Quantum Field Theory (171.701), Fall 2022

Problem Set 2

Due: 7 November 2022

1. Consider the Landau-Ginsberg free energy for a complex scalar ψ,

$$
\begin{equation*}
F=\int d x\left(\alpha_{2}(T)|\psi|^{2}+\alpha_{4}|\psi|^{4}-\gamma\left|\frac{d \psi}{d x}\right|^{2}+\kappa\left|\frac{d^{2} \psi}{d x^{2}}\right|^{2}\right) \tag{1}
\end{equation*}
$$

with $\gamma, \alpha_{4}, \kappa>0$. Consider an ansatz in which a single Fourier mode $\psi_{k}=A_{k} e^{i k x}$ with $k= \pm k_{0}$ is nonvanishing. What value of k_{0} minimizes the free energy? Show that the system undergoes a phase transition to a spatially modulated phase when $\alpha_{2}=\gamma^{2} / 4 \kappa$. What symmetries are broken in the ordered phase?
2. Consider the free energy for a complex scalar field ψ coupled to a gauge field A_{i} in d dimensions,

$$
\begin{equation*}
F\left[\psi, A_{i}\right]=\int d^{d} x\left[\frac{1}{4} F_{i j} F^{i j}+\left|\partial_{i} \psi-i e A_{i} \psi\right|^{2}+\mu^{2}|\psi|^{2}\right] \tag{2}
\end{equation*}
$$

where $F_{i j}=\partial_{i} A_{j}-\partial_{j} A_{i}$. (As an aside: if we add a quartic term $g|\psi|^{4}$, then, in $d=3$, this is the original Ginzburg-Landau free energy for a superconductor.) What is the critical dimension d_{c}, such that the coupling between the scalar and gauge field is relevant for $d<d_{c}$ and irrelevant for $d>d_{c}$? Speculate on what might happen at $d=d_{C}$.
3. The $O(N)$ mode consists of N scalar fields $\phi=\left(\phi_{1}, \cdots, \phi_{N}\right)$, with a free energy,

$$
\begin{equation*}
F_{1}[\phi]=\int d^{d} x\left[\frac{1}{2}(\nabla \phi)^{2}+\frac{1}{2} \mu^{2}(\phi \cdot \phi)+g(\phi \cdot \phi)^{2}\right], \tag{3}
\end{equation*}
$$

which is invariant under $O(N)$ rotations. In $d=4-\epsilon$ dimensions, the beta functions become,

$$
\begin{align*}
\frac{d \mu^{2}}{d s} & =2 \mu^{2}+\frac{N+2}{2 \pi^{2}} \frac{\Lambda^{4}}{\Lambda^{2}+\mu^{2}} \tilde{g} \\
\frac{d \tilde{g}}{d s} & =\epsilon \tilde{g}-\frac{N+8}{2 \pi^{2}} \frac{\Lambda^{4}}{\left(\Lambda^{2}+\mu^{2}\right)^{2}} \tilde{g}^{2} \tag{4}
\end{align*}
$$

where $\tilde{g}=\Lambda^{-\epsilon} g$ is the dimensionless coupling constant. What is the critical exponent ν at the Wilson-Fisher fixed point. Assuming that $\eta \sim$ $\mathcal{O}\left(\epsilon^{2}\right)$, determine the critical exponents α, β, γ, and δ to leading order in ϵ.
4. The free energy of the Sine-Gordon model in $d=2$ dimensions, with UV cutoff Λ, is given by

$$
\begin{equation*}
F[\phi]=\int d^{2} x\left[\frac{1}{2}(\nabla \phi)^{2}-\lambda_{0} \cos \left(\beta_{0} \phi\right)\right], \tag{5}
\end{equation*}
$$

What is the "naive" dimension of β_{0} and λ_{0}. Decompose the modes of the field as $\phi_{\mathbf{k}}=\phi_{\mathbf{k}}^{-}+\phi_{\mathbf{k}}^{+}$, where ϕ_{k}^{+}is nonzero for $\operatorname{Lambda} / \zeta<k<\Lambda$, and ϕ_{k}^{-}nonzero for other k. Let $\phi^{-}(\mathbf{x})$ and $\phi^{+}(\mathbf{x})$ be the inverse Fourier transforms. Show that after integrating out $\phi_{\mathbf{k}}^{+}$, the free energy for ϕ^{-} becomes, to leading order in λ_{0},

$$
\begin{equation*}
F^{\prime}\left[\phi^{-}\right]=\int d^{2} x\left[\frac{1}{2}\left(\nabla \phi^{-}\right)^{2}-\lambda_{0}\left\langle\cos \beta_{0}\left(\phi^{-}+\phi^{+}\right)\right\rangle_{+}\right] \tag{6}
\end{equation*}
$$

where you should define the meaning of $\left\rangle_{+}\right.$. Evaluate this expectation value to show that

$$
\begin{equation*}
F^{\prime}\left[\phi^{-}\right]=\int d^{2} x\left[\frac{1}{2}\left(\nabla \phi^{-}\right)^{2}-\lambda_{0} \zeta^{-\beta_{0}^{2} / 4 \pi} \cos \left(\beta_{0} \phi^{-}\right)\right] \tag{7}
\end{equation*}
$$

Hence, show that the $\cos (\beta \phi)$ potential is relevant when $\beta_{0}^{2}<8 \pi$ and irrelevant when $\beta_{0}^{2}>8 \pi$. [Hint: Write $\cos \left(\phi^{-}+\phi^{+}\right)=\frac{1}{2}\left(e^{i \phi^{-}} e^{i \phi^{+}}+\right.$ $\left.e^{-i \phi^{-}} e^{-i \phi^{+}}\right)$and use Wick's identity,

$$
\begin{equation*}
\left\langle e^{B_{a} \phi_{a}}\right\rangle=e^{\frac{1}{2} B_{a}\left\langle\phi_{a} \phi_{b}\right\rangle B_{b}} \tag{8}
\end{equation*}
$$

for any constant B_{a}. You will also need the position-space correlation function,

$$
\begin{equation*}
\left\langle\phi^{+}(\mathbf{x}) \phi^{+}(\mathbf{y})\right\rangle_{+}=\int_{\Lambda / \zeta}^{\Lambda} \frac{d^{2} k}{(2 \pi)^{2}} \frac{e^{-i \mathbf{k} \cdot(\mathbf{x}-\mathbf{y})}}{k^{2}} \tag{9}
\end{equation*}
$$

You should make use of this in the limit $\mathbf{x} \rightarrow \mathbf{y}$.]
5. Consider a field φ_{i} in a representation R_{1} of some gropu and a field χ_{I} in a representation R_{2}. Their product $\phi_{i} \chi_{I}$ is then in the direct product representation $R_{1} \otimes R_{2}$, with generator matrices given by

$$
\begin{equation*}
\left(T_{R_{1} \otimes R_{2}}^{a}\right)_{i I, j J}=\left(T_{R_{1}}^{a}\right)_{i j} \delta_{I J}+\delta_{i j}\left(T_{R_{2}}^{a}\right)_{I J} \tag{10}
\end{equation*}
$$

(a) Prove the distribution rule for the covariant derivative,

$$
\begin{equation*}
\left[D_{\mu}(\varphi \chi)\right]_{i I}=\left(D_{\mu} \varphi\right)_{i} \chi_{I}+\varphi_{i}\left(D_{\mu} \chi\right)_{I} \tag{11}
\end{equation*}
$$

(b) Consider a field φ_{i} in a representation and its Hermitian conjugate φ_{i}^{\dagger} in the complex-conjugate representation. Show that

$$
\begin{equation*}
\partial_{\mu}\left(\varphi^{\dagger i} \varphi_{i}\right)=\left(D_{\mu} \varphi^{\dagger}\right)^{i} \varphi_{i}+\varphi^{\dagger i}\left(D_{\mu} \varphi\right) \tag{12}
\end{equation*}
$$

Explain why this is a special case of equation (11), and also why it makes sense.

