Quantum Field Theory (171.701), Fall 2022

Problem Set 2

Due: 7 November 2022

1. Show that the following bilinears in the spinor field $\bar{\psi} \psi, \bar{\psi} \gamma^{\mu} \psi, \bar{\psi} \sigma^{\mu \nu} \psi$, $\bar{\psi} \gamma^{\mu} \gamma^{5} \psi$, and $\bar{\psi} \gamma^{5} \psi$ transform under the Lorentz group and parity as a scalar, vector, tensor, pseudovector (or axial vector), and pseudoscalar, respectively.
2. Work out the Dirac equation in ($1+1$)-dimensional spacetime. You should find that the Dirac matrices are 2×2 matrices and that the spinors are two-component objects. Is there a " γ_{5} " matrix?
3. Work out the Dirac equation in (2+1)-dimensional spacetime. Show that the apparently innocuous mass term violates parity and time reversal. [Hint: The three γ^{μ} 's are just the three Paul matrices with appropriate factors of i.] Note also that there is no γ_{5} matrix in (2+1)-d.
4. Use Noether's theorem to derive the conserved current $J^{\mu}=\bar{\psi} \gamma^{\mu} \psi$, where $\psi(x)$ is a Dirac spinor. Calculate $[Q, \psi]$ and thus assign the appropriate charges to the creation and annihilation operators in the expansion of $\psi(x)$.
5. Show that a spin- $\frac{3}{2}$ particle can be described by a vector-spinor $\Psi_{a \mu}$, where a is a Dirac-spinor index and μ a vector index. Find the equations of motion (the Rarita-Schwinger equations). [Hint: The object $\Psi_{a \mu}$ has 16 components, which we need to cut down to $2 \times \frac{3}{2}+1=4$ components.]
6. Calculate the tree-level cross section for electron-electron scattering in QED.
7. The charged pion ϕ^{-}is represented by a complex scalar field φ, the muon μ^{-}by a Dirac field \mathcal{M}, and the muon neutrino ν_{μ} by a spin-projected Dirac field $P_{L} \mathcal{N}$, where $P_{L}=\frac{1}{2}\left(1-\gamma_{5}\right)$. The charged pion can decay to a muon and a muon antineutrino via the interaction,

$$
\begin{equation*}
\mathcal{L}_{1}=2 c_{1} G_{F} f_{\pi} \partial_{\mu} \overline{\mathcal{M}} \gamma^{\mu} P_{L} \mathcal{N}+\text { h.c. }, \tag{1}
\end{equation*}
$$

where c_{1} is the cosine of the Cabibbo angle, G_{F} is the Fermi constant, and f_{π} is the pion decay constant. (You may want to verify that f_{π} has mass dimension 1 and G_{F} has mass dimension -2.) (a) Compute the charged-pion decay rate Γ. (b) The charged-pion mass is $m_{\pi}=139.6$ MeV , the muon mass is $m_{\mu}=105.7 \mathrm{MeV}$, and the muon neutrino can, for our purposes, be taken to be massless. The Fermi constant is measured
in muon decay to be $G_{F}=1.166 \times 10^{-5} \mathrm{GeV}^{-2}$, and the cosine of the Cabibbo angle is measured in nuclear beta decays to be $c_{1}=0.974$. The measured value of the charged-pion lifetime is $2.603 \times 10^{-8} \mathrm{sec}$. Determine the value of f_{π} in MeV . You should find that your result is larger than the true value by 0.8% because of the neglect of electromagnetic loop corrections.
8. Prove Furry's theorem: Any QED scattering amplitude with no external fermions, and an odd number of external photons, is zero.
9. Show that there are six one-loop diagrams with four external photons (they all look the same; its just a question of permutations). Show that even though each diagram is logarithmically divergent, the sum is finite. Explain why this cancellation is required by gauge-invariance. (By the way, if you evaluate these loops in the limit that the external-photon momenta are small, you will obtain the Euler-Heisenberg Lagrangian, the first non-vanishing correction to the gauge-field Lagrangian $\mathcal{L}=(1 / 4) F^{\mu \nu} F_{\mu \nu}$.)
10. Consider the current-current correlation function $\langle 0| T j^{\mu}(x) j^{\nu}(y)|0\rangle$ in QED. (a) Show that its Fourier transform is proportional to

$$
\begin{equation*}
\Pi^{\mu \nu}(k)+\Pi^{\mu \rho}(k) \tilde{\Delta}_{\rho \sigma}(k) \Pi^{\sigma \nu}(k)+\cdots \tag{2}
\end{equation*}
$$

where $\Pi^{\mu \nu}(k)$ is the photon self energy and $\tilde{\Delta}_{\rho \sigma}(k)$ the photon propagator. (b) Use this result to prove that $\Pi^{\mu \nu}(k)$ is transverse; i.e., that $k_{\mu} \Pi^{\mu \nu}(k)=$ $0 . i$

