.4x10"* rad = 28"
(only slightly better than human eye, for which 6~ 407)

R. Prestage, NRAO Green Bank

Interferometer (e.g. VLA)
0~ A/D. .. =4.3x10"7 rad = 0.09"

Maximum separation (not individual dish size) = 36 km
(only slightly better than HST, for which &~ 0.05”)

Very Long Baseline Interferometer
0~ A/D,.,=1.4x107° rad = 0.00028" = 280 pas

Maximum separation (not individual dish size) up to 10,000 km




Maser emission: example application

VLBI observations of the 22 GHz water maser towards the
active galaxy NGC 4258 reveal a warped circumnuclear disk
viewed nearly edge-on

y)
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- -1
LOS Velocity (km s-1) Herrnstein et al. 1999



Maser emission: example application

Each maser spot is tagged with its Doppler velocity along the
line-of-sight, revealing a disk in Keplerian rotation

R I I L B B T L L L L A A I

1'500_ _ C —P T T il T - e h T T T T T I L T T
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| ] | :
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€ = s \‘ ! ]
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= L _ @
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[
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7 5| .
= i ]
L 850 \ 1 I W
0 — i ~— e
L 500+ ¥ = gl L J GRS | | 1 2 1 1 | 1 : ! 1 i '
L i ] ] 5 0 -5
| 450} S | RA offset (mas)
=
) IS P i
sop e e eV Central mass = 3.6 x 107 Mgwithin 0.13 pc

CEFoEdEat A RdARlTaag =» black hole, not star cluster

Distance along major axis {mas)

Miyoshi et al. 1993



Maser emission: example application

Over a period of years, the Doppler motions associated with
the radially beamed spots are observed to march redward

Acceleration, a = v3/r = 9.5 km/s per yr

560 e e

_ g They measured a and v, so they could
520 | / ] determine r

/ * This defines that actual physical scale of the
ago [ % . system (in pc), not the angular size

] ///// ] We have a standard ruler for something

LOS velocity (km s™)
I

440 Lt s e L s : that is spatially-resolved, so we have a
1994 19% 1998 e %% distance indicator, d = r/6
Herrnstein et al. 1999 Latest determination (Pesce et al 2020):

d=7.58 +0.11 Mpc (1.5% uncertainty)



Other applications include parallax measurements

Distance to Galactic Center

Y (kpe)

Ro=8150 = 150 pc

(but not as good as a determination
using IR interferometry of stars)

Ro = 8178 # 13, + 22, pC

from the GRAVITY collaboration (2019)

Structure of the Milky Way, based on trigonometric parallaxes from water
and methanol masers in regions of star formation (Reid et al. 2019: BeSSel

and VERA surveys)



Lecture 6

Scattering

Goals: understand

Scattering
Radiative transfer with scattering

The radiative diffusion approximation

READING: R&L 1.6, 1.7



Scattering

There’s another important radiative process that we have not yet
considered: the scattering of radiation

Here, photons are redirected but neither absorbed or emitted

Key example: scattering by electrons (a.k.a. Thomson scattering)

As we’ll see later, if hv<<m,_c?,
the scattering is coherent in the
electron rest frame with v = v - @4 ——-

Electron scattering is not exactly isotropic (we’ll see that later
too), but has a forward-backward symmetry and can be
approximated as isotropic



Scattering

To account for scattering that is coherent and isotropic, we can just add
two terms to the transfer equation for a given ray:

dl, ,
Ezfv-l'o-v]v_av Iy—oy, I,

where g, is a scattering coefficient with dimensions length™
(just like the absorption coefficient «,,). The mean distance travelled by
a photon before is scattered is 1/0,,.

Annoying aside: R&L and most other texts use the same symbol for the
scattering coefficient as for the cross-section.

g, I, is the rate (per unit distance along the ray) at which intensity is
removed from this ray by scattering out of this direction

g, |, is the rate (per unit distance along the ray) at which energy is
added to this ray by scattering of radiation originally moving in other
directions



Scattering

To account for scattering that is coherent and isotropic, we can
just add two terms to the transfer equation for a given ray:

dl,
Ezfv‘l'o'v]v_av Iy— oy I

This change to our equation is deceptively simple. In reality, it
complicates the situation greatly by coupling the radiative
transfer equations we solve for different rays

Without scattering | could solve the transfer equation separately for each ray
With scattering, | have to solve for all rays simultaneously



Scattering in LTE

To keep things (relatively) simple, let’s assume that we are in LTE with

Jv = ay By, (77

dl,
Ez a, By+o, /), —a, ,— 0, I,

We can extend our definition of optical depth by writing
dt, = (a,+ g,) ds to obtain

dh, _ B, + " J, =L, =8,—1I
dr, a,+0o, ° a,+g, " UV TV

With the inclusion of scattering, our source function becomes
Sv= €,By, + (1—¢€,) [y

Ay

where €, = —
1% %



Physical meaning

Photons can interact with matter by being absorbed or getting
scattered

The mean distance between interaction events is

, 1
mip = o, + o,
In any such interaction, the probability of absorption is €,= aa#
1% vV
and the probability of scattering is 1 — €,,= —~
a,+0,

1 — €, is called the single-scattering albedo (recall the definition of
planetary albedos)



Random walk

In the presence of scattering, photons do a random walk —>
where the mean step size is [y,

Q1 (poll, individually) On average, how many steps will
a photon take before it is absorbed?

Choices: a,b,c,d,e L
a)1/€,?

b) 1/€,

c)1/(1—¢))

d) €,

e)(1—¢))



Random walk

Lin
In the presence of scattering, photons do a random walk 411;.
where the mean step size is [y,
Q1 (poll, individually) On average, how many steps will
a photon take before it is absorbed?
+—>

A The average number of steps, N, is 1 /€, [

Q2 (poll, in groups) After N steps, what is the r.m.s. displacement in the
x-direction (or any other direction)?



Random walk

In the presence of scattering, photons do a random walk —>
where the mean step size is [y,

Q1 (poll, individually) On average, how many steps will
a photon take before it is absorbed?

A The average number of steps, N, is 1 /€, [

Q2 (poll, in groups) After N steps, what is the r.m.s. displacement in the
x-direction (or any other direction)?

After N random steps, the mean square displacement is
((Ax)%+(Ay)? +(Az)?) = Nlpg,”
The mean distance travelled (r.m.s. displacement) is

N1/2lmfp _ (av+av)1/2 1 =( 1 )1/2

ay aytoy ay(ay+ay)

1 )1/2

3ay(ay+oy)

In any one direction (e.g. the x-direction) it is § = ((Ax)?)'/2 = (



Angular moments of the transfer equation

Previously, we noted that the radiative transfer equation for a single ray
(without scattering)

an, .
E=]v_av1v

could be written for all rays at once

k.VI,(K) = j, — ay, (k)
Taking the zeroth and first moments, we got
V.F, = 4mnj, — 4, J, Energy conservation
4nV.K, = —a, F, Momentum conservation

Now let’s add scattering



Angular moments of the transfer equation

Our transfer equation becomes

v )
—=jpto, —ay L, —0,

could be written for all rays at once

k.vi,(k) = j,+0,],—a, L(k)— 0,1,k

Taking the zeroth and first moments, we got

V.F, = 4nj,+ 4no,/, — 4nay |, — 4o, J, = 4nj, —4nay, J,

Energy conservation unchanged (scattering conserves photons)
AnV.K, = —(ay, +0,) F,

Momentum conservation modified because of additional momentum transfer to gas



Plane parallel geometry

Now let’s suppose we have plane-parallel geometry, again in LTE, with the z-axis
along the direction where the intensity changes

0

. 0
In other words, we are assuming—= — =0
0x dy

And the only non-zero components of Fand K are F, and K,

The moment equations become

dF,,
dz

= 4mj, — 4nay, |, = —4nay,(Jy — By)

dKUZZ
dz

= —(ay + 0y)E,;



Plane parallel geometry

The moment equations relate the derivative of one moment to the value of the
previous one.

dF,, .
dz = 4mj, — 4nay, |, = —4nay,(Jy — By)
dK
dZZZ = —(ay + oy)E,,/4n

To “close” the system of equations, we need something else

: : . : 1 , :
For isotropic radiation, we found previously that K,,.,= §]U’ and we’ll see that this
turns out to be a reasonable approximation more generally

If we make this “Eddington approximation,” we can derive a 2" order ODE for J,,
(differentiating the second equation again and substituting for dF,,/dz to obtain)

dz]U dZKUZZ

72 ~3 72 = 3(ay + ay)ay(Jy — By)




Eddington approximation

The Eddington approximation is generally good when the radiation is nearly-
isotropic as in stellar interiors

It is also exactly true in two special cases
1) For “semi-isotropic radiation” (travelling in one hemisphere),
i.e. if I,=a foru>0

I, =0 for u<0 where = cosé as before

2) When [, is a linear function of 1, I, =a + by,

for which J, = — [Tdg [, du=> [, @+by) du =a+0b

1 2 1 1 1 1
and Kyzz = Jo d¢ [ 112 du== [~ @uP+by®) du = a+0b



Application to an irradiated semi-infinite slab

Let’s solve our second order ODE for the case of a “semi-infinite,” isothermal slab
of material irradiated by semi-isotropic radiation at its surface

d? \w
dzjzv = 3(ay + oy)ay,(Jy — By) \
) ) ) ]v(o) -
We can introduce a special optical
depth, t.=dz / [, and rewrite this \
=\
7 —

d2]
dt 12) = (Ju — By)

T« measures z distance in units of the mean distance between absorption events

The solution is (J, — B,) = ae™ + be*™

Boundary conditions

1) finite J, atlarget, =» b=0
2) J, =J,(0) at the irradiated surface



Application to an irradiated semi-infinite slab

Hence (J, — By) = (Jy(0) — By)e™

2 /u(t.)=]y(0)e™+ B, (1 —e™) \ \\&
| g & 7 —>

Near the surface (t, << 1 or equivalently z << ), J, is determined by the
incident radiation, J,~ J,(0)

In the interior (t, >> 1 or equivalently z >> [), J, reaches thermal
equilibrium with the matter J,~ B,

Another relaxation equation. The distance [, is often termed the
thermalization length. In the homework, you’ll solve a similar problem
but with a source of luminosity at the center of a finite slab



Lecture /

Review of EM theory

Goals:

Understand the radiative diffusion approximation

Review:
Lorentz force
Maxwell’s Equations
EM potentials

READING: R&L 2.1,2.5,2.3



The radiative diffusion (Rosseland) approximation

If we are in the deep interior of a medium where the temperature
changes slowly on the scale of the thermalization length
(i.e. if dT/dz << T/L,),

we can approximate J, very accurately by B, (T)
Moreover, the radiation is very nearly isotropic, so that J, = 3K,
These are extraordinarily good approximations in stellar interiors

We can then compute the flux, using the first moment of the
transfer equation

dK,
dz

= —(ay + g,)F,/4n



The radiative diffusion (Rosseland) approximation

. 4 dK, 4t dJ,

V" g,+a,dz  3(o,+ay) dz

B 4w dBy(T) 4t 0B, dT
 3(o,+ay,) dz 3(o,+ap) 0T dz

The energy flux is proportional to the temperature gradient, as we
might have expected

To determine the total (frequency-integrated flux), we can write

4 dB(T) ¢ oudl 4acT3dT

3ap dz  3apdTdz 3ap dz

where ap is the average value of g, + a, and using u = 4nB/c = aT*



The Rosseland mean “opacity”

For a “grey” medium with g, + «, independent of v, the Rosseland
mean opacity ap is simply g, + «,,

In general, the appropriate average is a weighted harmonic mean

_+0B
1 B f(o'v+av) 1 a']P dv
ap 0B,
] =7 dv

The integral in the numerator is dominated by the frequencies
where (o,+ay) is smallest. This is where the flux is transported
most rapidly



The radiative diffusion equation

This is called the radiative diffusion (or Rosseland) equation

. B(T) ¢ du(T) ¢ oudl = 4acT3dT

_BaR dz 3ap dz _BaR 0T dz  3ap dz

It has the classic form of a diffusion equation for some quantity Q
(in this case energy)

Flux of Q = diffusion coefficient x gradient in the density of Q
And the diffusion coefficient is always of order

Speed of the carrier of Q x mean distance travelled



Definitions of the electric and m

agnetic fields

Operational definition of E, B and q:

Lorentz force on a charged particle, F=q (E + v x B/c)

=>» Rate of work done on particle = v

.F=qgqv.E

Continuum description, f= pE +j x B/c

/1

Force per unit volume

|
Charge density

N\

Current density

(flux of charge)

Rate of work done per unit volume = j. E



R&L use Gaussian-c.g.s units, which are widely used in
theoretical physics and astronomy

* In this system, unlike in the Sl system, there are no dimensional
constants, uyand €,, and the speed of light appears explicitly in
Maxwell’s equations.

e Coulomb’s Law becomes F = q,q,/r?
e The unit of charge is the statCoulomb (1 statC = 1 cm3/2 g1/2 s71)
also known at the electrostatic unit (esu) or (rarely) the Franklin
The electronic charge, e = 4.803204 x 10710 statC
* The unit of magnetic field is the Gauss (1 G=cm—12gl/251=104T)
* Lorentz force on a charged particle, F=q (E + v x B/c)

so E and B have the same unit



Maxwell’s Equations

Gauss’s Law:

No magnetic monopoles:

Faraday’s Law:

Ampere’s Law:

V.E = 47p
V.B=20
VXE = —=°>
VXB = la—E+4—7T]



Implications of Maxwell’s equations

2
< EvxB=—2 4] E
41T 8m dt

Conservation of charge

£ B.UXE—<V.(ExB)=—.2Z +j.E
41T 41T 41T

B OB c 1 0E* .
_ZTE —EV(EXB) _STIE-I_]E

0 (E*+B?
0=5(

=2 )+V.(ZExB)+j.E

81



Implications of Maxwell’s equations

0 a(E2+BZ) V(CEXB)+'E
= + V. (— .
dt J

31 41 \
Energy density, u Energy flux, F Power dissipation
(Poynting vector) (per unit volume)

Conservation of energy



Electromagnetic potentials

Making use of the vector identities

V. iWxV)=0andVxVy =0

we can automatically enforce V. B = 0 by writing
B=VxA

and automatically enforce Faraday’s Law
0= VxE+>2=Vx(E+-2)
c dt c dt
by writing
(E + la_A) = —V¢

c dt




Gauge transformation

When we write

104
B=VxA (E+;E)=—l7qb
We have some flexibility in choosing A and ¢
In particular, because V x Vi =0,

we can add the gradient of any scalar function iy to A,
provided we also subtract (1/c)dy/dt from ¢

This “gauge transformation” leaves E and B unchanged
A->A+TY

¢ - ¢—(1/c)oy /ot




Lecture 8

EM waves and polarization

Goals: understand

Maxwell’s equations in the Lorentz gauge
Polarization: astrophysical context

READING: R&L 2.4



Lorentz gauge

For a suitable choice of Y(x,t), we can always arrange
thingssothat V.A = —(1/c)o¢ /0t

This is called the Lorentz gauge

With this choice, the two remaining Maxwell’s equations
become

2
Vegp — C_lngf = —4mp Gauss’s Law
2
p4 — =24 = —4mj/c Ampere’s Law

c? 0%t




Wave solution

2
Vg — C—lzng = —4mp Gauss’ Law
2
V2A — 6—12% = —4mj/c Ampere’s Law

In a vacuum, p =0 and j = 0 and the solution is
¢ — ¢O€i(k'x_kCt)
A= Aoei(k.x—kct)

As usual, ¢, and Ay are complex, with the argument
representing phase, and we take the real part of the RHS




Wave solution: relation between Ay and ¢

¢ — ¢O€i(k'x_kCt)
A= AOei(k.x—kct)

This solution is premised on the Lorentz Gauge, which
relates Ay to ¢

V.A=—(1/c)op/ot = ik. Ay =—(1/c)(—ikc,)

Do= k. A, is the projection of Ay onto the direction of
propagation




Wave solution: E and B fields

A = Aoe i(k.x—kct)

=2 B =VxA= (iAyx k) ettkx=kect)

N
By Eg

¢ — ¢O€i(k'x_kCt) /

9 E = —V¢ — %% — (—lk¢0 + lkAo) ei(k.x—kct)

Note that E x k = (0 + ikAy x k) et(kx=kct) — B

=» B and E are mutually perpendicular and
vary in phase



Wave solution: E and B fields

Waves are transverse
Bo.k= iA()Xk.k:O
Eo.k= i(Adg.k —py) k2= 0
Thus, B = E X k has the same magnitude as E

The fluxis S = —ExB=—E@B®k =— E@®k =— B@®k

Averaged over one cycle, we get
C * o i * 10
(S) —QEO.EO k = 8nBO'BO k




Spectral analysis

Let’s now consider the Fourier transform of E(t),
computed over some period T

Er(w) = %fOT el@t E(t)dt (complex)
Parseval’s theoreT[n tells us that
j E2(t)dt = 41Tf |Er(w)]? dw
0 0

But fOT E%(t)dt = ? (S)+, so the average (frequency-

integrated) flux over this period is

($)r=1 1y |Er(@)|*do



Spectral analysis

(S)r=1Jy |Er(@)|*do

is an expression for the total flux
F =[ Fdv=["(F/2m) dw

Hence, we may equate the integrands in these two
equations and obtain

2TTC | =
F,=— |Er(w)l|?



Polarization: astrophysical context

Polarization provides key astrophysical information

Examples:

Scattered radiation and the “unified AGN model”

Probing uG magnetic fields with
Polarized synchrotron radiation
Polarized dust emission
Starlight transmitted through the ISM
Faraday rotation within a magnetized plasma



Polarization: unified AGN model

Key supporting evidence

Narrow Line
Region

Broad Line If you look at the polarized
Fedion component of the light
emitted by Seyfert 2 galaxy, it
is more similar to that of a
Accretion Seyfert 1 galaxy
Disk
Obscuring
fous - 8 Polarization is imparted by
scattering off gas and dust

(Opposite example: seeing
fish in a lake when wearing
polarizing sunglasses)




Polarization as a probe of magnetic fields,

which show large scale Galactic structure

Swirls show B-field direction (Line integral convolution map*) 30 GHz synchrotron radiation

*Invented by Cabral and Leedom
Look at Wikipedia article

Polarized emission from cosmic-rays in our Galaxy as measured by Planck at 30 GHz

Charged particles orbit magnetic field lines and emit radiation with with its E-field
perpendicular to the interstellar B-field



Polarization as a probe of magnetic fields,

which show large scale Galactic structure

Swirls show B-field direction (Line integral convolution map*) 353 GHz dust emission

*Invented by Cabral and Leedom
Look at Wikipedia article

Polarized emission from dust grains in our Galaxy as measured by Planck at 353 GHz
Grains are elongated and preferentially aligned perpendicular to the interstellar B-field

=>» they emit thermal radiation with its E-field perpendicular to the IS B-field



... and as probe of magnetic fields

in individual interstellar gas clouds

22.5

21.5

177.2 174.9 172.5 170.1 167.8
 [deq]

21.5

20.5

342.1 340.6 339.0 337.4 335.9
l [deq]

304.0

302.5

301.0
l [deq]

299.5

2:5

N

21.5

22.5

215

20.5

298.0

Smaller scale maps
from Soler+ 2016

Black lines show the
directions of the
B-field inferred from
the IR polarization
of background stars.

In this case, IR
radiation with the
electric field
perpendicular to the
interstellar B-field
direction is
preferentially
absorbed



Faraday rotation

B-fields along our
All-sky map from Oppermann+ 2012 line of sight causes

o H ”
. Faraday rotation

As polarized radiation propagates through a
magnetized plasma, the polarization direction

is rotated through an angle proportional to
/12 fB"Tle ds



Lecture 9

Polarization

Goals: understand

Stokes parameters

READING: R&L 2.4



Polarization of a monochromatic wave

The electric field is written E = Eget(k*=kct)

with the understanding that this really means
E = Re{EOei(k.x—kct)}

E, is a complex vector, which is perpendicular to the

propagation direction, k. Let’s orient the z-axis along the
propagation direction, so E is in the xy-plane

E, = XE,, + YE,, , where Ey, and E,,, are complex

Note we never need to treat the B field separately, since
B = E X k has the same magnitude and phase



Polarization of a monochromatic wave

We can write the complex numbers E, and Ey,, as follows
Eogy = Exe'Px  Ey,=E,e'% with €, €, ¢, P, €ER

At z = 0, we then get

E =X &, cos(wt —p,) +¥ E, cos(wt — )



Polarization of a monochromatic plane wave

Case 1: Epx/Eyy is real

D=y =¢

=» The x and y components of E vary in phase
2>E=(XE+YE),)cos(wt — @)

=» Linearly polarized radiation

Case 2: EOx/EOy is +i

> =0, t andE =&, =¢

=>»The xand y components are 90° out of phase
=2>FE = Excos(wt — ¢,) + Ey sin(wt — ¢, )

=» Circularly polarized radiation

SHM along
y the dashed line
A
€y T
E
e,
Rotation at angular
y
y

. speed Tw

——

\

Radius = € \\\

_—




Polarization of a monochromatic pla

ne wWave

Case 3: Eyx/Ey, is complex (or imaginary but # +1i)

> p.= ¢, — A X

=>»The E-field rotates around an ellipse 7

=>» Elliptically polarized radiation /

\\___/

Most generally, the polarization of a monochromatic wave is characterized by

three parameters: Ap, €y, €,

This makes sense, because three parameters are needed to describe an ellipse:

semi-major axis, axial ratio, and orientation



Stokes parameters

We define the Stokes parameters as follows

I =Eo Eox" + EogyEoy” =& +E)°

Q = Eox Eox" — Eoy Egy” =62 —€)7

U=Eoy Eoy + Eoy Eox  =2E,E,cosAp

V =i(Eoy Eox" + Eox Eoy*) =2€,E, sinA¢

There are 4 parameters, but only 3 are needed to define an ellipse

So for this case of monochromatic radiation, there is a redundant
information =» there must be a relationship between them, and
indeed
Q%+ U2 +V? = (7 — €,%)?+ 4€,°€,” cos? A + 4E,°E,* sin? A

= (&° +&,%)2=1?
As we’ll see, this relationship need not apply when we superpose

waves at slightly different frequencies or take a time average when
the Stokes parameters are varying



Stokes parameters: meaning

| = Eox Eox” + Eoy Eoy”  =€° +E,°
Q = Eox Eox” — Eoy Eoy” =€ —§€)°
U= Eoy Eoy” + Eoy Eox’  =2E,E, cosA¢
V =i(Egy Eox" + Eox Eoy") =2€4E, sin A

I = 8% (S) is proportional to the total flux

IV « sin Ag is called the “circularity parameter”
I/ = 0 for linear polarized radiation
IV = + I for circularly polarized radiation
V' /I determines the axial ratio

U and Q determine the orientation of the ellipse



Partially-polarized radiation

So far, we have considered radiation in which the polarization state is unchanging
and the Stokes parameters are constant.

For simplicity, let’s assume the flux is constant but the polarization state changes
on some timescale At that is much smaller than the observation period, T, but
larger than the period of oscillation, 27 /w.

We will observe time averaged values of the Stokes parameters,
(D71, (Q), (U)r, and (V)7

For constant /, (I)T2 = (%)

But for the parameters that vary, we have
(U)r” < (U, (@1” <(Q*)r, (Vg <(V?)p

Hence, (I)7° = (U)p°+ (Q) 2+ (V)p°



Partially-polarized radiation

We can also think of this graphically by drawing 3D-vectors to represent (U, @, V)

So long as U, @, and V are constant, ]=\/U2 + Q2 + V2 is the length of such a
vector

P2

P1i >
pPi1t p>

1

Suppose we have two such vectors, p, and p, representing the Stokes parameters
during two equal time periods.

The time-averaged 7 is %(|p;| +|p,|)

The time averaged (U Q V)is simply %(p; + p,), and thus the time-averaged
quantity 1/(Q)2 + (U)2 + (V)2 is %|p, + p,|

The triangle inequality, |p;+ p,| < || +|p,|, tells usy/(Q)2 + (U)2 + (V)2 < (I)

The same argument applies to the superposition of two monochromatic waves of
similar frequency but different polarization state



Fractional polarization, II

We define the fractional polarization, II, as follows

JU%+ Q% +V?
= ;

If the polarization state is constant, [I = 1

If the polarization state varies completely randomly, IT = 0

In general, IT can lie anywhere between 0 and 1



Lecture 10

Retarded and Lienard-Weichart Potentials

Goals: understand

The retarded potentials

The L-W potentials for a point charge
Potentials for a collection of charges
Potential for a collection of charges
The wave zone

READING: R&L 3.1, 3.2



Solution to Maxwell’s equation with charges and currents

We wish to solve Maxwell’s equations for non-zero p and j

,_192\¢p_ _, P
(V CZaZt)A_ 47Tj/c

Let’s focus first on the equation for ¢
To solve this inhomogenous equation, we first determine the Green’s function

i.e. the solution for the case of a delta function at location x’
, 1 0%¢ .
Vg — 2 92¢ = —4nQ(t)6(x —x')
The solution must be a spherical wave centered on x’
P(x,t) = %f(t — R/c), whereR = |x — X'|

o2 — L0 (p299Y _ 10 (pof_f _FINN_L[fr_f  Rfr]_10°¢
ChECk'Vd)_RZaR(R aR)_RZaR(R [ R2 Rc)_RZ c c+ c2]_c262t



Solution to Maxwell’s equation with charges and currents

$(x,t) = —f(t — R/c)

But how do we determine f?

Consider the limit of small R. Then the spatial derivatives dominate those with
respect to time, and the equation becomes V2¢p = —4mQ(t)6(x — x")

But we know the solution to that from electrostatics: ¢ = ?
tim (=~ R/0) =42 = r = ¢

The exact solution for all R is therefore ¢p(x,t) = %Q(t —R/c) = %Q(tret)

where the “retarded time” t,.; =t — R/c



Solution to Maxwell’s equation with charges and currents

Because Maxwells’ equations are linear, this implies that the general solution is

p(x',t —|x —x'|/c)

av’
|x — x|

b0 = |

c,b(x, t) = j%dV’

where [ ] indicates a retarded value (evaluated at the t,..; appropriate to each
location in V')

An identical argument yields

1 [j] ,
A(x, t) = Ejmdv

These are called the retarded potentials



Solution to Maxwell’s equation with charges and currents

o]

S ) VA
|lx — x|

b0 = |
1 j] ,
A(x, t) = Ejmdv

Interpretation: there is a time lag in the propagation of information about p and j

The information only propagates at the speed of light

Note: the equations allow a solution where p and j are to be evaluated at

t+ |x —x'|/c,i.e at some future time. [The outgoing spherical wave solution
we adopted could be replaced by an incoming wave %f(t + R/c)]
But this can be rejected on the grounds of causality, because it would be

inconsistent with the notion that charges and currents cause electric and
magnetic fields



The potential for a moving point charge

There’s a clever trick for enforcing the retarded time within the integrals for the
retarded potentials. We can write

P trer) 1y _ [ PXLE)

= 5(t' — t .. )dV'dt’
|xl _xl |xl _xl ( ret)

P(x,t) =

We are now ready consider the potentials associated with a moving point charge g
which is located at position x' = r(t))

For this charge, we have  p(x,t) = g6 (x' — r(t))

j&x',t) = qu()s(x" —r(1))
where v(t) = 1(t)

For the point charge, we then find

qs(x’ —r(t))
|x" — x|

d(x,t) = J S(t' — t,op)dV'dt’



The potential for a moving point charge

We can first perform the integration dV' to obtain

qé(x’ —r(th))
|x’ xI

b(x,t) = j 5(t' — t,o)dV'dt’ = j - () S8~ tro)dt

ch(t —t+ |r(t') —x|/c)dt’

|r(tret) x|

R(tret) j(?(t —t+ R(t")/c)dt’

where R =r —xand R = |R|

Subtle but very important point: this integral of a delta function is not unity:

| 663 =M(Kﬂ =1

K
_(dy B R(t") B R(tret)
(@) (1) (1)

where




The potential for a moving point charge

Picture:
X x’=r(t)
:;( R=r{t)-x @
Hence, k = (1 + R(tget)) with R(tyer) = —v.R \VA—""(U
_ q _[1
plxt) = K (tree)R (trer) [KR]
_ qu _[9v
Alx ) = K(tret)R(trer) CKR]

And, by an identical argument

withk = (1 —v.R/c)

These are called the Lienard-Weichart potentials



Notes on the Lienard Wiechert potentials

q 149 _ q _[9vV
0 = R ek A ) = = e

withk = (1 —v.R/c)

1) For a stationary charge, k = 1 and R(t,-.+) = R is constant

We get the familiar electrostatic result: ¢ = q/R A=0

2) For moving charges, there are two additional effects
i) everything is evaluated at the retarded time
ii) the factor k # 1 (unless the motion is perpendicular to R)
This arises because [[p]dV’ # [ pdV' = q

3) The x factor is extremely important for relativistic particles, where v is close to ¢
and 1/x becomes very large when v is in the direction R (i.e. moving towards us)



Potential due to collection of non-relativistic
charges: the wave zone

4
v

Let’s choose the origin % of our coordinate system within the charge collection of
assumed size L. The observer is located at position x, as always, and the charges are

at location x’ with x’ < L/2

The observer is said to be in the “wave zone” if x >> L and x >> A, where A is the
characteristic wavelength of any radiation that these charges emit

In the “wave zone”, we may make two approximations because x >> L

J(X's tret) f
A(x, t) = — '
(x ) c |x - x,l av Clxl ](x tret) av

trog =t—R/c=t— (x—k.x")

Here, k = X is the unit vector pointing in the direction that waves would propagate
from the source to the observer



Potential due to a collection of charges

: . : 1
Given the “wave zone” approximation, A(x,t) = —jj(x’, trer) dV'
CcX

Let’s consider the spatial derivatives of A at the observer’s location

1 aji atret dv’

aAl' _ 1 ox ] AV +
0x;  cx? 0x; Ji cx ) ot Ox;
We can also determine that
dx 0 X -
0x; B 0x; X =T
and
ot d 1 _ 1x k
T'et: t__(x_k.x’) :—__J___J
ax] 6xj C C X C
0A; <é laAl) I?
>0 ax]- B x cot)?



Potential due to a collection of charges

To get this equation  94i _ (ﬁ 4+ 104; ) ,?_ we have so far only assumed x >> L
dx; c Ot

Note the two terms have different dependences on our distance from the source

. . A1 1 1
FirsttermisxX =X — and BX — = y X —
R  R2 R2 R4

This is the standard result from electro/magnetostatics

A 1 1 1
However, the secondtermisX -« — and BX — = y X —
RO Rl R1 R2

Electrodynamics, with time-varying A; caused by time-varying currents (i.e. accelerating
charges), can transport energy over large distances

In the wave zone, where x >> 274, the second term has a magnitude > first term

_ 1 Aj
c 6t C'A' nll4l>> X

kjoA; . : ) kjo
= ——2=—=t_ Similar reasoning = 96 _ %99
axJ c Ot 0xj c Ot




Lecture 11

Wave zone, dipole approximation, Thomson scattering

Goals: understand

The dipole approximation
Larmor’s formula
Thomson scattering
READING: R&L 3.3, 3.4



In the wave zone, the solution is a spherical transverse wave

04; ki 0A; k_ 04
Do I 3B =FxA=——X—>"
0x;j c Ot C ot
ap _ kjog _ 10A 10+ 104
axj_ c Ot 2E= V¢ cat_catk c ot

19¢p _k oA
But, o T V.A = e (Lorentz Gauge)

Fancy way of writing 1
_ v .

10p=~ 104 k 0A+ ~ =~ 104 0A k =~ =~
E=-2k-22=2 2k — (kk):2 = (5 x7) xk=Bxk

c Ot c ot c Ot c ot ot ¢

Triple-product rule: (a X b)xc = b(a.c) — a(b.c)
So, as before, E, B and k are mutually perpendicularand E = B
C —~~

The Poynting vectoris S = ﬁE XB= —B*k

41T



Differential power

Let’s consider an element of area, dA, at position x
Energy passes through it at a rate dP =S dA

The solid angle subtended at the source is d{2 = dA/x?

2 sin’@

dP Cc 2 2 Cc
T =Sx%2="PB2yx%2=—
dq) 41T 41T

oA K
ot ¢

"’_Alz x2
ot

So

4TTC

. 0A =~
where 0 is the angle between T and k

Z_g is called the differential power (erg s~ sr ) and depends on the direction k



Differential power and the dipole approximation

Given our expression for the vector potential A(x,t) = %jj(x’, trer) AV’
c|lx

2
0A

dt

2 sin20
4¢3

We find that dP _ sin’@
dQ 43

a H ! !
=i e av

For the system to radiate, we clearly need time-varying currents

A considerably simplification occurs in the size of the emission region, L, is much
smaller than the characteristic wavelength A

In that limit, the “dipole approximation” is said to apply and phase differences across
the source are negligible. Thus, we can assume the same retarded time for the
entire emission region, and write

2
dP sin?@®

dQ) - 413

a " !/ /
atf](x)dv




Dipole approximation

Suppose we have a collection of N charges, with individual charges g;
located at positions x;(t), where i ranges from 1 to N

In that case, j(x") = XY q; v; §(x; — x') where v;=x;

Hence, fj(x’) dv' =YV q; x;

dP B sinZ@
dQ  4mc3

sinZ@®

dA|1°  sin2@
and thus | SHl

dt

= [ iyav Z 0%

413  471c3

Defining the dipole moment d = z q; X;
1

12 . ~12
dp _ |d|"sin%@ dp  |d x k|
We obtain — = or —=
dQ 41ce dQ 41cd




Dipole approximation

dp  |d|*sin%0 . ap_ |d x k|
aQ 4’ © dQ  4mcs

Integrating over solid angle, we obtain Larmor’s formula for the total power

IM 2Idl

T A= f 2 (1 —p?) du =
Comment about the various approximations
1) In the wave zone approximation, we assume x >> L and x >> A

but make no assumption about the relative magnitudes of L and A

2) In the dipole approximation, we also assume L << A

This is generally a good approximation for light atoms/molecules, which have typical
size L ~ a, (Bohr radius) and electronic transitions with A~ hc/AE ~ hca,/Ze?

Hence L/A~Ze?/hc ~Z/137



Thomson scattering

We are now ready to consider the scattering of radiation by an
electron (or other point charge)

We suppose a polarized EM wave is incident along the z-axis,
causing the electron to move in simple harmonic motion along
the x-axis

X
!
|
|
|
L
|
|
|
|
|
|

NV

Figure 3.6 Scattering of polarized radiation by a charged particle.

N

A



Thomson scattering: scattered power

If E =X €&, coswt
thenF=q(E+§ xB)~5c\q€xcosa)t

3

typically << 1

andx = X — €, coswt

4
m

Henced = gX = X — £,.cos wt

3 IS

The power this electron radiates by virtue of its acceleration is

12
2|d| 2q*
— — 2 2 —

8mq* ¢

202
v i C,~CoS* wt

incident flux, S



Thomson scattering: total cross-section

8mq*

P = i)
3m?c

The power radiated represents scattering, and thus the
scattering cross-section for an electron is

8me*  8m, e’ \2 8mry?
L i tmye)
m,c?

= = = 6.65 X10™*>cm?
3me?c* 3 3 o

o is called the Thomson cross-section and 1y =2.82 x 10713 cm
is the “classical radius” of the electron

Protons also scatter radiation, but the cross-section is a factor
(m,/m,)* = 18372 smaller

Note that g is independent of v (although this classical
treatment breaks down for hv greater than ~ m_c?)



Thomson scattering: angular distribution

0= 4o 4SO the angular distribution has a sin’® dependence

Very important point: the relevant angle is with the x-axis
(polarization direction) not the z-axis (incoming wave direction)

X N

E
Al A A
NN e z

Figure 3.6 Scattering of polarized radiation by a charged particle.




Thomson scattering: differential cross-section

We may write the differential power of the scattered radiation

4

w12
ap  |d|” . e* ¢ : :
_ 2 — 2 2 20 — 2 2
= sin‘@® = E..4co0s* wt sin“® = S1¥ sin‘®
dQ  4mc m2ctamr ¥ 0

terms of a differential cross-section

dP_daS
dQ  dQ

do .
— = r$sin2@

with 0



Thomson scattering: angular distribution

Notes on the scattering of linearly-polarized radiation

1) The scattered radiation has a forward-backwards symmetry
because sin’® = sin? (—O)

2) The scattered radiation is polarized with the E field in the
xz plane

Incoming linearly polarized
wave

——————
e SS

E
t
+ >

~ -
........

Power pattern -------—---

Rotational symmetry about x



Thomson scattering: unpolarized radiation

So far, we have consider scattering of linearly-polarized radiation

With unpolarized radiation, the dipole moment has a y-component
(in-and-out of the plane of the “paper”)

We now have (d2) = (d2) = i(dz) by symmetry because x and y
are equivalent

Incoming unpolarized
wave

E

A




Thomson scattering: unpolarized radiation

The (time-averaged) differential power emitted is now
P dz d d? 1
<d—> {dx) Sin‘@® + —— ) - sin? — = u( Sin%@® + )
dQl 413 41c’ 2 41rc’ \2
and the differential scattering cross-section is

dO' 1 - 2
—g = 570 (1 + sin?@®)

Incoming unpolarized
wave

E

A




Thomson scattering: unpolarized radiation

Subtle point: the x axis is no longer a special axis. Any
rotational symmetry has to exist about the z-axis.

The relevant angle is therefore 0, not ®
(i.e. the angle to the z axis)

do 1
Thus, —— = ~7¢ (1 + cos?0)

Incoming unpolarized
wave

E

A




Thomson scattering: unpolarized radiation

The total scattering cross-section is the same as for polarized
radiation,

8mré
3

1, 1, ' 2
o == j(1+c0529)dﬂ=—r0j 2n(1 4+ pus)du =
-1

2 2 - or

As we shall see, the scattered radiation can be partially-
polarized, even when the incoming radiation is unpolarized



Lecture 12

Thomson scattering, charge in a harmonic potential

Goals: understand

Finish up Thomson scattering of unpolarized radiation

Scattering by a charge in a harmonic potential
Begin review of Special Relativity



Thomson scattering: unpolarized radiation

Incoming unpolarized
wave

E

-

Define the x' axis as being rotated at angle 6, so it remains perpendicular to the y
axis while also being perpendicular to k

The time averaged value of 8x12 is reduced by a factor cos?@relative to the average
value of 8y,2
1+Q _ &y°

=>» The scattered radiation has =% _ = cos?6
I-Q gyl

o _ Q _ 1-cos?#
=» The degree of polarization I1 = I~ 1+ cos2@

is zero for @ =0 and 1 for @ =m/2



Radiation from a harmonic oscillator

So far, we have considered the motion of a free electron upon which an EM wave is
incident

Suppose the electron is bound in a harmonic potential (relevant to the case of
atoms and molecules) and has a natural angular frequency of oscillation w,

Equation of motion: m%¥ + mwéx + damping term = gE,

The damping term is small but represents the energy loss due to radiation. We can
usually treat this as a perturbation.

Let’s consider first an undriven oscillator (E,, = 0) without damping
mi + mwix =0 = x = xyel@ot

where x, is the complex amplitude of the oscillator



Radiation from a harmonic oscillator

x = xge'®t = dipole moment, d = gxyet®ot
And thus d = —qwy2xge®ot (sinusoidal oscillation with amplitude |x|)

.o 1

2> (dz) = ngwo4|xo|2
(cos? wyt)

2(d°) _ qwo’lxol”

3c? 3c?

Mean power radiated (P) =

. . . 1. .1
The particle energy, E, is the maximum value of mez , Which is E‘ma)(,zlxol2

dE Zw 4 x 2 20) 2 42 E
Hence,—=—%=— T | =
dt 3cC 3mc T 0d
) __ 3mc? 3c
where the energy loss timescale 7,4 = — = ;




Radiation from a harmonic oscillator: energy loss

Key point:

3mc? 3c

Trad =

2wo’q® 21, wo°

3¢ 34 o _
WoTrad = 5 — = 4mf > 1 unless we are considering high-energy gamma-rays
o “0 0

=>» Fraction of energy lost per oscillation period is << 1

Can treat radiation as a perturbation

Energy decreases as e /T | 50 amplitude decreases as e t/(27,.4)

In other words, x = x,e 1 t/? gl@ot

where the “damping constant,” ' = 1/7, 4



Equation of motion for a damped harmonic oscillator

As you probably remember from a sophomore course on waves,

x = xpe 't/? gl®ol s the solution to the equation of motion for the (undriven)
damped harmonic oscillator

m(x +T'x + wéx) =0

Note: It is shown in R&L 3.4 that the effect of radiation is to yield a reaction force
that is proportional to X , the third time derivative of position.

This in only true in an average sense anyway, and since the damping term is a small

perturbation, we have ¥ = —w3x

Som(x + 't + w3x) = 0 is a very good approximation that is easy to work with



Equation of motion for a damped harmonic oscillator

We may now compute what happens when an EM wave is incident on the bound
electron. We just add a "driving term” on the right-hand-side

(X +T'x + wix) = £ —EEOX g~lwt
m m

Here w is the angular frequency of the incident wave, which (in general) differs from
the natural frequency af oscillation w,

The solution is x = xge "'t + (the decaying solution we obtained before)

Here, E,, and x, are complex as'before, and the actual E field and displacement are
given by the real parts of E,, e 7*“! and xye ¢t

ie. E,=|E,,| cos (wt — Of) and x = |x,| cos (wt — §,)



Equation of motion for a damped harmonic oscillator

Substituting x = xoe‘i“’t into the equation of motion, we get

_ . ek, .
(—w?xy — iF'wxy + wixy)e Wt = —— = gmlt
m

1
m )(w%—wz)—il“a)

e?|E . |4 1
: |x0|2 — ox

m? (wg — w¥)? + Mw?

I'w

and

A . -
In resonance (w = w,), there’s a > phase difference between force and position

(=» force in phase with velocity, maximizing the energy input to the system)



Scattering cross-section for a damped harmonic oscillator

We can now use the Larmor formula, as before, to determine the frequency
dependence of the cross-section. The time-averaged power radiated is

J\2 \2 2 2,.4 .
(P) = 2{d) — 2{eX) — ¢ 2] " using x = —w? x, e '@t
3¢3 3¢3 3¢3
Substituting for |x,|% from the previous slide, we find
(P) . eZ|x0|2w4 . e4|on|2 w4
3¢3 3cdm? ) (w§ — w?)? + IM'w?

and dividing finally by (S) = 8% |E,.|?> we obtain the scattering cross-section

(P ( 8me* ) w* _ grw*

(S (WE — w22+ Iw? (0§ — w?)?+ Mw?

o
3m?2c?



Frequency dependence

grw* grw*

(Wi - w0+ TMw? (0 — wy)(w + wy)? + Mw?

o

1) High frequency limit (w >> wy): 0~ o
Same behavior as the unbound particle because the restoring force is negligible

. w? 1
2) Low-frequency limit (w << wg): o0~ 10T~ 7
0
“Rayleigh scattering”
0, wo*

3) Near resonance (w ~ wg): 0~

4w3 (w—wg )+ w,?

As you are asked to demonstrate in the next homework

o(wy) = c;45 and [ o(v)dv = cz(

2

e . .
%) where ¢, and ¢, are constants (involving

integers and )



Review of SR: goals of the discussion

Our discussion of SR is motivated by the fact that relativistic
charged particles are widespread in the Universe.

They are inevitably involved in two of the three emission
processes we’ll consider: synchrotron radiation and inverse
Compton radiation.

So we’ll need to understand

1) How the differential power dP/d<2 transforms as we go
from one inertial reference frame to another

2) The dynamics of relativistic particles in a magnetic field



The fundamental postulates of SR

These are usually expressed as

1) '(I'he)laws of physics are the same in any inertial reference frame
IRF

2) The speed of light is the same in any inertial reference frame

The fundamental object in SR is the “event,” which occurs at a particular
spatial position (x, vy, z) and at a particular time, t.

If we take two events, the emission and reception of a radio signal, the
second postulate implies that

c2At? —(Ax? + Ay? + Az?) = c?At'? —(Ax"? + Ay'? + AZ'?)

where (x,y, z,t) are the values measured in one IRF (call it S) and
and (x',y',z',t") are those measured in another (S’)



Four-vectors

Apart from the —sign, the “invariant” quantity c?At? —(Ax? + Ay? + Az?)
looks a lot like the square of the length of a 4-D vector

The location of an event in spacetime may be expressed in two ways using the

4-vectors
ot
e
y
Z |

Here, u can take 4 values, conventionally 0, 1, 2, 3

and c*At? —(Ax? + Ay* + Az?) may be written Ax, Ax¥

using the summation convention. To obey Lorentz invariance, we only
ever sum over one subscripted index and one superscripted

or

—ct
X

y
Z




Lecture 13

Special relativity

Goals: review SR

4-vectors
Aberration and Doppler shift

Differential power received from a relativistic source
Relativistic beaming



Four-vectors

b= —
X" = or X‘u

N <L

In this notation, a superscripted Greek letter index indicates a
contravariant 4-vector, the meaning of which will be explained later, while
a subscripted index indicates a covariant 4-vector

The contravariant and covariant forms differ only in the sign of the 0%
element

(“lowering the index”)

where 1, is the Minkowski metric

The inverse transformation is xV = n*Y x “raising the index”
J7i



Invariance: 3-vectors

We are familiar with the invariant properties of 3-vectors when we
rotate the coordinate system

Angles and lengths are preserved under rotations, and therefore dot
products are invariant

cosf@ sinf8 O
fa’' =Ra=|-sin® COSH 0 (and b’ = R b)
0

(rotatlon about z axis through angle 0)

thena'.b'=a'yb'y+a',b',+a',b',=a,b,+a,b,+a,b,=a.b

and |a'| =vVa'.a' =+Va.a = |a]



Invariance: 3-vectors

The invariance of a. b under rotation is linked to a mathematical
property of R. In the summation convention

a’. b’ = Cl’i b,i = Rinikajbk

The right hand side is equal to a;b; because R;; R;; = 0;

where §jy, is the “Kronecker delta” (equals 1 when j = k and 0 otherwise)
In matrix notation, this is saying RRT = I

(R is said to be orthogonal: the transpose of R is equal to the inverse)



Invariance: 4-vectors

In SR, the analog of rotation is a “velocity boost” from one frame to
another. The rotation matrix, R, is replaced by the Lorentz
transformation, so x'# = A“vx”

[y =By 0 O
with A%, = | =By y 0 0} representing a velocity boost ¢
0 0 1 0 _
0 o o 1| alongthe x-axis

1

and wherey =

Now, Ax'HAx'), = A Ax”nﬂpApT n*°Axs = Ax, Ax*

because A"}, 1, A” . =1, or equivalently ATp A =1



4-vectors

More generally, a 4-vector is any vector that transforms in accord with
the Lorentz transformation, V'# = A* 1V

And the scalar product of any two 4-vectors, V¥ W, is a Lorentz-
invariant scalar. The postulates of SR then imply that the equations of
physics can be written as 4-vector equations

dx*

Example: we may define the 4-velocity U¥= —

where dt = \/—dx“dxu/cz is the element of proper time

dt is a Lorentz invariant scalar, so U* must clearly transform the way
x* does (i.e. as a four-vector)



How does the 4-velocity relate to the three-velocity u?

Well, dt? =

—dxtdx, [c* =

dt? — (dx? + dy*+ dz?)/c?

= dt*’(1 —u?/c)=dt*/y? =>dr=dt/y

d

Hence, Ut=—
dt

The product U“U should be Lorentz invariant and indeed it is
2,2 _

ot]

X
y
Z

=ya

U“UM——y c+v%u

ot]

X
y
Z

2

C
dx /dt

dy/dt| =
dz/dt

)48
yu

|



Other physical quantities that are manifestly 4-vectors

. dUH
4-acceleration: alt= —
dt
. dUH 1d(U*U,)
Key feature of the 4-acceleration: a#U, = — U,, == =0
K dt H 2 dr

a* and U, are orthogonal

In the instantaneous rest frame of the particle a’# = L(l),]

4-momentum: p#= myU¥ = [;Z;gf;] - [zlcl] - [Elécl

where my is the rest mass and m = ymy is the “relativistic mass”

—c*ptp, = E* — p?c?is Lorentz invariant and equal to my?c*



4-momentum for photons

For a photon, U is infinite and m is zero

But the energy is E = hv = hAw and the
3-momentumis p = (@) k = hk

C

ha)/c]

Hence the 4-momentum is p#= I

We may define the 4-wave-vector k*= [a)l{c] such that p*= ak*

2
k" is a “null vector” with k”ku = k2 — % =

In Minkowski space, we can have a non-zero vector with zero length



Invariance of the phase

The scalar product k*x, = (k.x — wt) is a Lorentz invariant

This is the phase of an EM wave: E o e'(kx= @t)

It makes sense that this should be Lorentz-invariant. A
charge located at a place and time where E and B vanish will
not accelerate, and all observers in an IRF need to agree
about that. So they must all agree about where

(k.x — wt) = (Tl-l—%)’l'[




Doppler shift and aberration

Consider an EM wave propagating in the xy-plane at angle 6

to the x-axis
S -
kM :2 cosf| — it 2
c [sin® c |[@—-u)/?
| 0 | L0

k" is a 4-vector = we know how it

transforms

k'* =AY, kY

> <




Doppler shift and aberration

In a velocity boosted frame S’ (v-boost in x-direction)

k' =

o |€

y
W | — By
c 0
0
1
H’
(1 -t/
0

w' =y(1—Lu)w (Doppler shift)

0 1
0 H
M [ERTORE
1] 0

w

C

y(1—pu)
y(u—pB)
(1 - u»)l2

0

(Aberration)



Doppler shift and aberration

o' =y(l-puw wo=

Limiting cases
u=1: (6=0 = velocity boost along direction of k)

o =y(1—B)w= %w~ (1-Bw  ifB<<1

w=1

u=0: (6=m/2 = velocity boost perpendicular to k)
w =y w

W=-p =sin(3-0)=-p =20~T+p iff<<i

(Note: for Earth’s orbital motion around the Sun, $ =1.0x 10%= 6’ = 10™*rad = 20”)



Differential power emitted by a relativistic particle

We are now in a position to compute the differential power,
from an accelerating relativistic particle. We’ll denote the
instantaneous rest frame of the particle, S, and the observer
frame (lab frame), S

Let’s say S’ is moving along the positive x-axis at speed v, and
the differential power in the instantaneous rest frame is

dP'  dE'
dQ'  dQ'dt'

We previously computed the transformation from Sto S,

- @' =y(1-ppw



Differential power emitted by a relativistic particle

So in the lab frame, we want to compute
P dE (dE) Q' (dt)_l dE’
dQ  dQdt  \dE')\dQ ) \dt') dQ'dt

Let’s consider these factors one at a time
dE w 1

dE o  y(1-Bu)

aQ’ _dp _ d (u—ﬂ) _ A-Bu)+w-pB _ _1-p° _ 1
daQ dpu  dp\1-Bu (1-pu)? (1-pw?  y*(1-puw)?
% =y to obtain

dP 1 dP’

dQ ~ y*(1 - Bu)3 QY



Lecture 14

Special Relativity continued

Goals: understand

Relativistic beaming

Relativistic dynamics and the Lorentz force on a charge
Electromagnetism with 4-vectors



Emitted versus received power

This is an expression for the angular dependence of the emitted power, P,

dpP, 1 dpP’
dQ — y*(1 — pu)3 do’

But this is different from the power RECEIVED by a stationary observer in
the lab frame. If two photons are emitted at times t;" and t;’ + dt’, the
difference between the ARRIVAL times will be dt, = ydt (1 — Bu)

This is not the same as the difference between the emission times as

determined in the lab frame S, dt = ydt’, because of the difference in light
travel times fu dt

So the power received has an additional factor of (1 — Su) in the
denominator
dE ap, dP, dt 1 dpP’

dodt, do  dadt, v'(1-Bwtdy




Relativistic beaming

Let’s consider first a source of radiation that is isotropic in its own rest frame

dp, 1 P’
dn  y*(1 - Bu)*4n

For a highly relativistic particle with f~1, the denominator becomes very small
when u = 1 (i.e. when 0 = 0) and the radiation is travelling along the positive x-
axis (i.e. the direction of motion)

dP, 1 P’

For 9 = O, =
a2 y*(1—-pB)*4n

Q1: In the limit (1 — B) << 1, how does (1 — ) depend on y?



Relativistic beaming

Let’s consider first a source of radiation that is isotropic in its own rest frame

dp, 1 P’
dn  y*(1 - Bu)*4n

For a highly relativistic particle with f~1, the denominator becomes very small
when u = 1 (i.e. when 0 = 0) and the radiation is travelling along the positive x-
axis (i.e. the direction of motion)

dP, 1 P’

For 9 = O, =
a2 y*(1—-pB)*4n

Q1: In the limit (1 — B) << 1, how does (1 — ) depend on y?
A1 =A=B) A+ B ~201 - D> A —p)~1/(2y”

so 4Pr _ 16y4p_ —, Vvery strong beaming along the x-axis

df 41




Relation to the retarded potentials

Recall the k factor in our expression for the Lienard-Wiechert potentials

4 _rq
G0 = i riey = el
_ qv _ qv
At = —r— = o

with k = (1 — v.R/c)

1/k o< (1 —B) 1~ 2y?

Hence, £ and B arex y? and F x E X B o y*



Relativistic beaming

If we also take the limit of small 8 as well as smallas 1 — 3, we may
approximate u by

(1 — 6%/2) to obtain

dP, 1 P’ 1 P’
d0  y*(1—B(1—02/2))*4nr y*(1— B + 62/2)*4n

1 PP 16yt P
yH/[2y%] + 62/2)* 4 (1 +y202)*4n

Thus the beam has an opening angle ~1/y

Power pattern (polar plot with r «< dP/d{2)
dP'/d0’ dP,/d0

SI



Accelerating, relativistic charge

In the instantaneous rest frame of an accelerating charge, the radiation is
not isotropic but instead has a sin2®’ dependence on the angle to the

acceleration

The power radiated is given by the Larmor formula, which may be written

e?|a’|?sin?@"  e?ataysin?@’

dP'/dQ) = =
/ c3 41rc3

The 3-acceleration may be at any angle to the 3-velocity, leading to a
variety of beam patterns (R&L Fig 4.11)

@ Il v Q. . .
0] 7

S’ 5




Four vector operators

d/0x
For 3-vectors, a key vector operatoris V=| d/0y
d/0z

(1/c)o/ot
For 4-vectors, the analog is 0, = a% B g;g;
d/0z
92 0?2 0%

2
The analog of V2= —— + 3,72 t 5

92 02 02 1 02
i H == = 4= =
is therefore 0,0 oz Yozt oz " Zam

This operator is Lorentz invariant and is called the d’Alembertian

It is variously written 92, (1, or[]2



Acceleration of a charge in an electric field

In 4-vector notation, we may write Newton’s second law as

V4

Like a®, fH is orthogonal to U*, so in the instantaneous rest frame S,
C
where U'* = (O)’ we must have

f* = (1(”)) - (q(l):"’)

But how do we know how the B and E-fields transform?

We’ll need to formulate electromagnetism in a form that is Lorentz
invariant, with equations involving 4-vectors and tensors.



The 4-current-density, j#

Let us define the 4-current-density as

Q2: what is 4-divergence of j* i.e. whatis 9, j*



The 4-current-density, j#

Let us define the 4-current-density as

Q2: what is 9, j#

Answer: the 4-divergence of j# is zero

d
= a—i +V.j=0 by conservation of charge

Because the right-hand-side is Lorentz-invariant and d,, is a 4-vector
operator, this shows that j* is indeed a 4-vector



The 4-potential, A

We now observe that Maxwell’s equations,

op _ 10% _ ,
Vip —— -2, = —4mp Gauss’ Law
1 924 . ,
V2A — Tl —4mj/c Ampere’s Law

Can be written as a 4-vector equation
4
0,0"A* = —

C

where the 4-potential A* = (fg)

The relation between ¢ and A for the Lorentz gauge we are using is also a
4-vector equation
d¢

1
I AR ==-""+V.A=0
H c Ot



The electric and magnetic fields

Since we know that A transforms as a 4-vector, we can compute how

E and B transform

The fields can be treated very beautifully using this object that is a bit like
the curl

Fop = 044 — 0gA,

This has 16 components (since a and [ each take values from 0 to 3) and is
a 2" rank 4-tensor

It transforms according to Fpp' = A} AﬁS F,s

It is clearly antisymmetric, so there are six independent components (with
zeros along the diagonal): amazingly, these components are just the E and
B-fields (3 components for each)



The EM field tensor

Fop = 0qAp — 0gAq is called the EM field tensor

Working out each component, we find that

0 —E, —E, —E,

The Lorentz 4-force on a charge g with 4-velocity U% is fp = %qFaBU“

(We can confirm that in the instantaneous rest-frame, where U'% = ((C)),
: 0 :

fg= (qE’) as required)



Summary: the Lorentz invariant laws of electromagnetism

, . 4t
Maxwell’s Equations 0,0V A* = ;
Lorentz Gauge d,A* =0
Conservation of charge aujﬂ =(

Definition of EM field tensor  Fyp = 0,45 — 0gA,

Lorentz force f,B — %qFaﬁU“



Bremsstrahlung: introduction

Bremsstrahlung = “braking radiation”

Example: X-ray tube (developed in the early 20t century)

By Roentgen-Roehre.svg: Hmilchderivative work: Coolth (talk) -
Roentgen-Roehre.svg, Public Domain,
https://commons.wikimedia.org/w/index.php?curid=11691922



Bremsstrahlung: astrophysical context

In the astrophysical context, we are talking about the deflection of

electrons in a plasma in close encounters with protons (or other
ions)

Also known as free-free emission
Interstellar environments where we find a plasma include

1) Photoionized regions (HIl regions, planetary nebulae
H+hv—>H'+e

2) Collisionally-ionized regions (behind shock waves)
H+e—2>Ht+e+e



HIl regions and planetary nebulae

Gas is photoionized by a hot star with an effective temperature above ~ 25,000 K

Gas kinetic temperature ~ 10* K
Radio continuum emission (1.5 GHz

Visible wavelength emission is map below by Subrahmanyan et al.
dominated by spectral lines 2001) is dominated by free-free
(“bound-bound” emission) emission
0515/ g
=)
n
(=]
m 20
< ~
o
E 250
E :
=
=
o 30t
w
a &
35 "
40 ‘, n.& : .y . . @

053330 15 003245 30 15 003145 30
RIGHT ASCENSION (B1950)

Orion nebula

Fi1G. 4—VLA 1.5 GHz image of the Orion region made with a beam of
_ 1’ FWHM. Contours are at —0.1, 0.1, 0.2, 0.3, 0.4, 0.6, 0.8, 1.2, 1.6, 2.4, 3.2,
Credits: NASA, ESA, M. Robberto and the 48, 64, 9.6, 12.8, 19.2, 25.6, and 384 Jy beam~!. The image has been

Hubble Space Telescope Orion Treasury corrected for the primary beam attenuation.
Project Team



Supernova shock waves

Supernovae release ~ 10°! erg of kinetic energy into the ISM, sending out
expanding shock waves that can persist for tens of thousands of years

Gas kinetic temperature ~ 10° K or higher
The Vela SN remnant has an estimated age of 11,000 yr

Again, the visible wavelength But free-free emission leads to
emission is dominated by bound- radio and X-ray continuum (below)
bound transitions of ions

SRG/eROSITA Vela and Friends

&

Filaments of the Vela Supernova Remnant
Image Credit & Copyright: Angus Lau, Y Van, 2 degrees
SS Tong (Jade Scope Observatory)



http://www.jadescope.com/

Lecture 15

Bremsstrahlung

Goals: understand

Acceleration of electrons in collisions within a plasma

The significance of the b,,., parameter

Emission from a (non-relativistic) collection of particles
with a thermal distribution of velocities



Acceleration of one free charge by another

Question 1: which of the following interactions can produce a non-zero d?
(a) e—p (b)e—H (c)e—e (d) em —et



Acceleration of one free charge by another

Question 1: which of the following interactions can produce a non-zero d?
(a) e—p (b)e—H (c)e—e (d) em —et

Answer: all except (c)
In an e — e collision, the center of charge remains at the center of mass = d =0

Also, an e — H interaction can lead to a force on the electron, because the electron
can induce a dipole moment in the atom

Here, we will focus on the first case, e — p (or more generally, e —ion)



Acceleration of one free charge by another

A
— e
A <<
parameter, b Jr
/
A 4 ./ )
Ze X

Let’s consider an interaction at impact parameter b (not too small) so the
deflection angle is small (i.e. << 1 rad)

In this limit, the x velocity is roughly constant, so x = ut
(if we definet = 0 as the moment of closest approach)

The separation, r, is well approximated by Vb2 + x2 = vbh2 + u?2t?2
and therefore the acceleration is a = Ze?/ (m, %) = Ze?/(m,[b? + u®t?])

Ze3
Me(b? + u?t?)

= |d| = ea =



Acceleration of one free charge by another

Ze3
me(b? + u?t?)

d] = ea =

We can now compute the electric and magnetic fields at distance R in the wave
zone

4w 4w 1dP  4m |d|sin?e

F2=RB2=—¢§ = —
C c R2dQ) cR? 4nc3
o B - |d| sin © B Ze3sin O
(€)= c2R myc2R(b? + u?t?)

To get the spectrum of the emitted radiation, we are interested in the Fourier
transform of the electric field (Lecture 8)

dt asT —» oo

1 T/2 Ze3sin® [®  elwt
Er(w) = — el F(t)dt — J
r(@) ZT[f—T/Z ) 2mtmec?Rb? J_ 1 + t2/t?

where t. = b/u is the “collision time”



Acceleration of one free charge by another

The integral

o ela)t
dt = mt.e @t
J_oo 1+ t2/t?

£ () Zesin® _  Ze3sin® _wb/u
= w) = e ¢ = e
T meCc*Rb?t, mec?Rbu

The average monochromatic flux at distance R is then (Lecture 8)

27TC nZ%e®sin? 0
E, = —|ET(a))|2 52 e —4mvb/u
2msc3R2Th?u?

(average during time period T)

The radiant energy at frequency v emitted due to this interaction is then
_ _ 2 _ mZ’e®8m/3 —2wb/u _ az’e® (m\? —4mvb/u
W,=T/[EdA=T/[R°E,dQ =— e = e

2m2c3b2u? 3m2c3 \bu
e e




2,6 2
_ 4z T —4mvb/u
3msc> \bu
This expression is the amount of energy emitted per unit bandwidth, dE/dv, due to a
single collision with impact parameter b and electron velocity u

U

Key approximations:

(1) we have neglected quantum effects: this is a purely “classical result”
(2) we neglected the acceleration of the ion
(3) we assumed a small angle deflection

Key feature: the distribution in frequency is nearly flat until wt, = wb/u reaches ~ 1

E(t) Er(w)

A A

: N\

t 1/t

g



Emission from an ensemble of particles

Let’s focus on a single ion, and think about all the electrons that may hit it

Rate at which electrons hit at impact parameter between b and b 4+ db
= nudA =n,u2nbdb

Monochromatic power emitted in such collisions

4726 N2
= Wy nu2nbdb =75 (bu) e~4mb/t 1 2mh db
msc

8m3Z2%e%n, db
= e

3mic3u b

—4mub/u

3m2c3u b

Total power per ion due to all collisions =

Problem: the integral diverges (but only logarithmically) at small b, implying that the
power radiated is infinite



Emission from an ensemble of particles

What went wrong?

Two approximations that we made break down at small b
(1) Our approximation that the deflection angle is small.

(2) Our neglect of quantum effects, as the angular momentum m_b u is quantized in
units of

Since the divergence of the integral is logarithmic, even a rough estimate of where
the approximations break down can yield a useful result.

—4mub/u

: : : db .
So the idea is to truncate the integral f7 e at some lower limit, b,,;,, where

the approximations tend to break down.

Let’s consider each of them in turn.



Small deflection angle approximation

A
— e
A <<
parameter, b 9,’r
/
Y ¢ >
Ze X

Let us consider the acceleration in the y-direction (i.e. perpendicular to the initial

direction of motion)
0 b Ze* b Ze*b
a, = —acosf = —a— = — =
Y r m,rir me(b? + u?t2)3/2

The y-velocity the electron acquires during the collision is
Ze? dq 27 e’

Uy = _[ ay dt = _meub (1 + qz)% m,ub

where g = ut/b



Small deflection angle approximation

A
— e
A <<
parameter, b 9,’r
/
Y ¢ >
Ze X

The deflection angle is small if and only if

27Ze?
m.ub

e

lu,| = Ku

or equivalently
Ze?

m,u?/2

b >

We'll call the right-hand-side of this inequality b,%l)n
(1)

The small angle approximation breaks down for b smaller than ~b_ -



Classical treatment of electron motion

The classical treatment of the electron motion is valid if and only if

Electron angular momentum
[l=mub > h
or equivalently

b >

m,u

(2)

min

We’'ll call the right-hand-side of this inequality b

The classical treatment of the electron motion breaks down for b smaller than ~b,(,fi)n

Bottom line: our treatment is valid if and only if b > b,%l)n and b > bgi)n

8m°Z’e°n, J‘°° db ,—amvb/u
3m2c3u b

Take total power per ion due to all collisions = S
min

(1) and b(z)

where by, is the larger of b = min



Which is larger, b orp? 7

min min'

Answer: it depends on u

h
b(l-) — Z—ez b?%i)n= mu
min 2 e
S0 mou=/2
biin _ R _ 1(&)“2
pD  2Ze? 2\ y
min

where K,= m,u?/2 is the electron kinetic energy, and

x = Z’m,e*/[2h?]= 13.6 Z? eV is the ionization potential of a H-like ion of charge Ze
So, for K, larger than y, b,(fi)n is larger and the classical treatment of the electron
motion breaks down firstasb — 0

b(l)

So, for K, smaller than y, b ;.

down firstas b — 0

is larger and the small angle approximation breaks
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Which is larger, bmm orb = "

In an HIl region, T~ 10* K

= typical electron K.E. ~ kT ~1eV K y =13.6eV (forH)

b,%l)n br(m)n = small angle approximation is what breaks down

In a hot shocked region, T~ 106 K and the opposite is usually
true



Power emitted per ion

| ¢ db . (e
In any case, our integral j 7e—47wb/u may be written f Tdé = E,(&min)

bmin $min
i iali . 47Tbminv
where E; is the exponential integral function and &,,;, = —
372
The total power per ion due to all collisions = 8mZe’n, (&)
3mec U E1($min

For monoenergetic electrons at velocity u, we can determine the emission
coefficient by multiplying by the density of ions n; and dividing by 4m

2m?Z%e%n n,

y(u) = E1(min)

3mzc3

ff

Because of the quantization of photon energies, this expression is only correct
when hv <K, . If that condition does not apply, then jif(u) =0



Lecture 16

Bremsstrahlung/ introduction to synchrotron radiation

Goals: understand

Emission from a (non-relativistic) collection of particles
with a thermal distribution of velocities

Free-free absorption

Astrophysical introduction to cosmic rays and
synchrotron radiation



Emission coefficient for a thermal distribution

of electron energies

1w = iz nan o (Emin) forv < melt”

We can average Jv(u) = 32y Ot Smin) forv o
= forv > meu”
— orv N

over a Maxwell-Boltzmann distribution of electron velocities to
obtain the overall emission coefficient for a plasma at temperature T

I’ll omit the details, but neglecting the weak logarithmic factor
involving E,, the temperature and frequency dependence must be

JHET) o T~/ 2exp(— =2

We end up with jif(T) =

16Z%e® ( 2T

)1/2 B hv
n,mn; eXp\——
3m,c3 \3kTm, M Gt €XP( kT

where gge(v, T) is a fudge factor (the “Gaunt factor”) of order unity



Emission coefficient for a thermal distribution

of electron energies

In cgs units, we get

jEfr) = 1110738 () () gy 22 (2)‘1/2 o—hv/KT

ergcm3s~1sr~1Hz™1 cm~3/ \cm™3 K

A proper treatment, with careful inclusion of quantum mechanical
effects, is needed to compute the Gaunt factor.

Jge(v, T) decreases from 