
Quantum Field Theory (171.702),
Spring 2023

Problem Set 3

Due: 10 May 2023

Problem One: Renormalization of a field theory of fermions in the large-N
limit (Problem 17.1 from Fradkin’s QFT book.)

Consider the chiral Gross-Neveu model, which is a simple model of chiral
symmetry breaking in particle physics, and of charge-density waves in condensed
matter. For simplicity, consider the case of (1 + 1)-dimensional spacetime, al-
though it is easy to work out a generalization to higher dimensions. Most of the
problems below are formulated for the theory in Minkowski spacetime. Nat-
urally, you will have to rotate the theory to Euclidean spacetime to do the
integrals and to derive the RG equations.

The Lagrangian density of the chiral Gross-Neveu model is

L = ψ̄ai/∂ψa +
g0

2N

((
ψ̄aψa

)2 − (ψ̄aγ5ψa
)2)

where ψa is a two-component Dirac spinor

ψa(x) ≡
(
Ra
La

)
with Ra and La being the amplitudes for the (chiral) right and left fields, respec-
tively, with a = 1, . . . , N . In this exercise assume thatN is so large that the limit
N → ∞ is a reasonable approximation. We will use the basis for the spinors
in which the two-dimensional γ-matrices are given in terms of Pauli matrices:
γ0 = σ1, γ1 = iσ2, and γ5 = −σ3, and we use the notation 6= ∂µγ

µ = γ0∂0−γ1∂1.
Notice that the usual coupling constant g has been redefined by a scale factor:
g = g0/2 N.

1. The Lagrangian of this system contains an interaction term that is quartic
in the Fermi fields. Instead of using straightforward perturbation theory
you will study this system in the large- N limit. To do this, you first
need to verify the following Gaussian identity, also known as a Hubbard-
Stratonovich transformation:∫

Dσ(x) exp

(
−i N

2g0

∫
d2xσ2(x)− i

∫
d2xσ(x)ψ̄(x)ψ(x)

)
= N exp

(
i
g0

2N

∫
d2x(ψ̄ψ)2

)
(1)
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where N is a suitable normalization constant, and

ψ̄ψ ≡
N∑
a=1

ψ̄a(x)ψa(x)

The field σ(x) does not carry any indices.

2. Use an identity of the type of the one derived in problem 1, involving two
scalar fields σ(x) and ω(x), to write the Lagrangian of the chiral Gross-
Neveu model in a form that is quadratic in the Fermi fields.

3. This model is invariant under the continuous global chiral transformation
ψa = eiθγ5ψ′

a. What transformation law should the scalar fields σ and ω
satisfy?

4. Integrate out the Fermi fields, and find the effective action for the scalar
fields σ and ω. Watch for the factors of N , and be careful with the signs!
By an appropriate rescaling of the scalar fields, show that the effective
action has the form Seff = NS̄. Determine the form of S̄.

5. Now consider the limit N → ∞. Find the saddle-point equations, which
determine the average values of the scalar fields in this limit. Find the
solution of the saddle-point equations with lowest energy. Is the solu-
tion unique? Use dimensional regularization. What quantities need to
be renormalized to make the saddle-point equations finite? How many
renormalization constants do you need? Give your answers in terms of
coupling-constant and wave-function renormalizations. Be careful to in-
clude the dependence on the dimensionality 2 + ε. Determine the renor-
malization constants using the minimal subtraction scheme.

6. Compute the β function. Find its fixed points and flows in 1 + 1 di-
mensions. Solve the differential equation β (g0) = κ∂g0∂κ , where κ is a
momentum scale. Determine the asymptotic behavior of g0 in the limit
κ→∞. Is the interaction term relevant, irrelevant, or marginal?

7. Use the results of the previous parts to write the saddle-point equations in
terms of renormalized quantities alone. In particular, find the dependence
of the average values of the scalar fields on the renormalized coupling
constant.

8. Consider now the fermion propagator in the N → ∞ limit. Are the
fermions massive or massless? If the former is true, what is the value of
the fermion mass, and how does it relate to the expectation values of the
scalar fields?

9. Find the effective action for the scalar fields to leading order in the 1
N

expansion (i.e., to order 1
N ). Determine the propagator of the scalar

fields at this order. Are the scalar fields massive or massless?
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10. Consider now the effect of a field that breaks the chiral symmetry. The
extra term in the Lagrangian is Lsources, given by

Lsources = H0(x)ψ̄a(x)ψa(x) +H5(x)ψ̄a(x)γ5ψa(x)

Find the new effective action of this theory in the presence of these sym-
metrybreaking fields. Derive the modified saddle-point equations. Solve
the new saddle-point equations for the case H0(x) = H and H5(x) = 0.

11. Repeat the renormalization procedure employed for the theory without
sources, now for the case with sources present. Be careful to include
a wave-function renormalization. Derive the renormalized saddle-point
equations. Renormalize the propagators of part 9 .

12. By functionally differentiating the path integral with respect to the sources,
derive an equation of identities that relates expectation values of the scalar
fields σ and ω to expectation values of the fermion bilinears ψ̄ψ and ψ̄γ5ψ.
In particular, find a formula that relates the propagators of σ and ω to
the propagators of the fermion bilinears.

13. Use the Ward identity you derived in the exercises of chapter 12 to derive
a relation between the two-point functions of the scalar fields at zero
momentum, and the external symmetry-breaking field. Do the results
you found in part 9 satisfy these relations?

14. Derive the RG equation (Callan-Symanzik equation (15.79)) satisfied by
the scalar fields in the absence of external sources. Solve these Callan-
Symanzik equations in terms of a momentum rescaling factor ρ and a
running coupling constant. Note: Unlike renormalized perturbation the-
ory, here you will find a solution of the RG equations that holds for all
values of the coupling constant. This is possible because of the large- N
limit, which is nonperturbative in the coupling constant.

15. Use the solutions of part 14 to find the asymptotic behavior of the two-
point functions of the scalar fields at large momenta.

Problem Two: Fractional charge and statistics in U(1)k Chern-Simons theory
(Fradkin’s problem 22.1)

In this exercise consider the U(1)k abelian Chern-Simons theory with gauge
field Aµ coupled to two types of sources, jµ and an external (background) elec-
tromagnetic field Aem

µ . The Lagrangian is now

L =
k

4π
εµνλA

µ∂νAλ + jµA
µ +

e

2π
Aem
µ εµνλ∂νAλ
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1. Show that the electromagnetic current of this theory is Jem
µ = e

2π εµνλ∂
vAλ,

and show that this current is locally conserved.

2. Consider now the case in which the current jµ represents the worldlines
of very heavy particles that are charged under the Chern-Simons gauge
field. Integrate out the Chern-Simons gauge field, and find the effective
action for the matter currents jµ and for the electromagnetic gauge field
Aem
µ .

3. Use the effective action of the previous part to compute the electromag-
netic current induced by the external electromagnetic field. Use the re-
sult to compute the conductivity tensor σij(i, j = 1, 2), such that Jem

i =
σijE

em
j , where Eem is the external electric field.

4. Use the effective action to show that the particles represented by the
currents jµ have electromagnetic charge q = e/k and fractional statistics
θ = π/k.
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